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The ferromagnetic resonance �FMR� modes of a magnetic tunnel junction-like system are investigated. Such
a system consists of an interfacial �F/AF� interaction described by an exchange anisotropy field HE and a
magnetic coupling of two ferromagnetic layers separated by a nonmagnetic interlayer. The latter interaction is
accounted for by bilinear J1 and biquadratic J2 coupling strengths. The dispersion relation, the resonant
frequency, f , as well as the corresponding mode intensity, I, versus applied field H curves, have been studied.
Analytical formulas for the resonance condition and intensity have been derived for the low magnetic coupling/
high exchange anisotropy case. In this situation, the system is found to behave as two uncoupled layers with
magnetic characteristics different from those of the initial layers; the effect of the low coupling is to modify the
different anisotropies: J1 contributes to the exchange anisotropy while J2 modifies the magnetocrystalline
anisotropies. For very strong coupling, the system behaves as a single �F/AF� system with effective exchange
and magnetocrystalline anisotropy fields; these fields have been derived as a function of the individual layer
magnetic parameters.
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I. INTRODUCTION

Ferromagnetic resonance �FMR� is a powerful method
which has been widely used to investigate a variety of mag-
netic system.1–9 The present work deals with the ferromag-
netic resonance modes �position and intensity� of a magnetic
tunnel junction-like system. Such a system may consist of a
stacking of an antiferromagnetic layer �AF� and two ferro-
magnetic layers �A and B� separated by a nonmagnetic
interlayer.10–12 The interaction at the interface of layer A with
AF gives rise to a unidirectionnal anisotropy called exchange
anisotropy.13–21 This anisotropy can be modeled as a mag-
netic field HE, the exchange anisotropy field. The layer A
magnetization MA is subjected to HE and is thus pinned.
Layers A and B are magnetically coupled. The magnetic cou-
pling can be described by the bilinear J1 and the biquadratic
J2 coupling parameters.22–27 The former may favor a parallel
alignement �ferromagnetic coupling� or an an antiparallel
alignement �antiferromagnetic coupling� of MA and MB
while the latter one �J2� may lead to a perpendicular configu-
ration of the magnetizations.

The geometry of the system and the energy will be dis-
played in Sec. II. The relations giving the mode positions
�resonance frequency� and the FMR intensity will be derived
�Sec. III� and discussed as a function of the coupling
strengths J1 and J2 and of the exchange anisotropy field HE:
for zero coupling �Sec. IV�, for low magnetic coupling/high
exchange anisotropy �Sec. V�, and for very strong magnetic
coupling �Sec. VI�.

II. THE MAGNETIC SYSTEM

The magnetic tunnel junction, the system under consider-
ation here, is shown in Fig. 1. It consists of an antiferromag-
netic layer �noted AF� on top of which is deposited a first
ferromagnetic layer �labeled A�. Layer A is separated from a
second ferromagnetic layer B by a nonmagnetic interlayer.

All the thin film layers are assumed to lie in the x-y plane,
with the z axis normal to the film planes. The magnetization
MA of layer A is defined, in spherical coordinates, by the
angles �A and �A; and similarly MB �layer B� by the angles
�B and �B. Two magnetic phenomenon arise in this system.
First, the exchange anisotropy at the interface AF-A, is mod-
eled as a magnetic field HE, the exchange anisotropy field.
The field HE is taken to be along the x axis �see Fig. 1�.
Second, we have the magnetic coupling between two ferro-
magnetic layers separated by a nonmagnetic interlayer. This
interaction will be described by the bilinear J1 and biqua-
dratic J2 coupling parameters. Moreover, layer A is supposed
to have an in-plane uniaxial magnetocrystalline anisotropy,
with the easy axis taken to be along the x axis. On the other
hand, no in-plane magnetocrystalline anisotropy is included

FIG. 1. The magnetic tunnel junction-like system. AF: antifer-
romagnetic layer. F: ferromagnetic layers �A and B�. �N.M�: non-
magnetic interlayer.
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for layer B, i.e., the layer B magnetization is free to rotate
within the plane in the absence of magnetic coupling. The
external applied magnetic field H is taken to be in the plane
of the films, making an � angle with the x axis. The micro-
wave field h is along the y axis. With all these consider-
ations, the total free energy of the system per unit area can be
explicitly written as

E = tA�− MAH sin �A cos�� − �A� + Kuef fA sin2 �A

+ KA sin2 �A sin2 �A − MAHE sin �A cos �A�

+ tB�− MBH sin �B cos�� − �B� + Kuef fB sin2 �B�

− J1�sin �A sin �B cos��A − �B� + cos �A cos �B�

− J2�sin �A sin �B cos��A − �B� + cos �A cos �B�2.

�1�

In the two first terms of Eq. �1�, tA and tB are the thicknesses
of layers A and B, respectively. The total energy E consists
for layer A �the first term� of the Zeemann energy �interac-
tion of the external magnetic field H with the magnetiza-
tions�, −MAH, the shape and any out-of-plane uniaxial an-
isotropy with effective constant Kuef fA �Kuef fA=Ku−2�MA

2 ,
Ku being the uniaxial magnetocrystalline constant�, the in-
plane magnetocrystalline anisotropy with constant KA, and
the exchange anisotropy with exchange anisotropy field HE.
For layer B �the second term in Eq. �1��, the Zeeman energy
and the effective uniaxial anisoptropy term �shape and mag-
netocrystalline� are displayed. The interlayer coupling energy
is given by the two last terms. The nature and the strength of
the coupling are described by the sign and the magnitude of
J1 and J2. When J1 dominates and if it is positive the energy
is minimal when MA and MB are parallel �ferromagnetic
coupling�, while if it is negative, then the lowest energy is
achieved when MA and MB are antiparallel �antiferromag-
netic coupling�. If, on the other hand, J2 dominates and is
negative �which was experimentally observed�, then the
minimum energy occurs when the magnetizations are ori-
ented perpendicularly to each other �the 90°-type coupling�.

At equilibrium, the magnetizations MA and MB must lie
in the film plane, i.e., �A=�B=90°, due to the strong demag-
netizing field of the thin films and to the fact that the applied
magnetic field is in-plane. Then, the angles �A,B are given by
the following two coupled equations �the equilibrium condi-
tions�:

H sin�� − �A� =
HA

2
sin 2�A + HE sin �A +

J1

a
sin��A − �B�

+
J2

a
sin 2��A − �B� �2a�

and

H sin�� − �B� = −
J1

b
sin��A − �B� −

J2

b
sin 2��A − �B� ,

�2b�

where HA=2KA /MA is the planar anisotropy field for layer A,
a= tAMA and b= tBMB.

III. RESONANT MODE POSITION AND INTENSITY

A. The mode position

The normal modes of the system can be found by the use
of the method based on the energy, in this case the equations
coupling ��i, ��i �i=A ,B�; the excursions during oscilla-
tions about the equilibrium position can be written in a ma-
trix form.28–30 The matrix elements consist of the second
derivatives of the energy E with respect to �i and �i �i
=A,B�. A solution of the form exp�i�t� will be taken; � is the
�angular� frequency of precession. The solutions �normal
modes� of the system will be found by setting the determi-
nant of the matrix to zero. If one is using a variable fre-
quency setup �frequency sweeper� and a fixed dc field, then
one may solve for the frequency. One will then find a fourth-
order equation in � �the resonant frequency� with at most
two meaningful solutions �real and positive numbers� for
given coupling strength parameters and dc field intensity and
direction values.28–30 Thus computing the second derivatives
of the energy �evaluated at the equilibrium positions�, setting
the determinant to zero, and rearranging the terms, one will
obtain the following fourth-order equation in �:

�4 − �2��A
2H1

AH2
A + �B

2H1
BH2

B + c1��B
2H2

B

b
+

�A
2H2

A

a
�

+ c2��B
2H1

B

b
+

�A
2H1

A

a
� + c1c2��A

2

a2 +
�B

2

b2 � +
2c0c2�A�B

ab
�

+ �A
2�B

2�H2
AH2

B + c2�H2
B

a
+

H2
A

b
���H1

AH1
B + c1�H1

B

a

+
H1

A

b
� +

c1
2 − c0

2

ab
� = 0, �3�

where �A and �B denote the gyromagnetic ratios of layers A
and B, respectively. The parameters cj contain the coupling

FIG. 2. Resonant frequency vs. applied field H. Ferromagnetic
coupling: J1=0.5 erg cm−2, J2=0. HE=0 �solid line�, HE=250 Oe
�dashed line�. Layer A: 4�MA=10 kG, Hkef fA=−10 kOe,
HA=10 Oe, tA=200 Å, �A /2�=2.8 GHz kOe−1. Layer B:
4�MB=6 kG, Hkef fB=−6 kOe, HinB=0 Oe, tB=100 Å, �B /2�
=2.8 GHz kOe−1.
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strength: c0=J1+2J2 cos��A−�B�, c1=J1 cos��A−�B�
+2J2 cos2��A−�B� and c2=J1 cos��A−�B�+2J2 cos2��A

−�B�, and

H1
A = H cos�� − �A� − HKef fA − HA sin2 �A + HE cos �A,

�4a�

H2
A = H cos�� − �A� + HA cos 2�A + HE cos �A, �4b�

H1
B = H cos�� − �B� − HKef fB, �4c�

H2
B = H cos�� − �B� , �4d�

where HKef fA=2Kuef fA /MA and HKef fB=2Kuef fB /MB.

B. The FMR intensity

The FMR mode intensity is defined as corresponding to
the area under the absorption line. In the present study, the
applied magnetic field H is parallel to the film plane, along
the x direction, and the microwave h field is along the y

direction, the magnetizations precess in an elliptical orbit;
the precession orbit is the y-z plane. The intensity is thus
given by30,31 �taking into account the fact that, in the more
general case, the magnetization components mi are complex
quantities�

I =
�tAmAy + tBmBy��tAmAy + tBmBy�*

tA�mAymAy
* + mAzmAz

* �/2MA + tB�mBymBy
* + mBzmBz

* �/2MB

.

�5�

Here m denotes the time-dependent magnetization compo-
nent for A and B �the asterisk denotes the complex conjugate
expressions�. The magnetization components, m, are as-
sumed to be uniform throughout each individual layer. One
can compute all the four rf magnetization components by the
use of the 4	4 matrix and through the derivation of ��A,
��A, ��B, ��B. After some algebraic manipulations, the rf
magnetizations are computed and substituted into the inten-
sity I �Eq. �5��. When the two magnetizations are pointing
along the x axis �the H direction�, the intensity can then be
put into the following form:

I =
2ab�2�aq + b�2

ab�2�aq2 + b� + b�A
2�qaH2

A + c2�q − 1��2 + a�B
2�bH2

B − c2�q − 1��2 , �6a�

where

q =
�A

2c2b�aH1
A + c1� + �A�Bc0a�bH2

B + c2�
�A

2b�aH1
A + c1��aH2

A + c2� + �A�Bc0c2a − a2b�2 .

�6b�

Equation �3� has been numerically solved to study the
resonant frequency versus applied field H; for H in the for-
ward direction, the direction of HE��=0° �.

For the ferromagnetic coupling case �J1
0�, MA and MB

are expected to be along H for all H values, �A=�B=0°.
From the resolution of Eq. �3�, two solutions �1 and �2 are
expected, corresponding to the acoustic mode �where the
magnetizations precess in phase� and to the optical mode
�out of phase�. The optical mode intensity will decrease with
increasing coupling and would disappear for very strong
coupling, in this case only the acoustic mode would remain
�see Sec. VI�. For ferromagnetic coupling, the high-
frequency mode is the optical mode while the low frequency
mode corresponds to the acoustic mode �note that this is the
opposite to a fixed frequency analysis where the lower reso-
nant field corresponds to the optical mode for ferromagnetic
coupling�. Examples of dispersion relation curves are shown
in Fig. 2 for J1= +0.5 erg/cm−2, for HE=0 �solid line� and
HE=250 Oe �dashed line�; for other parameters used in the
computation, see the caption of Fig. 2. The frequency of both
modes increases with increasing field H. One can see that HE
induces a shift to higher frequency values for the two modes.

For the low H field values, the shift in the acoustic mode is
more important than that of the optical mode. However, as H
increases, the shift in both modes is of the same order of
magnitude.

The corresponding intensities are plotted in Fig. 3. The
effect of HE is to increase �decrease� the intensity of the
optical �acoustic� mode by practically the same amount.

FIG. 3. FMR intensity vs. applied field H. Ferromagnetic cou-
pling: J1=0.5 erg cm−2, J2=0. HE=0 �solid line�, HE=250 Oe
�dashed line�. Other parameters as for Fig. 2.
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When the coupling is antiferromagnetic �J1�0� and if the
coupling is strong enough to overcome the effect of the ap-
plied field H, then MA and MB are antiparallel, i.e., �A=0,
�B=� �assuming a
b�. This case is displayed in Figs. 4 and
5 for J1=−2 erg/cm−2 and H between 0 and 1 kOe. Note
that, for the antiferromagnetic coupling, the lower frequency
mode �the higher magnetic field� is the optical mode �this is
the reversed situation compared to the ferromagnetic cou-
pling�. The mode behavior is different, here, from that ob-
served in the ferromagnetic case. The acoustic mode �the
higher frequency mode� slightly decreases with increasing
applied field H while the optical mode frequency increases
with H. The exchange anisotropy field HE seems to affect
more the optical than the acoustic modes, i.e., the shift to
higher frequency value is more important for the optical than
the acoustic modes. The FMR intensity is shown in Fig. 5;
the increase of HE leads to an increase �decrease� of the
intensity of the acoustic �optical� mode which is the opposite
of what was seen in the ferromagnetic coupling case.

In the following sections, some cases of interest will be
studied. In particular, it will be shown that, when the mag-

netic coupling is zero, very low and strong compared to the
exchange anisotropy effect, the resonance modes �frequency
and intensity� can be described by analytical formula.

IV. THE ZERO COUPLING CASE

When the layers are not coupled �J1=J2=0� then cj =0
and Eq. �3� will reduce to ��2−�A

2H1
AH2

A���2−�B
2H1

BH2
B�=0,

which, upon substituting the Hj
i by their expressions �Eqs.

�4a�–�4d�� will lead to the following two uncoupled equa-
tions:

�A
2

�A
2 = �H cos�� − �A� − HKef fA − HA sin2 �A + HE cos �A�

	�H cos�� − �A� + HA cos 2�A + HE cos �A� �7�

and

�B
2

�B
2 = H�H − HKef fB� . �8�

Equation �7� is the resonance condition for a single layer
with in-plane and exchange anisotropies,20,21 while Eq. �8� is
the well-known resonance condition for a ferromagnetic thin
film with an in-plane applied field and where all the direc-
tions within the plane are equivalent �no in-plane anisotropy,
i.e., �=�B�. Thus in this uncoupled case, two peaks are ex-
pected to be observed in the FMR spectra whose positions
are given by the resonance conditions �Eqs. �7� and �8��.

The corresponding intensities of these peaks have been
evaluated. When the layers are uncoupled then cj =0. For the
intensity of layer B, when cj =0, then q=0. Substuting in Eq.
�6a� q=0 and replacing � by �B �Eq. �8��, one will find

IB =
2bH1

B

H1
B + H2

B . �9�

Since �=0, then �B=0 for all H and Eq. �9� becomes

IB =
2tBMB�H − HKef fB�

2H − HKef fB
. �10�

For the intensity, IA, of layer A, it is easy to see that both
numerator and denominator in q are equal to zero (the first
and last terms in the denominator of q �Eq. �6b�� cancel
because of the resonance condition �Eq. �7��, recall in this
case that �2=�A

2H1
AH2

A). Due to this indetermination, the in-
tensity of each layer is usually found separately. Alterna-
tively, one can compute q and I for low coupling strengths,
then let cj go to zero �see Eq. �17� in Sec. V, below� to find
the intensity of the uncoupled layers; this way will be shown
later in the following section. Both methods will lead to the
same result, for layer A:

IA =
2aH1

A

H1
A + H2

A , �11�

where H1
A and H2

A are given by Eqs. �4a� and �4b�. Recall that
in the present case �=0, therefore MA is expected to be
along the x axis for all H, i.e., �A=0. Thus substuting H1

A and
H2

A, one will find

FIG. 4. Resonant frequency vs. applied field H. Antiferromag-
netic coupling: J1=−2 erg cm−2, J2=0. HE=0 �solid line�, HE

=250 Oe �dashed line�. Other parameters as for Fig. 2.

FIG. 5. FMR intensity vs. applied field H. Antiferromagnetic
coupling: J1=−2 erg cm−2, J2=0. HE=0 �solid line�, HE=250 Oe
�dashed line�. Other parameters as for Fig. 2.
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IA =
2tAMA�H − HKef fA + HE�
2H − HKef fA + HA + 2HE

. �12�

Equations �10� and �12� giving the intensities of single layers
with different anisotropies are quite known relations.31,32 The
terms multiplying 2a and 2b in Eqs. �9� and �11� are referred
to as the “elliptic terms.”33 Note that the ellipticity factor in
Eq. �12� explicitly depends on the in-plane anisotropy field
HA and the exchange bias HE.

In the case where, for layer A, the exchange and in-plane
fields, HE and HA, are very small compared to �H–HKef f�
�this assumption is often true, for instance, in permalloy,
�−HKef f�, equal to 4�MS, is about 10 kOe, while HE and HA

are around 20 and 5 Oe�, the intensity IA may be written as
the sum of different contributions to the intensity. Making
the above approximations, the intensity IA will be

IA = I0 + Iex + Iin, �13a�

where

I0 =
2tAMA�H − HKef fA�

2H − HKef fA
�13b�

would be the intensity of layer A if it did not have in-plane
and exchange anisotropies �similar to Eq. �9� for layer B�,

Iex =
2tAMAHKef fA

�2H − HKef fA�2HE �13c�

is the contribution of the exchange anisotropy to the intensity
of the layer, and

Iin =
2tAMA�HKef fA − H�

�2H − HKef fA�2 HA �13d�

is the intensity due to the in-plane anisotropy.
Note that, since HKef fA is negative, both the exchange and

the in-plane anisotropies will tend to decrease the intensity
IA. For a very strong applied field, it is easy to see that both
Iex and Iin vanish and the intensity IA will be equal simply to
the known result, IA= tAMA. �This is in fact the intensity per
unit area; experimentally, however, the total intensity is
M 	V, where V is the volume of the sample.�

V. LOW MAGNETIC COUPLING

For an arbitrary magnetic coupling, there is no analytical
formula for the resonance modes. For the low magnetic cou-
pling case, it will be shown in this section that the resonance
modes, frequency, and intensity, found numerically from
Eqs. �3� and �6a�, can be described by analytical formula.
Indeed, neglecting second-order terms of the magnetic cou-
pling parameters �cick� in Eq. �3� and solving for �, one will
obtain the following two solutions:

�1
2 = �A

2 +
c1

a
�A

2H2
A +

c2

a
�A

2H1
A �14a�

and

�2
2 = �B

2 +
c1

b
�B

2H2
B +

c2

b
�B

2H1
B, �14b�

where �A and �B are given by the expressions in Eqs. �7�
and �8� i.e., the uncoupled layer case; H1

A, H2
A, H1

B, and H2
B

have been defined earlier in Eqs. �4a�–�4d�. Note that in the
limit where there is no coupling �c1=c2=0�, then �1 and �2

correctly reduce to �A and �B as expected.
Furthermore, Eqs �14a� and �14b� can also be written as

�1
2 = �A

2�H1
A +

c1

a
��H2

A +
c2

a
� �15a�

and

�2
2 = �B

2�H1
B +

c1

b
��H2

B +
c2

b
� , �15b�

i.e., the above equations will lead to the previous ones �Eqs.
�14a� and �14b��, if the second-order terms �c1c2� are ne-
glected as was assumed in the beginning.

Moreover, Eqs. �15a� and �15b� can be put in a very in-
teresting form. For the case of a ferromagnetic coupling with
H in the forward direction, i.e., �=�A=�B=0 �or even in the
antiferromagnetic coupling but in the saturated state�, and if
one substitutes the Hj

i by their expressions and rearranges the
terms, then Eq. �15a� can be written as

�1
2

�A
2 = �H − �HKef fA −

2J2

tAMA
� + �HE +

J1

tAMA
��

	�H + �HA +
2J2

tAMA
� + �HE +

J1

tAMA
�� . �16a�

Comparing Eq. �16a� with Eq. �7� �for �=�A=0�, one may
regard the mode �1 as that of a single layer with an effective
anisotropy field given by �Hkef fA−2J2 / tAMA�, an in-plane an-
isotropy field �HA+2J2 / tAMA�, and an exchange anisotropy
field �HE+J1 / tAMA�. Note that the magnetogyric ratio �A is
the same as that of layer A.

In the same manner, Eq. �15b� can be written as

�2
2

�B
2 = �H − �HKef fB −

2J2

tBMB
� +

J1

tBMB
��H +

2J2

tBMB
+

J1

tBMB
� .

�16b�

Similarly �2 can describe the resonant frequency of a layer
with an effective anisotropy field given by �Hkef fB

−2J2 / tBMB�, an in-plane anisotropy field HB=2J2 / tBMB, and
an exchange anisotropy field HE

B=J1 / tBMB.
Note that �1 �in Eqs. �14a�, �15a�, and �16a�� depends

only on the layer A parameters, while �2 contains only the
layer B parameters. Thus, when the magnetic coupling is
low, the system behaves as two uncoupled layers with mag-
netic characteristics different from those of layers A and B.
The effect of the low coupling is to modify the different
anisotropies; the bilinear coupling, J1, contributes to the ex-
change anisotropy while the biquadratic coupling, J2, modi-
fies the magnetocrystalline anisotropies �uniaxial and in-
plane�. Note that one cannot experimentally separate the
contributions of J1 and J2; generally a value of �J1+2J2�
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�when the magnetizations are parallel� is derived �see, for
instance, Refs. 25 and 26�. From the present analysis, it is
inferred that physically J1 seems to be equivalent to an ex-
change anisotropy while J2 is equivalent to an in-plane an-
isotropy. In fact, the equivalence between J2 and the in-plane
magnetic anisotropy �a case similar to the latter one� was
explicitly worked out in coupled layers with in-plane mag-
netic anisotropies; it was shown that a small deviation of the
in-plane easy axis direction of one layer with respect to the
one of the second layer may be interpreted as a small biqua-
dratic coupling.34 Also, Eqs. �16a� and �16b� are valid
for ferromagnetic �F� �J1
0� and antiferromagnetic �AF�
�J1�0� coupling. For F �AF�, the exchange anisotropy field
HE increases �decreases� for layer A. For layer B, which ini-
tially does not have in-plane and exchange anisotropies, the
effect of the low coupling is to give to the layer a small
exchange bias and an in-plane anisotropy. Moreover, these
additional anisotropies vary as 1/ t, giving them a surface
anisotropy character.

One should, now, compute the intensities of these modes
and show that they correspond to two uncoupled layers.

Once again for ferromagnetic coupling, and H in the forward
direction, �=0, �A=�B, then c0=c1=c2=J1+2J2=Jef f. For
the mode corresponding to �1 the first and last terms of the
denominator in q �Eq. �6b�� cancel because of the resonance
condition �Eq. �15a��; but it is easy to see that for low cou-
pling �Jef f goes to zero�, 1 /q goes to zero. Using this fact in
Eq. �6a� and replacing �1 by its expression �Eq. �15a��, the
intesity, I1, is found to be

I1 =

2a�H1
A +

Jef f

a
�

H1
A + H2

A +
2Jef f

a

. �17�

Note that if Jef f =0 �no coupling�, I1 reduces to IA as expected
�in fact, this is a good way to find the intensity of the un-
coupled layers from Eqs. �6a� and �6b��. Substituting the Hj

A

by their expressions, the intensity of mode 1 �Eq. �17�� in the
forward direction can be written as

I1 =

2tAMA�H − �HKef fA −
2J2

tAMA
� + �HE +

J1

tAMA
��

2H − �HKef fA −
2J2

tAMA
� + �HA +

2J2

tAMA
� + 2�HE +

J1

tAMA
� . �18�

Comparing Eq. �18� with the intensity of a single layer �Eq.
�12��, one can see that Eq. �18� is indeed the intensity of a
single layer with these characteristics: �Hkef fA−2J2 / tAMA�,
�HA+2J2 / tAMA�, and �HE+J1 / tAMA�. So, the analysis of the
FMR intensity and the mode position are coherents.

One can express I1 in term of IA; making the approxima-
tion that Jef f is small and using Eq. �12�, Eq. �18� can be
written as

I1 = IA�1 +
J1 + 2J2

tAMA

	
HA + HKef fA

�H − HKef fA + HE��2H − HKef fA + 2HE + HA�� .

�19�

Note that for very strong applied field H, I1 will tend to IA.
For the intensity of the second mode �corresponding to

�2�, it is easy to see that as Jef f goes to zero, q will go to
zero. Using this limit in Eq. �6a� and replacing �2 by its
expression �Eq. �15b��, the intensity I2 will be

I2 =

2b�H1
B +

Jef f

b
�

H1
B + H2

B +
2Jef f

b

�20�

or after replacing Hj
B by their expressions

I2 =

2tBMB�H − �HKef fB −
2J2

tBMB
� +

J1

tBMB
�

2H − �HKef fB −
2J2

tBMB
� +

2J2

tBMB
+

2J1

tBMB

. �21�

The same remark can be made once again. Eq. �21� can be
considered as the intensity of a layer �by comparison with
the general formula� with an effective uniaxial anisotropy
�Hkef fB−2J2 / tBMB�, an in-plane anisotropy HB=2J2 / tBMB,
and an exchange bias HE

B=J1 / tBMB.
In terms of IB, the combination of Eqs. �10� and �21�

would give

I2 = IB�1 +
J1 + 2J2

tBMB

HKef fB

�H − HKef fB��2H − HKef fB�� . �22�
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VI. STRONG MAGNETIC COUPLING

When the magnetic coupling is ferromagnetic and very
strong, one expects �A=�B=�F for all H values ��F=0 for
�=0�. In this case, c0=c1=c2=J1+2J2=Jef f and the terms in
Jef f

2 dominate in Eq. �3�. Keeping only the second-order
terms in Jef f in Eq. �3�, substituting the Hj

i by their expres-
sions, and rearranging the terms will lead to the following
resonance relation:

�2

�ef f
F2 = �H cos�� − �F� − HKef f

F − HA
eqF sin2 �F + HE

eqF cos �F�

	�H cos�� − �F� + HA
eqF cos 2�F + HE

eqF cos �F� . �23a�

Equation �23a� is the resonance relation of a single layer
�compare with Eq. �7�� with the following magnetic caracter-
istics: the effective magnetogyric ratio, �ef f

F , is given by

�ef f
F =

tAMA + tBMB

tAMA

�A
+

tBMB

�B

, �23b�

the effective uniaxial anisotropy field, HKef f
F , is

HKef f
F =

tAMAHKef fA + tBMBHKef fB

tAMA + tBMB
, �23c�

and equivalent exchange anisotropy field, HE
eqF, and in-plane

anisotropy field, HA
eqF, are given, respectively, by

HE
eqF =

tAMAHE

tAMA + tBMB
�23d�

and

HA
eqF =

tAMAHA

tAMA + tBMB
. �23e�

Thus, in the strong ferromagnetic coupling, only one mode
�the acoustic mode� will be seen in the FMR spectrum. The
whole system behaves as a AF/F bilayer system with ex-
change bias HE

eqF �lower than HE� and with effective magne-
togyric ratio and effective anisotropy fields.

The intensity of this mode can be computed. For strong
coupling �Jef f very large�, it is easy to see that q, in Eq. �6b�,
will tend to 1, while Jef f�q−1� appearing in the denominator
of I �Eq. �6a�� will reach the limiting value ab��BH2

B

−�AH2
A� / �a�B+b�A�. Substituting these values into I and re-

placing � by its expression for strong magnetic coupling
�Eq. �23a��, one will find

IF =
2�a + b��aH1

A + bH1
B�

�aH1
A + bH1

B� + �aH2
A + bH2

B�
. �24�

Once again, �F=0 �i.e., �=0� will be considered; after sub-
stituting the Hi

j by their expressions and rearraging the terms,
Eq. �24� may be written as

IF =
2�tAMA + tBMB��H + HE

eqF − HKef f
F �

2H + 2HE
eqF + HA

eqF − HKef f
F , �25�

where HKef f
F , HE

eqF and HA
eqF are given by Eqs. �23c�–�23e�.

Comparing Eqs. �25� and �12�, one can see that Eq. �25� may

indeed represent the intensity of a ferromagnetic layer with
an exchange anisotropy �given by HE

eqF� and in-plane magne-
tocrystalline anisotropy �HA

eqF� and effective uniaxial aniso-
tropy �HKef f

F �. The intensity formula is thus in agreement
with the interpretation of the resonance relation.

Furthermore, if one defines an effective magnetization of
the whole system, Meff, as the total magnetic moment per
unit volume, i.e., Meff = �tAMA+ tBMB� / �tA+ tB�, then Eq. �25�
will be

IF =
2�tA + tB�Meff�H + HE

eqF − HKef f
F �

2H + 2HE
eqF + HA

eqF − HKef f
F . �26�

The term multiplying the elliptic factor is indeed magnetiza-
tion times thickness �the total magnetic thickness�, as in Eq.
�12� �or multiplying by the surface S, I will be proportional
to M 	V�.

One may also study the strong antiferromagnetic cou-
pling. If the applied magnetic field H is strong enough to
overcome the effect of the antiferromagnetic coupling, i.e.,
the two magnetizations are parallel �in the direction of H�,
then the resonance modes are governed by the same equa-
tions as for the ferromagnetic coupling �Eqs. �23a�–�23e��.
On the other hand, when the effect of the strong antiferro-
magnetic coupling is greater than the effect of H, the mag-
netization will be antiparallel, i.e., �A=�AF and �B=�AF
+� �assuming a
b� ��AF=0 for �=0�. In this case, c0=J1
−2J2=Jef f

* and c1=c2=−Jef f
* . Following the same procedure

as for the ferromagnetic coupling, i.e., keeping only the
second-order terms in Jef f

* , and rearranging the terms, Eq. �3�
will reduce to the following resonance condition:

�2

�ef f
AF2 = �H cos�� − �AF� − HKef f

AF − HA
eqAF sin2 �AF

+ HE
eqAF cos �AF��H cos�� − �AF� + HA

eqAF cos 2�AF

+ HE
eqAF cos �AF� , �27a�

where

�ef f
AF =

tAMA − tBMB

tAMA

�A
−

tBMB

�B

�27b�

is an effective magnetogyric ratio,

HKef f
AF =

tAMAHKef fA + tBMBHKef fB

tAMA − tBMB
�27c�

is the effective uniaxial anisotropy field,

HE
eqAF =

tAMAHE

tAMA − tBMB
�27d�

is an equivalent exchange anisotropy field, and

HA
eqAF =

tAMAHA

tAMA − tBMB
�27e�

is the in-plane anisotropy field of the whole system.
Once again the whole system behaves as a single ferro-

magnetic layer exchange coupled to an antiferromagnetic
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layer F/AF with effective exchange anisotropy, in-plane, and
uniaxial magnetocrystalline anisotropy fields and magneto-
gyric ratio.

The intensity of this mode for the strong antiferromag-
netic coupling can be computed by the same manner. Using
Eqs. �6a� and �6b� and taking into account the fact that the
magnetizations are antiparrallel, the intensity is found to be

IAF =
2�tAMA − tBMB�2�H + HE

eqAF − HKef f
AF �

�tAMA + tBMB��2H + 2HE
eqAF + HA

eqAF − HKef f
AF �

.

�28�

Once again, the intensity relation is in agreement with the
resonance relation.

Note that in the strong ferromagnetic coupling case, the
equivalent exchange and in-plane anistropy fields of the
whole system are lower than the HE and HA of layer A.
However, in the antiferromagnetic coupling, HE

eqAF and HA
eqAF

are larger than HE and HA respectively. Hence, in the latter
case, one can increase the exchange bias of the equivalent
system to any value by the right choice of �tAMA− tBMB�, i.e.,
by the choice of the ferromagnetic layer thicknesses and na-
ture �through the magnetizations�.

VII. CONCLUSION

The ferromagnetic resonance �FMR� modes of a magnetic
tunnel junction-like system are described. The dispersion re-
lation, the resonant frequency f vs applied field, as well as
the corresponding mode intensity, I, have been studied in
different situations. The effect of the exchange anisotropy
field HE and magnetic coupling strengths �J1 and J2� on reso-
nance mode behavior is investigated for arbitrary coupling
�J1 and J2� parameters. Analytical formulas for the resonance
condition and intensity have been derived for the low mag-
netic coupling/high exchange anisotropy case. In this situa-
tion, the system is found to behave as two uncoupled layers
with magnetic characteristics different from those of the ini-
tial layers; the effect of the low coupling is to modify the
different anisotropies, J1 contributes to the exchange aniso-
tropy while J2 modifies the magnetocrystalline anisotropies.
For very strong coupling, the system behaves as a single
ferromagnetic layer exchange coupled to a antiferromagnetic
one �F/AF system� with effective exchange and magneto-
crystalline anisotropy fields; these fields have been derived
as a function of the individual layer magnetic parameters.
The exchange bias of this equivalent system is lower �higher�
than HE for ferromagnetic �antiferromagnetic� coupling.
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