
Spin-glass properties of an Ising antiferromagnet on the Archimedean „3,122
… lattice

M. J. Krawczyk,* K. Malarz,† B. Kawecka-Magiera,‡ A. Z. Maksymowicz,§ and K. Kułakowski�

Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Aleja Mickiewicza 30,
PL-30059 Kraków, Poland

�Received 27 December 2004; published 21 July 2005�

We investigate magnetic properties of a two-dimensional periodic structure with Ising spins and antiferro-
magnetic nearest-neighbor interaction. The structure is topologically equivalent to the Archimedean �3,122�
lattice. The ground state energy is degenerate. In some ground states, the spin structure is translationally
invariant, with the same configuration in each unit cell. Numerical results are reported on specific heat and
static magnetic susceptibility against temperature. Both quantities show maxima at temperature T�0. They
reveal some sensitivity on the initial state in temperatures where the Edwards–Anderson order parameter is
positive. For zero temperature and low frequency of the applied field, the magnetic losses are negligible.
However, the magnetization curve displays some erratic behavior due to the metastable states.
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I. INTRODUCTION

The problem of spin glass, with quenched disorder and
frustration as main ingredients, is known to be a challenge in
statistical mechanics.1 In order to reduce its complexity, it
makes sense to discuss these ingredients separately. The aim
of this work is to report numerical results on magnetic prop-
erties of a structure where frustration is present for purely
antiferromagnetic interaction, with only one value of the ex-
change interaction. The interaction is limited to nearest
neighbors. The structure studied is presented in Fig. 1.

Our motivation to discuss this structure is as follows.
First, the frustration is to be present, and the simplest way to
achieve it is to put triangles into the lattice. Second, the
number of nearest neighbors is to be odd, what ensures that
for any magnetic state, the energy barrier to flip a spin is
finite. Then we may expect that the magnetic transition tem-
perature is greater than zero. Third, we are interested in the
ground state degeneracy. We look for a lattice where, if ex-
ternal field is zero, a simultaneous flip of some spins does
not change the total energy. In fact, if the magnetization of
the flipped group of spins is zero, the flipping does not
change the energy even in the presence of the applied field.
Fourth, all distances between the nearest neighbors should be
equal. Additionally, two-dimensional structures are preferred
for their simplicity. The structure presented in Fig. 1 fulfills
all these conditions. The last condition is guaranteed by
spanning our structure on the triangular lattice. Actually, this
structure is topologically equivalent to the Archimedean lat-
tice �3,122�. Patterns of all 11 Archimedean lattices can be
found in Ref. 2. Topological equivalence means that one lat-
tice can be stretched into the other. Magnetism of
Archimedean lattices has been investigated for some years.3,4

However, these works deal with the isotropic Heisenberg in-
teraction. We are not aware about temperature-dependent
simulations on the �3,122� lattice with Ising antiferromag-
netism.

II. THE GROUND STATE

The energy of the classical Ising state5 in the presence of
external magnetic field H is

E = −
1

2
J�

�i,j�
SiSj − H�

i

Si, �1�

where Si= ±1, J�0 is the antiferromagnetic exchange con-
stant and the first summation goes over all nearest-neighbor
pairs �i , j�. The degeneracy of the ground state energy �GSE�
of the structure presented in Fig. 1, termed as stretched
Archimedean for brevity from now on, can be demonstrated
easily when we look at the unit cell in Fig. 2. There are nine
bonds in the unit cell. The ground state energy cannot be
smaller than it is allowed by the frustration, which is un-
avoidable within the two triangles. The contribution from the
triangles to GSE is then 2J per unit cell. Provided that the
spins connected with other bonds are oriented in antiparallel,
we get 5J per unit cell for a field equal to zero. This is well
possible, and some of the ground states are periodic. One of
such states is �s1 ,s2 ,s3 ,s4 ,s5 ,s6�= �−, + , + ,− ,− , + �. Another
periodic ground state can be obtained by a simultaneous flip
of spins s3 ,s4 in each unit cell. More general, we have six
periodic ground states �s1 ,s2 ,s3 ,−s3 ,−s2 ,−s1�; an additional
condition is that s1+s2+s3= ±1. These states are collected in
Table I.

FIG. 1. The stretched Archimedean �3,122� lattice, with the tri-
angular lattice as a background.
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Obviously, many other nonperiodic ground states of the
whole lattice can be obtained, for example, from ��, �, �,
�, �, �� if the flip of two spins is performed only in a
selected number of unit cells. This means that the ground
state degeneracy increases with the lattice size at least as 6
�2N/6, where N is the number of sites.

III. NUMERICAL RESULTS

We apply the heat bath Monte Carlo approach6 to find the
magnetic contribution to the specific heat at zero field, i.e.,

C = ���E2� − �E�2� , �2�

where �¯� is an average over thermodynamic ensemble, and
�=1/ �kBT�. In the numerical calculations, the thermal aver-
age �¯� is substituted by the time average. A lattice of
6�104 spins is used, with periodic boundary conditions. The
initial state is of full saturation, i.e., all spins equal to +1.
Alternatively spins are randomly +1 or −1, with equal
weights. After about 100 time steps, the total magnetization
is close to zero, and the system is reasonably close to thermal
equilibrium, at least for high temperatures. We define a time
step as one update of the whole network. Then, the time
average of E and E2 is found. The results are averaged over
Nrun=100 trials. For T less than 0.7��J� /kB	 the statistics are
better: Nrun=103. The obtained plot is shown in Fig. 3.

The same algorithm is used to calculate the static suscep-
tibility for zero field, i.e.,

� = �2��M2� − �M�2� , �3�

where M =�iSi. Here again, two sets of data ��T� are ob-
tained for two different kinds of the initial conditions, one

saturated and one random. The results are shown in Fig. 4.
As we see, two curves ��T� become different below a certain
temperature. The curve for the random initial state is higher.
This is so since, for low temperature, the algorithm of the
heat bath leads the saturated system to one of its ground
states, whereas the randomness of the initial state is to some
extent preserved.

To get more insight into this effect, we also calculate the
thermal dependence of the Edward–Anderson order param-
eter �EA.7 In its definition below, the appropriate time aver-
age is written explicitly:

�EA = �
i

1

	
�
t=1

	

Si�t��2

. �4�

In Fig. 5 we show �EA�T� obtained from random and satu-
rated states by the heat bath algorithm at zero temperature.
As we see, �EA starts to differ from zero at a temperature
close to T�0.7��J� /kB	, where the plots on C�T� and ��T�
obtained for different initial conditions separate.

For the case of T=0, we calculate also the spectrum of the
metastable states. These states are obtained from a random
initial state by means of the heat bath algorithm in zero tem-
perature limit. The result is shown in Fig. 6�a�. It is seen that

FIG. 2. A unit cell.

TABLE I. List of homogeneous ground states, with spins labeled as in Fig. 2. In the last column, paths are
indicated which lead to other states by flipping pairs of spins in all unit cells.

Ground
state s1 ,s2 ,s3 ,s4 ,s5 ,s6

Pairs
which can be flipped

A �, �, �, �, �, � �s3 ,s4� to C or �s2 ,s5� to B

B �, �, �, �, �, � �s2 ,s5� to A or �s1 ,s6� to F

C �, �, �, �, �, � �s1 ,s6� to E or �s3 ,s4� to A

D �, �, �, �, �, � �s3 ,s4� to F or �s2 ,s5� to E

E �, �, �, �, �, � �s2 ,s5� to D or �s1 ,s6� to C

F �, �, �, �, �, � �s1 ,s6� to B or �s3 ,s4� to D

FIG. 3. �Color online� Temperature dependence of the specific
heat C. We show two curves: for saturated �solid line� and random
�dotted line� initial states. At low temperatures, i.e., below T
=0.7��J� /kB	, the results depend on the initial state. However, the
main maximum of C�T� is the same for both initial states.
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there is some randomness preserved in the metastable states.
The mean energy of a metastable state is less than 3% above
the ground state energy. In Fig. 6�b�, an attempt is presented
to find a correlation between energy and magnetization of the
same metastable states. As we see, there is no correlation at
all. We note only that metastable states with nonzero mag-
netic moments do exist and can produce some contribution to
the hysteresis loop. However, this contribution is very small,
as seen in the next figure.

The same kind of randomness is present in the results on
the magnetization curve. The curve is shown in Fig. 7. For a
comparison, we present also the data obtained for the square
lattice and the triangular lattice. The distribution of sizes of
spin flips avalanches is shown in Fig. 8. By an avalanche size
we mean the number of flipped spins at a given field. In Fig.
8 we see three maxima, obtained at fields H=0, H=1��J�	,
and H=3��J�	. The avalanches at H=0 are just numbers of

spins which flip when the system passes from random initial
state to a metastable state, with final energy distribution
shown in Fig. 6�a�. These avalanches are the largest, as they
contain about 23 000 flippings. The avalanches occurring at
field H=1��J�	 and H=3��J�	 contain 10 450 and 19 800 flip-
pings in the average �see Fig. 8�a�	.

FIG. 4. �Color online� Thermal dependence of the static spin
susceptibility � for zero field. The results for the saturated initial
state �solid line� show that below the maximum, � tends mildly to
zero, with numerical uncertainties decreasing at low T. The results
for the random initial state �dotted curve� show irregularities below
T=0.7��J� /kB	. In this range of temperature, we observe a rapid
increase of � below the main maximum, and numerical uncertain-
ties increase when T is lowered. For T=0.2��J� /kB	, the uncertain-
ties reach about 100% of the obtained value.

FIG. 5. �Color online� Thermal dependence of the Edwards–
Anderson order parameter. The results are practically the same for
the initial random state and initial saturated state.

FIG. 6. �Color online� �a� Energy distribution of metastable
states obtained for T=0 from random initial states. The mean en-
ergy is about 2.5% higher than GSE=5J per unit cell. �b� Energy
against the reduced magnetization m=M /N of the same metastable
states. No visible correlation is found. m�t=0�=0, H=0, T=0,
N=6�104, and Nrun=104.

FIG. 7. �Color online� The magnetization curves for �3,122�, the
square lattice, and the triangular lattice �solid, dashed, and dotted
lines, respectively� for T=0.
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Above H=3��J�	, all spins are saturated. Provided that, on
average, the magnetization of a metastable state is approxi-
mately zero, half of the spins �3�104� are to be flipped to
saturate the sample. In Figs. 8�b�–8�d� we show the same
peaks in smaller scales, which enables one to observe their
detailed character. The positions of the peaks of the spectrum
indicate that the summarized size of avalanches at H
=1��J�	 and H=3��J�	 is 30 250 on average. The small
amount of difference, here 250 spins on average, mean that
some spins flip back and forth.

IV. DISCUSSION

The magnetic properties of the investigated lattice show
similarities to the spin glass state. These are maxima of the
spin susceptibility � and the specific heat C as dependent on
temperature, and the dependence of these observables on an
initial state below T=0.7��J� /kB	. In this range of T, the
Edwards–Anderson order parameter �EA is different from
zero. We deduce that there, the ensemble average cannot be
substituted by the time average, and our numerical results on
C and � are not reliable. However, the main peaks of C and
� between T=1.0��J� /kB	 and T=2.0��J� /kB	 do not depend
on the initial state.

On the other hand, the ground state energy is multiply
degenerated. As a consequence, the overlap1 of two ground
states 
 and �, defined as

q
� =
1

N
�

i

N

Si�
�Si��� , �5�

is different from unity. For example, the overlap between
states A and B from Table I is qAB=1/3. When the nonperi-
odic ground states are taken into account, the overlap distri-
bution P�q� is practically a continuous function of q. To
explain it, let us consider only two periodic ground states, A
and B. If only those two are possible, an overlap between
two nonperiodic ground states 
 and � within a unit cell is
either 1 or 1 /3, for the cells in the same or different states,
respectively. For any state 
, we can select ns out of N /6 unit
cells and form state � putting them in the same states, as in

. In this case we have the overlap probability

P
q =
ns + �N/6 − ns�/3

N/6
� =

�N/6�!
ns!�N/6 − ns�!

. �6�

In fact, there are six periodic ground states, and not only
two. Information, cells in which ground states can be neigh-
bors without raising energy, is given in the last column of
Table I. If the condition of periodicity is removed, the num-
ber of ground states of a unit cell increases. In any case, a
typical ground state of the whole lattice is expected to be not
periodic, but disordered. In this way, the most simple defini-
tion of spin glass8 is true for our lattice. In the case of T
=0, the system dynamics leads to �meta�stable states, which

FIG. 8. �Color online� The spectrum of avalanches. �a� Three peaks are obtained for avalanches at three different fields: �b� H=0, �c�
H=1��J�	, and �d� H=3��J�	. This result reflects the distribution of the interaction field. T=0, N=6�104, and Nrun=104.
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depend on initial states. The spectrum of GSE and the mag-
netization curve reveal a random character, which is a con-
sequence of the random initial state.

Numerical results reported above suggest that the tem-
perature of the transition between the paramagnetic state and
the low-temperature state is positive. It is an open question,
how much disorder is needed to reproduce the vanishing of
the transition temperature, which is the standard result for
two-dimensional Ising spin glasses.8 With a small amount of
disorder, we expect that the interaction field at some sites is
zero and these spins flip freely. Once a cluster of these spins
spans throughout the lattice, the transition at finite tempera-
tures is likely to disappear.

To summarize, the �3,122� Archimedean lattice can be
useful as a reference example when the question, which fea-
tures of a realistic spin glass are a consequence of frustration
only, is under debate. As seen in Fig. 1, the system can be
considered as the triangular lattice with areas where mag-
netic atoms are absent. Filling these areas with atoms in a

random way, we introduce some disorder, which coexists
with the frustration. With a small amount of the added atoms
we can expect that the transition temperature remains posi-
tive. If all empty sites are filled with atoms, the triangular
Ising antiferromagnet is reproduced, which is paramagnetic
at T�0. Then, the triangular lattice and the stretched
Archimedean lattice can be considered as two limit cases,
with quenched disorder and frustration coexisting in be-
tween. The question whether this coexistence leads to the
spin-glass phase at positive temperatures remains open.
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