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The properties of the domain-wall energy and of the correlation length are studied numerically for the
one-dimensional ±J XY spin glass on the two-leg ladder lattice, focusing on both the spin and the chirality
degrees of freedom. Analytic results obtained by Ney-Nifle et al. for the same model were confirmed for
asymptotically large lattices, while the approach to the asymptotic limit is slow and sometimes even nonmono-
tonic. Attention is called to the occurrence of the SO�2�-Z2 decoupling and its masking in spin correlations, the
latter reflecting the inequality between the SO�2� and Z2 exponents. Discussion is given concerning the
behaviors of the higher-dimensional models.
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I. INTRODUCTION

The domain-wall method, or the stiffness method, is
widely used in studying the ordering properties of various
spin systems including the spin glass �SG�. In this method,
one computes by some numerical means the change of the
ground-state energy of finite systems of the linear dimension
L under the appropriate change of boundary conditions
�BCs� imposed on the system.1–3 This energy is called a stiff-
ness energy �or a domain-wall energy�, �E�L�, which gives a
measure of an energy scale of low-energy excitations of size
L. For large L, �E�L� is expected to behave as a power law,
�E�L��L�, � being a stiffness exponent. If ��0, the system
remains in the disordered state at any nonzero temperature,
whereas if ��0 the system possesses a finite long-range
order at low enough temperatures with Tc�0.

For complex systems like SGs in which the nature of the
ordering is highly nontrivial, some fundamental questions
still remain in this method. The first question concerns the
choice of the set of BCs. In principle, there could be various
choices of the set of BCs, and the behavior of �E�L� may
depend on these choices, particularly for small sizes practi-
cally accessible in numerical simulations. It is not generally
clear which set of BCs should be best chosen, especially
when the results depend on the BCs. The second question
concerns the meaning of the stiffness exponent. When the
domain-wall energy decreases with L, i.e., the stiffness ex-
ponent is negative, it is a common practice to relate the in-
verse of the stiffness exponent with the correlation-length
exponent � associated with the T=0 transition, i.e., �
=1/ ���=1/y �y= ����.2–4 By contrast, there were reports that
cast doubt on the validity of this simple relation.5 Further-
more, if the model could exhibit more than one stiffness
exponent depending on the choice of the set of BCs, a ques-
tion immediately arises about which stiffness exponent
should be chosen to estimate the correlation-length exponent.
Since, in the standard continuous �second-order� phase tran-
sition, only one diverging length scale is expected, the exis-
tence of more than one stiffness exponent poses some prob-
lems in its interpretation.

In fact, under certain circumstances, there could be more
than one distinct diverging length scales, or more than one
distinct correlation-length exponents, at a single continuous
transition. An example of this may be seen in chiral transi-
tions possibly realized in certain frustrated vector spin sys-
tems including the XY SG.6 Frustrated vector spin systems
often possess a chirality degree of freedom due to the canted
spin structure, according to the noncollinear �or noncoplanar�
structure induced spin frustration is either right- or left-
handed. Chirality is a pseudoscalar variable, being invariant
under global spin rotations �SO�2��, but changing sign under
global spin reflections �Z2�. Recent studies have suggested
that some of such chiral spin systems might possibly exhibit
a “spin-chirality decoupling” phenomenon, where the Z2
chirality exhibits an ordering behavior entirely different from
the SO�2� spin,6 though there still remains some controversy
concerning whether such a spin-chirality decoupling really
occurs.6–9

In one possible realization of the spin-chirality decou-
pling, the chirality and the spin exhibit two separate transi-
tions at mutually distinct temperatures; whereas, in another
possible realization, the chirality and the spin order at the
same temperature but with the mutually different spin and
chirality correlation-length exponents, �s and ��. Examples
of the first class might be the orderings of the regularly frus-
trated two-dimensional �2D� XY model6 and those of the
three-dimensional �3D� XY SG.10–12 Examples of the second
class the ordering of the regularly frustrated one-dimensional
�1D� XY model13 and those of the 2D XY SG.10,14 A firmly
established example is the case of the regularly frustrated 1D
XY model, where it has been shown rigorously that the spin
and the chirality order at T=0, where the chiral correlation
length diverges exponentially with ��=� but the spin corre-
lation length is a power law with �s=1.13

More controversial is the nature of the ordering of the XY
SG. Some time ago, Kawamura and Tanemura made a nu-
merical domain-wall study of the XY SG in 2D and 3D.10,11

These authors introduced various types of BCs to probe the
spin and the chirality orderings of the model, including the
periodic �P�, antiperiodic �AP�, and reflecting BCs. In par-
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ticular, the domain-wall energy obtained under the combina-
tion of the P and AP BCs �P/AP�, �EP,AP�L�, and the one
obtained under the combination of the reflecting and periodic
BCs, �Ec�L�, apparently yielded mutually different stiffness
exponents, which were interpreted as being associated with
the spin and the chiral correlation-length exponents, respec-
tively. These authors observed that, in 2D, both �EP,AP�L�
and �Ec�L� decreased with L, characterized, respectively, by
mutually different stiffness exponents, y��0.5 and ys�1.0.
This observation was interpreted as indicating that the chiral
correlation length outgrows the spin correlation length at the
T=0 transition of the model, i.e., ����s.

10 These results
were corroborated by several Monte Carlo �MC� simulations
on the 2D XY SG.14–19 By contrast, on the basis of their
domain-wall energy calculation, Kosterlitz and Akino
claimed that the spin and the chiral correlation-length expo-
nents were common at the T=0 transition.7

In 3D, Kawamura and Tanemura observed that �EP,AP�L�
��Ec�L�� decreased �increased� with L, which was inter-
preted as indicating that the chiral-glass transition occurred
at a nonzero temperature, TCG�0, while the standard SG
transition occurred only at TSG=0.10,11 MC results supporting
such a view were also reported.11,12 Meanwhile, a later
domain-wall energy calculation by Macourt and Grempel
suggested that �EP,AP�L� might eventually be iterated toward
strong coupling for larger L and that TCG�TSG�0.20 By
contrast, Lee and Young claimed on the basis of their MC
simulations that the spin and the chirality ordered at the same
finite temperature TCG=TSG�0 with a common correlation-
length exponent9 �s=��. Thus, the situation remains quite
controversial.

Inspired by the numerical work of Ref. 10 on the 2D and
3D XY SG, Ney-Nifle et al. performed an analytic study of
the 1D XY SG ladder with the bond-random ±J �or binary�
interaction.21 The Villain’s action was assumed there. Via the
dual transformation, the model was mapped onto the 1D
charge Hamiltonian. Since the mapped model was still not
amenable to the exact treatment, Ney-Nifle et al. made fur-
ther simplifications and eventually derived several analytic
results concerning the domain-wall energies and correlation
lengths. They observed that, depending on the type of the
applied BCs and on whether the total number of frustrated
plaquettes is either even or odd, the domain-wall energy ex-
hibits different behaviors. When the sample average is taken
over all samples, �EP,AP is characterized by the chiral stiff-
ness exponent y�=1.899…, while �Ec is characterized by
the spin-wave �SW� stiffness exponent ys�=1. This is in con-
trast to the assignment made in Ref. 10 for the 2D and 3D
XY SGs.

If one looks at the spin and chiral correlations of this 1D
ladder model, one sees that the model exhibits the spin-
chirality decoupling in the sense that there exist two distinct
diverging lengths at the T=0 transition �though Ney-Nifle et
al. apparently stated otherwise�, the one associated with the
Z2 chirality and the other associated with the SO�2� SW. The
chiral correlation length �� is characterized by the exponent
��=1/y�=0.5263…, while the SW correlation length �s� is
characterized by the SW exponent �s�=1/ys�=1. The full spin
correlation function is the product of the Z2 part with the

correlation length ���T−0.526 and the SO�2� part with the
correlation length �s��T−1. Reflecting the fact that the Z2
chiral correlation-length exponent happens to be smaller than
the SO�2� SW correlation-length exponent, i.e., �s����, the
full spin correlation function is dominated by the chiral ex-
ponent ��.

The analytic result of Ref. 21, though quite plausible, is
not completely rigorous. Furthermore, some of the results
were obtained for an asymptotically large lattice. In the SG
problem, it is sometimes important, and often not a trivial
matter, to elucidate the finite-size effect, e.g., how large the
system must be for exhibiting the asymptotic large-lattice
behavior.

Thus, we feel it would be useful to perform a numerical
study of the ±J 1D XY SG ladder in comparison with the
analytic work of Ref. 21. In the present paper, we undertake
such a numerical analysis of the ±J XY SG model on two-leg
ladder lattices. The aim of our calculation is threefold. �i� We
wish to test the validity of the simplifications made in the
analytic work of Ref. 21. �ii� We wish to elucidate the nature
of the finite-size effect in this 1D model. �iii� We wish to
further examine the relation between the stiffness exponents
and the correlation-length exponents in this 1D model.

The following part of the paper is organized as follows. In
Sec. II we introduce the model and summarize the analytic
results of Ref. 21. In Sec. III we present our numerical re-
sults of the domain-wall energies. The results are compared
with those of the analytic work of Ref. 21. Finite-size effects
are analyzed carefully. In Sec. IV we present our numerical
results of the spin and chiral correlation lengths, in compari-
son with the corresponding analytic results of Ref. 21. Rela-
tions with the stiffness exponents and the correlation-length
exponents are examined. Finally, Sec. V is devoted to sum-
mary and discussion.

II. THE MODEL AND SOME ANALYTIC FORMULAS

The model we consider is, first, the standard XY-SG
model on the 1D two-leg ladder lattice with the binary �or
±J� interaction, whose Hamiltonian is given by

H = − �
	ij


JijS� i · S� j = − �
	ij


Jijcos��i − � j� , �1�

where S� i= �Si
x ,Si

y�= �cos �i , sin �i� �0	�i�2
� is the two-
component spin variable at the site i, and the summation is
taken over all nearest-neighbor pairs on the ladder lattice.
The site index i may be written as i= �x ,y� with 1	x	L and
1	y	2, where y=1 and 2 refer to the first and second rows
of the ladder. Jij represents the random variable taking either
+1 or −1 with equal probability independently at each bond.
The absolute value of the exchange interaction has been
taken to be a unit of energy �J=1�.

In the following, we impose several types of BCs on the
XY-spin variables at the boundary, i.e., the periodic, antipe-
riodic, and reflecting BCs. In these periodic, antiperiodic,

and reflecting BCs, we impose the relations, S� �L+1,y�=S� �1,y�,

S� �L+1,y�=−S� �1,y� and S� �L+1,y�= �S�1,y�
x ,−S�1,y�

y �, respectively. In
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the reflecting BC, we reflect the spin at the boundary with
respect to the x axis in spin space.

The local chirality variable at the plaquette x, consisting
of four spins at the sites �x, 1�, �x+1, 1�, �x+1, 2�, and �x, 2�,
is defined by

�x =
1

2�2
�
	ij


sgn�Jij�sin��i − � j� , �2�

where the summation is taken over four bonds connecting
the above four sites forming the plaquette. In the ground
state of an isolated frustrated plaquette, it takes a value either
+1 or −1, while in the ground state of an isolated unfrus-
trated plaquette, it takes a value equal to zero. Thus, the
states with �= ±1 represent the two chiral states, with right-
handed and left-handed spin circulation around the plaquette.

The other model we consider is the effective charge
Hamiltonian on the dual lattice. The simplest version is the
so-called Villain’s Hamiltonian, which contains only the two-
body charge interaction. Although it has commonly been be-
lieved that the Villain’s Hamiltonian becomes equivalent to
the cosine Hamiltonian in the low-temperature limit T→0,21

we have found that this is actually not the case: The original
XY Hamiltonian mapped to the charge representation con-
tains the higher-body interactions, in addition to the two-
body interaction, even in the T→0 limit. Thus, in the present
work, we also consider these higher-body correction terms to
the standard Villain’s two-body approximation.27 The ex-
plicit forms are given in the Appendix.

In the cases of the P and AP BCs, the two-body charge
Hamiltonian, or the Villain’s Hamiltonian, takes the form

HP = �
i,j

Uijmimj +

2

L �2n − �
i

mi − P
2
, �3�

HAP = �
i,j

Uijmimj +

2

L �2n − �
i

mi − P + 1
2
, �4�

respectively, where the charge variable mi, sitting at the
plaquette i, takes integer values 0,±1 , ±2,… on unfrustrated
plaquettes, and half-integer values ± 1

2 , ± 3
2 ,… on frustrated

plaquettes. The variable n takes integer values 0,±1 , ±2,…,
while P is the “parity” variable being equal to zero or unity,
depending on whether the total number of antiferromagnetic
bonds on the first row �y=1� of the ladder is either even or
odd. The interaction between the charge variables Uij located
at the plaquettes i and j is defined by

Uij =

2

L
�

k

eik�i−j�

2 − cos k
, �5�

where the summation over the wave vector k is taken over
k=0, ±2
 /L , ±4
 /L ,… . In the L→� limit, Uij reduces to

Uij =

2

�3
�2 − �3��i−j�, �6�

which decays exponentially with distance �i− j�. The first
term of Eqs. �2� and �4� represents the charge-charge inter-
action, while the second term of Eqs. �3� and �4� represents

the SW term, which is related to the charge part via the total
charge �imi.

In the case of the reflecting BC, by contrast, the corre-
sponding two-body charge Hamiltonian is given by

HR = �
ij

Uijmimj , �7�

where Uij is still given by Eq. �5�, but the summation over
the wave vector k is now taken over k= ±
 /L , ±3
 /L ,…,
which yields Ui+L,j =−Ui,j. Note that there is no second term
�SW term� in HR.

To proceed further, Ney-Nifle et al. made the following
two assumptions.21 First, the charge variable mi is restricted
to ± 1

2 on frustrated plaquettes and 0 on unfrustrated
plaquettes. If one labels the frustrated plaquettes as I
=1,2 ,… ,Nfr, where Nfr is the total number of frustrated
plaquettes and the chiral part of the Hamiltonian reduces to
the 1D Ising Hamiltonian with Nfr Ising variables �I= ±1.
Second, Ney-Nifle made a further simplification that the
charge-charge interaction, which originally worked between
arbitrary pairs of frustrated plaquettes, is restricted only to
the nearest-neighbor pairs of frustrated plaquettes. After
these two simplifications, the model reduces to the 1D Ising
chain with the random antiferromagnetic nearest-neighbor
interaction,

HIsing = �
I=1

Nfr

VI�I�I+1. �8�

The random nearest-neighbor interaction VI�0 obeys the
distribution given by

P�V� = cV−1+��, �� = 0.5263… , �9�

for smaller V, where c is a normalization constant. The latter
simply follows from Eq. �6� and the fact that the probability
to have a sequence of l successive unfrustrated plaquettes is
given by 1/2l. Thus, it should be remarked that the distribu-
tion of the effective interactions P�V� is not a smooth func-
tion but a collection of delta functions such that Eq. �9� must
be taken with care.

These simplifications enabled Ney-Nifle et al. to specify
the explicit charge �chirality� pattern and the existence �non-
existence� of the SW excitation in the ground state of large
enough lattices under the given BC, leading to various pre-
dictions on the domain-wall energies and the correlation
lengths.

III. NUMERICAL RESULTS ON THE DOMAIN-WALL
ENERGIES

In this section, we numerically calculate the following
two types of domain-wall energies for the 1D XY SG ladder,
i.e., �i� the root-mean square of the energy difference be-
tween �under� the P and AP BCs, �EP,AP, and �ii� the abso-
lute value of the energy difference between �under� the re-
flecting and min �P,AP� BCs, �Ec, where min�P,AP� refers to
either the P or AP BC which has lower energy than the other.
The following three levels of numerical calculations are
made.
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Method A. The first method is the direct numerical esti-
mate of the ground-state energy of the cosine Hamiltonian of
finite L under the given BC. In calculating the ground-state
energy, we employ the spin-quench algorithm without any
further approximation, i.e., by starting from the randomly
generated spin initial conditions, we quench the system to
reach one of the local energy minima. These quench proce-
dures are repeated many times, typically 5000 times, until
one is sure that the true ground state has been reached. If one
goes to larger L, the number of local minima increases rap-
idly, which makes the search for the true ground state in-
creasingly difficult. This difficulty limits the tractable maxi-
mum lattice size to L	35. The sample average is taken over
10 000 �L=35� to 200 000 �L	15� independent bond real-
izations.

Methods B1–B3. In this group of methods, we estimate
the ground-state energy of the effective charge Hamiltonian
of finite L under the given BC within the first approximation
of Ref. 21. Namely, we use the Ising Hamiltonian but with
the distant-neighbor interaction in estimating the domain-
wall energy. In identifying the chirality pattern of the ground
state �or the candidate of the ground state�, we have made
certain plausible assumptions, the detail of which will be
given below for each different case: It is similar to the pro-
cedure employed in Ref. 21, but it is systematically im-
proved in the estimation of the domain-wall energies by tak-
ing into account the distant-neighbor two-body interactions
and also the higher-body interactions. By the methods B1–
B3, we examined lattices considerably larger than the case A,
up to L=960. The sample average is taken over 100 000
independent bond realizations.

Method C. In this third method, we estimate the ground-
state energy of the Villain’s Hamiltonian of finite L under the
given BC by assuming both the first and the second approxi-
mations of Ref. 21. Namely, we use the Ising Hamiltonian
with the nearest-neighbor interaction in estimating the
domain-wall energy. In this case, we can deal with lattices
still larger than the cases �B1�–�B3�, and the results for as-
ymptotically large L should reduce to the analytic results of
Ref. 21. The sample average is taken over 100 000 indepen-
dent bond realizations.

We compare the results of these five levels of calculations
A, B1–B3, and C to examine the validity of the approxima-
tions made in Ref. 21 and to elucidate the nature of the
finite-size effects in this model.

In the original cosine model �1�, the local chirality at each
plaquette is given by Eq. �2�. In the ground state, the local
chirality distribution is expected to peak around �= ±1 for
frustrated plaquettes and around �=0 for unfrustrated
plaquettes. We have checked numerically that this is indeed
the case. As shown in Fig. 1, the local chirality on frustrated
plaquettes takes the values around �� ±1 with equal prob-
ability, while the local chirality on unfrustrated plaquettes
takes the values around �=0. Such a distribution of the local
chirality enables us to label the chirality pattern uniquely
only by the combination of + and − on frustrated plaquettes.

In the present 1D model, as was suggested by Ney-Nifle
et al.,21 the behavior of the domain-wall energy largely de-
pends on whether the total number of frustrated plaquettes
Nfr is either even or odd. We call these samples “even” and

“odd” samples, respectively. In what follows, we show the
results for the even and odd cases separately.

A. Even samples

1. The domain-wall energy: �EP,AP

For even samples, Ref. 21 predicted that the domain-wall
energy �EP,AP was dominated for large enough lattices by
the contribution of a pair of chiral domain-wall excitations
not accompanying the SW excitation. The chiral domain-
wall may be defined here as the place where the “chiral over-
lap” between the two chirality configurations 1 and 2 under
the two BCs, Oi=mi�1�mi�2�, changes the sign. According to
Ref. 21, under the min�P,AP� BC, the sign of the chirality
pattern alternates on frustrated plaquettes without misfit,
while under the max �P,AP� BC, a pair of misfits is intro-
duced into the alternating chirality pattern, but not accompa-
nying the SW excitation: A pair of chirality misfits is intro-
duced into the sample in such a way that one is at the
weakest connection, i.e., the place where the neighboring
frustrated plaquettes are farthest apart in distance, and the
other is at the next-weakest connection satisfying the condi-
tion �imi= ±1. The latter condition is required to suppress
the SW term in Eqs. �3� and �4�. The other possible candidate
of the ground state under the max �P,AP� BC might be the

-SW state with a nonzero second term but without any
misfit in the alternating chirality pattern. However, if the
assumptions made in Ref. 21 are to be justified, the chiral
domain-wall state always has lower energy than the SW
state, at least in sufficiently large lattices.

In our methods B1–B3 above, we search for the positions
of a pair of chiral domain walls in the ground state under the
max �P,AP� BC according to the following procedure. First,
to specify the position of one of the two chiral domain walls,
we apply the reflecting BC to the same sample. The applica-
tion of the reflecting BC is expected to yield a single chiral
domain wall in the sample �see below�. By calculating and
comparing the energies corresponding to all possible Nfr po-
sitions of a chiral domain wall, we determine the position of
the chiral domain wall in the ground state under the reflect-
ing BC. This position is assumed to be common with the

FIG. 1. �Color online� The distribution function of the local
chirality � at each plaquette in the ground state of the ±J XY ladder.
The lattice size is size L=35. The data for frustrated and unfrus-
trated plaquettes are given in blue �at the center �=0� and in red
�near the edges �= ±1�, respectively.
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position of one of the two chiral domain walls introduced
under the max �P,AP� BC. We then determine the position of
the second chiral domain wall in the ground state under the
max �P,AP� BC by calculating and comparing the energies
corresponding to all possible positions of the second chiral
domain wall under the constraint that there are an odd num-
ber of frustrated plaquettes between the two chiral domain
walls. In calculating the energy, we employ systematically
improved methods B1, B2, and B3, unlike the case of our
method C, which takes into account the nearest-neighbor in-
teraction only. In the method B1, we use the two-body ap-
proximation but sum over all distant-neighbor interactions.
In the methods B2 and B3, we take into account the higher-
body correction terms up to the four-body and six-body in-
teractions, respectively. The explicit forms of the higher-
body terms are given in the Appendix.

In our direct method �method A� for finite L	35 samples,
we have observed that, under the min �P,AP� BC, the rule of
the ground-state configuration of Ref. 21 is always satisfied,
while, under the max �P,AP� BC, some samples obey the rule
of Ref. 21, but some other samples do not. In the latter class
of samples, the ground state under the max �P,AP� BC turns
out to be the 
-SW state rather than the chiral domain-wall
state, i.e., the chirality pattern completely alternates without
misfit while the SW of a turn angle 
 �
-SW� is generated
between �under� the P and AP BCs. An example of such a

-SW sample is shown in Fig. 2, where the spin configura-
tions under the P and AP BCs are shown in the upper panel
of Fig. 2, while the relative deviation angle between the spin
directions under the P and AP BCs is illustrated in the lower
panel by arrows. The appearance of the 
-SW is clearly
visible here. Hence, at least in a subset of samples of finite
L	35, the rule of Ref. 21 is violated.

The domain-wall energy �EP,AP calculated in our direct
method A is shown in Fig. 3�a� on a log-log plot. The slope
is estimated to be about 1.39 in the range L	35, which is
considerably smaller than the predicted value of Ref. 21,
1.899…, presumably due to the existence of the SW samples
characterized by the SW stiffness exponent ys�=1.

Then, the next question is how the rate of the 
-SW
samples, which breaks the rule of Ref. 21, varies with in-
creasing L. This rate of the SW samples rSW calculated in the
direct method �A� is shown in Fig. 4�a� in the range L	35.
As can be seen from the figure, while the rate decreases with

increasing L for smaller lattices of L
20, it tends to in-
crease again for larger lattices up to L=35. Unfortunately,
the direct calculation is limited to L=35.

The rate of the SW samples rSW is also estimated by using
the Ising approximation �methods B1–B3� and the nearest-
neighbor approximation �method C�, and the results are also
shown in Fig. 4�a� in the same range of L	35. One sees
from the figure that the rate calculated by both approxima-
tions exhibits the nonmonotonic behavior qualitatively simi-
lar to the one observed by the direct method �A�. In particu-
lar, the Ising approximation �B1–B3� gives the results in
quantitative agreement with those of the direct method �A�.
The quantitative agreement becomes systematically better by
including the distant-neighbor two-body interactions �B1�,
four-body interactions �B2�, and six-body interactions �B3�.

By contrast, the nearest-neighbor approximation �C�
yields the results that considerably deviate from the results of
the direct method quantitatively, although some qualitative
features are still captured.

In order to investigate the behavior of larger lattices L
�35, we have to rely on the approximate methods B1–B3
and C. The domain-wall energy �EP,AP and the rate of the
SW sample rSW calculated for larger lattices L�35 by the
methods B1–B3 and C are shown in Figs. 3�b� and 4�b�,
respectively. In both methods, the ground state under the
given BC is searched for between the chiral domain-wall
state and the 
-SW state by comparing the energies of these
two states. As can be seen from Fig. 4�b�, the rate of the SW
sample rSW, once increased with L at L	35, decreases with

FIG. 2. �Color online� A typical example of the ground-state
spin configuration of even samples under the periodic and antiperi-
odic boundary conditions, between which a spin-wave of a turn
angle 
 is generated. The lattice size is L=25. In the lower panel,
the relative deviation angle between the spin directions under the
periodic and antiperiodic boundary conditions is illustrated by
arrows.

FIG. 3. �Color online� The domain-wall energy �EP,AP of even
samples, calculated by the three methods A, B1–B3, and C men-
tioned in the text, are plotted versus L on a log-log plot. The dotted
line is the power law L−1.899… predicted in Ref. 21.
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further increasing L and tends to zero in the L→� limit but
with peculiar oscillations. Likewise, as can be seen from Fig.
3�b�, �EP,AP yields a slope close to 1.9 for large enough L,
consistent with the value of Ref. 21. Thus, the asymptotic
large-L behavior seems consistent with Ref. 21, while the
approach to the large-L asymptote is rather slow and is real-
ized only for lattices with L�40.

Of course, the methods B1–B3 and C assume properties
of the ground-state configurations are not completely rigor-
ous. However, the fact that the nontrivial �nonmonotonic�
small-L behavior revealed by the direct method A is also
reproduced by these approximate methods gives some cre-
dence to the reliability of the approximate methods even for
larger L where the direct method is not available.

In Fig. 5, we show the distribution function of the
domain-wall energy �EP,AP for the sizes of L=35 �Fig. 5�a��
and L=240–960 �Fig. 5�b��. As can be seen from Fig. 5�a�,
the SW samples contribute the component near the edge of
the distribution whose weight decreases with increasing L.
Interestingly, the distribution is not smooth at all. As L in-
creases, more bands of spikes appear closer to the center
�EP,AP=0 and the amplitude of the spikes at smaller ��EP,AP�
becomes larger. Presumably the bands of the spikes reflect
nearly discrete spectrum of the distribution of effective inter-
actions between chiralities, which is not explicit in Eq. �9�.

2. The domain-wall energy: �Ec

Now, we turn to the second type of domain-wall energy,
�Ec, the absolute value of the ground-state energy difference

between �under� the reflecting and min �P,AP� BCs. Under
the reflecting �R� BC, the sign of the chirality is reversed at
the boundary. Therefore, if the sign change in the chiral-
overlap Oi=mi�R�mi�min�P,AP�� occurs at the boundary, it
actually means that there is no chiral domain wall at the
boundary. With this understanding, under R /min �P,AP� of
even samples, a single chiral domain wall should be intro-
duced into the sample, not accompanying the SW
excitation.21 Hence, �Ec should be characterized by the chi-
ral stiffness exponent y�=1.899… . Indeed, our direct
method A has fully confirmed this expectation.

In Fig. 6�a�, we show the size dependence of the domain-
wall energy, �Ec, estimated by the three methods A, B1–B3,
and C. As mentioned in Sce. III A 1 in the method B1–B3,
the position of a chiral domain wall is determined by calcu-
lating and comparing the energies corresponding to all pos-
sible Nfr positions of a chiral domain wall. In the size range
L	35 where the direct calculation is available, the data yield
a slope about 1.58, which is considerably smaller than the
expected value y�=1.899… . However, the data for larger
lattices obtained by the approximate methods B1–B3 and C
yield an asymptotic slope consistent with the expected value
y�=1.899… . Again, the approach to the asymptotic behavior
turns out to be rather slow.

B. Odd samples

In this section, we deal with the other subset of samples
where the total number of frustrated plaquettes is odd.

1. The domain-wall energy: �EP,AP

For odd samples, Ref. 21 shows that the P and AP BCs
always yield exactly the same ground-state energy, i.e.,

FIG. 4. �Color online� The L-dependence of the rate of the spin-
wave samples within the even samples under the periodic boundary
condition, calculated by the three methods �A�, �B1�–�B3�, and �C�
mentioned in the text.

FIG. 5. �Color online� The distribution function of the domain-
wall energy �EP,AP for even samples with L=35 obtained by
method A �a�, and L=240 480 960 obtained by method B1 �b�.
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�EP,AP=0. In the ground-state chirality pattern, a single mis-
fit is introduced into the alternating chirality pattern, but al-
ways in the same position between �under� the P and AP BCs
so that there is no chiral domain wall between �under� the P
and AP BCs. Instead, the 
-SW is generated between them.
Indeed, we have confirmed this expectation by the direct
method A.

2. The domain-wall energy: �Ec

In the case of R /min �P,AP� of odd samples, a single
chiral domain wall is expected to be introduced with the
accompanying 
 /2-SW.21 This has been confirmed by our
direct method A. A typical example of the spin configura-
tions under the reflecting and periodic BCs is shown in Fig.
7. The existence of the 
 /2−SW is clearly visible.

Here, the domain-wall energy, �Ec, is expected to be a
sum of the chiral domain-wall contribution characterized by
the chiral exponent y�=1.899… and the SW contribution
characterized by the SW exponent ys�=1.21 For large enough
L, a slowly decaying component, i.e., the SW component,
should dominate the asymptotic behavior of �Ec. In Fig. 8,
we show on a log-log plot the L dependence of the domain-
wall energy, �Ec, calculated by our methods A, B1–B3, and
C. In the methods B1–B3, the position of a single chiral
domain wall is determined by calculating and comparing the
energies corresponding to all possible Nfr positions of a chi-
ral domain wall. In the size range L	35 where the direct
calculation is available, the data yield a slope about 1.07,

which is slightly larger than the expected asymptotic value
y�=1. This deviation for smaller L might be due to the re-
sidual contribution of the chiral domain wall. Meanwhile, the
data for larger lattices obtained by the approximate methods
B1–B3 and C yield the asymptotic slope fully consistent with
the expected value, y=1.

C. All samples

As shown above, the behaviors of the domain-wall energy
largely differ between the even and odd samples. The behav-
ior observed when one measures the domain-wall energy av-
eraged over all samples can be obtained immediately by sim-
ply combining the above results for even and odd samples
with equal weights.

FIG. 6. �Color online� The domain-wall energy �Ec of even
samples, calculated by the three methods A, B1–B3, and C men-
tioned in the text, are plotted versus L on a log-log plot. The dotted
line is the power law L−1.899… predicted in Ref. 21.

FIG. 7. �Color online� A typical example of the ground-state
spin configuration of odd samples under the periodic and reflecting
boundary conditions, between which a spin wave of a turn angle

 /2 is generated. The lattice size is L=25. In the lower panel, the
relative deviation angle between the spin directions under the P and
R BCs is illustrated by arrows.

FIG. 8. �Color online� The domain-wall energy �Ec of odd
samples, calculated by the three methods A, B1–B3, and C men-
tioned in the text, are plotted versus L on a log-log plot.
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The behavior of �EP,AP averaged over all samples is ex-
actly the same as that for even samples, since �EP,AP is iden-
tically zero for odd samples. It exhibits an asymptotic behav-
ior characterized by the stiffness exponent y�=1.899… for
large enough L, while there is a significant finite-size correc-
tion and the asymptotic behavior sets in only at L�40.

By contrast, �Ec is a sum of the chiral contribution and
the SW contribution, the large-L behavior being dominated
by the latter. Hence, �Ec averaged over all samples is as-
ymptotically characterized by the SW exponent ys�=1, in
contrast to �EP,AP.

These asymptotic behaviors were just as predicted by
Ney-Nifle et al.

IV. NUMERICAL RESULTS OF THE CORRELATION
LENGTH

In this section, we numerically investigate the temperature
dependence of the spin and the chiral correlation lengths �s
and �� with interest in the associated correlation-length ex-
ponents �s and ��. Since the correlation functions are bulk
quantities, one usually believes that they are independent of
the type of BCs, or whether the sample is either even or odd,
in contrast to the case of the domain-wall energies analyzed
in the previous section. Indeed, this was implicit in the
analysis of Ref. 21.

The two-point spin-spin and chirality-chirality correlation
functions, Cs�R� and C��R�, are defined by

Cs�R� = �	S� �0,1� · S� �R,1�
2� , �10�

C��R� = �	�0�R
2� , �11�

where 	¯
 denotes the thermal average and �¯� denotes the
average over the bond disorder.

We directly calculate these correlation functions of the
cosine model under the P BC by means of the standard
Monte Carlo simulation. The spin and the chiral correlation
lengths are extracted by fitting the calculated correlation
functions by a simple exponential form, A exp�−�r /��� �A is
a constant�. To guarantee that the estimated correlation
lengths are free from the finite-size effect, the data are lim-
ited to the temperature region T /J�0.1 where both correla-
tion lengths �s and �� are much smaller than the system size
L=100. At the temperature T /J=0.1, �s and �� become �6
and 3, respectively. In order to be sure that the correlation
lengths are insensitive to whether the sample is even or odd,
we estimate �s and �� for each case of even and odd samples.
As expected, �s of even and odd samples agrees within the
error bars, so does ��.

In Fig. 9�a�, we show on a log-log plot the temperature
dependence of �s and �� averaged over all samples, the total
number of samples being 100. As can be seen from Fig. 9�a�,
in the investigated temperature range T /J�0.1, the data
yield a slope close to unity for both �s and ��. This value,
unity, may be related to the SW stiffness exponent ys�=1 via
the relation �=1/y. It is significantly smaller than the
asymptotic value obtained in Ref. 21 �s=��=1/y�

=0.5263… . However, since the temperature range covered

in the present simulation is rather high and the correlation
lengths still stayed shorter than the crossover length of �40
estimated in the previous section, it is quite probable that we
need to go to lower temperatures to see the true asymptotic
critical behavior associated with the T=0 transition. Unfor-
tunately, we cannot directly evaluate the correlation lengths
in this low temperature region because of the finite-size ef-
fect and the thermalization problem.

Ney-Nifle et al. gave an analytic expression of the spin
and the chiral correlation lengths in the thermodynamic limit
on the basis of the two assumptions mentioned above.21 The
chiral correlation function is obtained as

C��R� = �	2m02mR
2� �12�

=��
j=1

S

tanh2� Vj

kBT

� �13�

=e−R/��, �14�

where T is the temperature. In Eq. �13�, the product is taken
over all nearest-neighbor effective bonds Vj, which lie in the
section between the sites 0 and R and are labeled as j
=1,2 ,… ,S where S is the number of frustrated plaquettes
between the sites 0 and R. The chiral correlation length ��

behaves in the T→0 limit as

FIG. 9. �Color online� The temperature dependence of the spin
and the chiral correlation lengths, �s and ��, of the bulk sample,
estimated by Monte Carlo simulation and numerical analysis of the
effective charge model.
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�� �
1

T��
�� = 1/y� = 0.5263… . �15�

In the Villain model, the spin correlation function is obtained
as

Cs�R� = �	cos���0,1� − ��R,1��
2� �16�

=e−R/�s�Ccharge�R� , �17�

where the SW correlation length �s� is given by

�s� =
2

T
. �18�

Here the spin correlation function is factorized into the two
parts, one due to the SW and the other due to the charges
Ccharge. Within the effective model studied by Ney-Nifle et
al.,21 i.e., the Ising model with the nearest-neighbor random
antiferromagnetic interaction, the charge part becomes

Ccharge�R� = ��
k=1

S/2

tanh2� V2k

kBT

� �19�

=e−R/2��. �20�

In the cases where S is an odd integer, the charge �chiral�
correlation function vanishes. These results do not depend on
the type of BCs nor on whether the sample is either even or
odd.

In Fig. 9, we show these analytic results of the spin and
chiral correlation lengths for the effective model together
with the corresponding MC estimates for the original XY SG
model. In our analytic calculations, we evaluated the aver-
ages over the disorder in Eq. �13� and Eq. �19� taking into
account the true discrete spectrum of the distribution of spac-
ings between frustrated plaquettes rather than using the con-
tinuous expression Eq. �9�. As can be seen from Fig. 9�a�, in
the higher temperature range T /J�0.1, the analytic results
of Ref. 21 agree with our MC results, exhibiting the near 1 /T
behavior. Such an agreement observed at higher tempera-
tures might give some credence to the reliability of the ap-
proximate methods. At lower temperatures where the MC
result is no longer available, the analytic results of Ref. 21
tend to level off, exhibiting a clear crossover. There, for both
cases of �s and ��, a power-law behavior with a much smaller
asymptotic exponent �s=��=0.5263… are eventually real-
ized. The crossover from the 1/T behavior to the 1/T0.5263…

behavior occurs below T /J�0.1, at the length scale of L
=30 lattice spacings. This crossover might be related to the
domain-wall result in the previous section where a crossover
takes place at around L=40.

Hence, the asymptotic critical behavior of the spin and
chiral correlation lengths sets in only at low temperatures
T /J
0.1 and at longer length scale ��30. At higher tem-
peratures T /J�0.1 and at shorter length scale �
30, a dif-
ferent power-law behavior with an apparent exponent ��1
fits the data better.

It might be worth emphasizing here again that, although
the spin and the chiral correlation lengths exhibit the same

critical behavior, apparently with only one diverging length
scale, there in fact exist two distinct length scales at the T
=0 transition of this model. This has been already evident in
Eqs. �17� and �20�, where the spin correlation function is
written as a product of the Z2 chiral part, characterized by the
correlation length with the chiral exponent ��=0.5263… and
the SO�2� SW part, characterized by the correlation length
with the SW exponent �s�=1. Hence, while there actually
exist the two diverging length scales at the T=0 transition of
the model, the one diverging more slowly, i.e., the one with
smaller �, dominate the asymptotic behavior of spin correla-
tions, masking the existence of the other correlation length
which diverges more rapidly.

We note that such a “masking” phenomenon arises only
when the inequality ����s� holds between the Z2 and SO�2�
correlation-length exponents. If this inequality would be op-
posite, the masking phenomenon would not show up in the
spin correlations. Then, the existence of two correlation
lengths would manifest itself more directly in the associated
correlation functions, the SO�2� spin correlation length in the
spin correlations and the Z2 chiral correlation length in the
chiral correlations. This actually occurs in the aforemen-
tioned regularly frustrated 1D XY model, where one has ��

=���s=1 as shown rigorously for the case of 1D triangular
lattice in Ref. 13.

Naturally, one expects essentially the same behavior in the
present two-leg ladder XY model. Let us consider the regu-
larly frustrated two-leg ladder XY model such that all spac-
ings between frustrated plaquettes are equal to l. The analytic
expressions of the charge �chirality� and the spin correlation
functions, Eqs. �13� and �19�, expected to be valid at low
enough temperatures T /J�1, can also be used in the regular
case where the average over the bond disorder should be
dropped. As examples, we show in Fig. 10 the temperature
dependence of the spin and the chiral correlation lengths �s
and �� for the cases of l=2 and 4. As can be seen from the
figure, the chiral correlation length �� outgrows the spin cor-
relation length �s at some finite temperature Tx. At higher
temperatures T�Tx ,�s and �� exhibit a more or less similar
behavior with �s���. At lower temperatures T�Tx, while ��

continues to exhibit a behavior similar to the behavior ob-

FIG. 10. �Color online� The temperature dependence of the spin
and the chiral correlation lengths, �s and ��, of the two-leg ladder
regularly frustrated XY model evaluated by the effective charge
model. The spacings between frustrated plaquettes are equal to l.
Here the results of l=2 and l=4 are shown as examples.
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served at higher temperatures T�Tx, the spin correlation
length �s dramatically changes its behavior. The growth of �s
with the decrease of the temperature is dramatically slowed
down below Tx yielding �s���; a manifestation of the spin-
chirality decoupling.

V. SUMMARY AND DISCUSSION

We numerically investigated the domain-wall energies
and the spin and the chiral correlation lengths of the 1D
±J XY SG ladder. Analytic results obtained by Ney-Nifle et
al. were confirmed for asymptotically large L, while the
finite-size effect could be significant. Concerning the
domain-wall energies, the asymptotic behavior sets in only
for lattices with L�40. Concerning the correlation lengths,
the asymptotic behavior sets in only at low temperatures
T /J
0.1.

The domain-wall energies show different behaviors de-
pending on the type of BCs and whether the number of frus-
trated plaquettes is even or odd. The domain-wall energy
associated with the P/AP BCs, �EP,AP, is identically zero for
odd samples, and exhibits a rather complex behavior for
even samples. For even samples, although the lowest-energy
excitation is always a chiral domain-wall pair for asymptoti-
cally large L, the one for smaller L is sometimes a 
-SW
without accompanying the chiral domain wall, which even-
tually gives way to the chiral domain-wall pair excitation for
larger L. Somewhat unexpectedly, the approach to the
asymptotic large-L limit is rather slow and could be even
nonmonotonic �see Fig. 4�b��, and the asymptotic large-L
behavior sets in only at L�40. The chiral domain wall and
the SW bear the associated stiffness exponents, y�

=1.899… and ys�=1, respectively. We note that, if the in-
equality between y� and ys� would be opposite, i.e., if y�

�ys�, then �EP,AP would be characterized by ys, not by y�.
The domain-wall energy associated with the

R /min�P,AP� BC, �Ec, is governed by a chiral domain-wall
excitation, with and without the SW for odd and even
samples. The absence or presence of the SW excitation gives
rise to the different asymptotic behaviors of �Ec for even
and odd samples, respectively. The SW excitation, whenever
it is induced, governs the large-L asymptotic behavior of the
domain-wall energy since ys�=1�y�=1.899… in the present
model. Thus, �Ec is characterized by an asymptotic stiffness
exponent y=y� and y=1 for even and odd samples, respec-
tively. We emphasize again that, if the inequality between y�

and ys� would be opposite, �Ec would always be character-
ized by the chiral exponent y� for both even and odd
samples.

We also numerically investigated the behavior of the spin
and the chiral correlation lengths. Both exhibit the diver-
gence characterized by the chiral exponent ��=1/y�

=0.5263…, whereas this asymptotic behavior sets in only at
low temperatures T /J
0.1 and at longer length scale �
�30. At higher temperatures T /J�0.1 and at shorter length
scale �
30, a different power-law behavior characterized by
an apparent exponent ��1 is realized. Although both the
spin and the chiral correlation lengths exhibit the critical
behavior with a common exponent y�, the system in fact

possesses two distinct diverging length scales: one associated
with the SO�2� SW and the other associated with the Z2
chirality. In that sense, the SO�2� part and the Z2 part are
decoupled in this model. Reflecting the inequality �s�=1/ys�
=1���=1/y�=0.5263…, however, the spin correlation is
dominated by the chiral exponent ��, not by the SW expo-
nent �s�=1. The inherent spin-chirality decoupling of the
present model is then masked.

These behaviors of the domain-wall energies and of the
correlation lengths of the 1D ±J XY SG ladder are seemingly
at odds with the behaviors of the corresponding 2D and 3D
models suggested in Refs. 10 and 11. In the 2D and 3D XY
SG, Ref. 10 conjectured that �EP,AP was governed by the
SO�2� spin exponent, while �Ec was governed by the Z2

chiral exponent. This should be contrasted with the behavior
of the present 1D model where �EP,AP was governed by the
Z2 chiral exponent while �Ec was governed by the SO�2�
spin �SW� exponent. As argued in the previous section, how-
ever, this apparent difference is simply the consequence of
the difference in the relative magnitude of the Z2 and SO�2�
exponents between the two models. Indeed, in the 2D case,
Ref. 10 estimated y��0.5 and ys�1.0 from the L depen-
dence of �Ec and �EP,AP, respectively, where one has y�

�ys in contrast to the present 1D case. If the inequality
between the two stiffness exponents y� and ys� were opposite
in the present 1D model, i.e., y��ys�, essentially the same

behavior as that in the 2D and 3D models, i.e., �Ec�L−ys�

and �EP,AP�L−y�, would arise. Hence, the apparent large
deviation from Ref. 10 is merely due to the difference in the
relative magnitudes of the two stiffness �and correlation-
length� exponents.

In this connection, a significant difference between the
present 1D ladder model and the higher-dimensional models
might be that, while the effective interaction between the
charge variables mi is short-ranged in 1D, that in higher di-
mensions is long ranged. This assigns a nontrivial character
to the charged excitation in the higher-dimensional models.
In 2D, this charged excitation could be viewed as a vortex.
�In 3D, it is a vortex line.� The important characteristic of
such vortex excitations is that they break the charge neutral-
ity condition and interact with each other via the long-ranged
Coulombic interaction. In the present 1D ladder model, even
though there certainly exist excitations that apparently break
the charge-neutrality condition, the associated interaction be-
tween them is always short-ranged, and cannot be regarded
as a genuinely charged vortexlike excitation.

Thus, in higher dimensions, excitations associated with
the charge excitation are at least of two distinct types: The
one is the vortex excitation that breaks the charge neutrality,
and the second one is the ordinary chiral excitation that pre-
serves the charge neutrality. In 2D, the former one is a point
defect �vortex�, while the latter is a line defect �domain wall�.
Note that the former vortexlike excitation exists in both frus-
trated and unfrustrated XY spin models, often playing a vital
role in the order-disorder process, while the latter chiral ex-
citation is peculiar to the frustrated XY spin models. We
expect that, in higher dimensions, this genuinely charged
vortex excitation might give rise to another diverging length
scale, which predominantly disorders the spin �not the chiral�
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order. A possible conjecture would be that the stiffness ex-
ponent associated with the vortex excitation yv takes a value
smaller than the SW stiffness exponent or the chiral stiffness
exponent and is more effective in disordering the spin. If this
is really the case, the spin correlation length and the domain-
wall energy �EP,AP would be governed by the nonchiral ex-
ponent yv associated with the genuinely charged excitation.
In the 2D XY SG with the ±J interaction, the numerical es-
timate of Ref. 10 suggested yv�1, which appears to be
larger than y��0.5.

In Ref. 24, Ney-Nifle and Hilhorst extended the approach
they developed for the 1D XY SG ladder in Ref. 21 to the 2D
XY SG. Based on an analytic result for a system with a
special type of bond randomness �see Ref. 24 for the details�,
they observed ys=y�. However, the randomness considered
is essentially of the 1D character with infinite-ranged corre-
lations in the other direction, so that it is unclear how general
the obtained result applies to generically random systems.
Ney-Nifle and Hilhorst also presented a phenomenological
argument for such generically random systems in Ref. 24,
concluding that ys	y� held in 2D. However, they have not
taken into account the vortex excitation, which might play an
important role as we noted above.

We note that, even in 1D, the long-ranged interaction be-
tween the charge variables could arise in some special cases,
e.g., in the tube lattice investigated by Hill et al.22 In the tube
lattice, however, the application of neither the P, AP nor the
reflecting BCs is capable of generating the genuinely charged
vortex excitation, i.e., the excitation in the q+ variable in the
notation of Ref. 22. In fact, the application of either the P,
AP, and reflecting BCs generates only the charge-neutral chi-
ral excitation, the excitation in the q− variable in the notation
of Ref. 22, which interacts only via the short-ranged interac-
tion. As such, the role of the genuinely charged vortex exci-
tation still remains to be seen in the 1D tube model. In order
to elucidate the nature of the spin and the chirality orderings
of the frustrated XY spin systems, it would be important to
further clarify the role of the vortexlike genuinely charged
excitation, not only in the 1D tube model but also in the
higher-dimensional models.

In the present paper, we concentrated on the XY SG ladder
with the ±J interaction. The corresponding model with the
Gaussian interaction was also studied in the literature, e.g., in
Ref. 23. Our numerical study suggested that these two mod-
els, i.e., the 1D XY SG ladder with either the ±J or the
Gaussian interaction exhibit quite different behaviors. The
properties of the 1D XY SG ladder with the Gaussian inter-
action will be reported elsewhere.25

APPENDIX: EFFECTIVE CHARGE HAMILTONIAN

In this Appendix, we briefly summarize the derivation of
the effective charge Hamiltonian corresponding to the origi-
nal XY spin-glass model described by the spin Hamiltonian
Eq. �1�. We note that the Villain’s Hamiltonian, which con-
tains the two-body interaction between the charges only, is
not exact even in the T→0 limit, contrary to a common
belief. In the following, we give explicit forms of the correc-
tion terms to the Villain’s approximation, which includes cer-

tain four-, six-, …body effective interactions between the
charges. Details will be reported elsewhere within a more
general context.27

As usual, the starting point is the identity

e� cos � = �
p=−�

�

eip�Ip��� , �A1�

where �=1/T is the inverse temperature and Ip��� is a modi-
fied Bessel function. Now we use a useful formula for the
asymptotic behavior in the limit �→�,

ln�Ip���� e�

�2
�

 = �

m=1

�
cm

m!
T2m−1�1 + O�T���m,

�A2�

where �=4p2. Here terms which vanish in the T→0 are
represented as O�T�. The first few coefficients reads as
c1=−1/8, c2=1/192, c3=−3/2560, c4=15/28 672, c5
=−35/98 304, c6=945/2 883 584,… . Note that the usual
Villain’s approximation amounts assume that c1=−1/8 and
cm=0 for m�1.

Following the standard steps of mapping of the original
spin model to the charge model on the dual lattice,26 one
finds that the effective charge Hamiltonian in the T→0 limit
can be written as

Hcharge = Htwo-body + Hfour-body + Hsix-body + ¯ . �A3�

The terms on the rhs are due to the terms of m=1,2 ,3 ,… in
Eq. �A2�. The first term is nothing but the usual Villain’s
Hamiltonian, which describes the two-body charge interac-
tions,

Htwo-body = �
i,j

Ui,jmimj +
2
2

L
�mex1

2 + mex1
2 � , �A4�

where Ui,j is given by Eq. �5�. The second term on the rhs
describes global spin-wave excitations induced by the two
external change variables mex1 and mex2 noticed in Ref. 21.
In the case of periodic �P� and antiperiodic �AP� boundary
conditions �BC�, all charge variables are subjected to the
global neutrality condition �imi+mex1+mex2=0 due to the
presence of a massless mode.21 In the notation of Sec. II, the
external charges read as mex1=n−P /2 for P BC and mex1
=n− �P−1� /2 for AP BC, while mex2=�imi−mex1. One finds
that the same global neutrality condition applies also for the
higher-body terms given below for the cases of P and AP
BCs. In the case of reflecting boundary condition, on the
other hand, one finds mex1=mex2=0 in the dual mapping and
also finds that the massless mode and thus the global neu-
trality condition is absent.

The explicit form of the higher-body terms becomes in-
creasingly complicated. The four-body Hamitonian reads as

Hfour-body = −
42c2

2! �
i

�Di
4 + �Dex1�i

4 + �Dex2�i
4� , �A5�

with
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Di � �
j
�Ui+1,j



−

Uij




mj , �A6�

�Dex1�i � −
2


L
mex1 + �

j

Uij



mj , �A7�

and

�Dex2�i � −
2


L
mex2 + �

j

Uij



mj . �A8�

The six-body Hamiltonian reads as

Hsix-body = −
43c3

3! �
i

�Di
6 + �Dex1�i

6 + �Dex2�i
6�

+
1

2
�2 � 42c2

1!

2��

i,j
AijDi

3Dj
3 − �

i,j
�Aij + Bij�

�Di
3��Dex1�i

3 + �Dex2�i
3� + �

i,j
Cij��Dex1�i

3 − �Dex2�i
3�

���Dex1� j
3 − �Dex2� j

3� +
1

L���i

�Dex1�i
3
2

+ ��
i

�Dex2�i
3
2�� , �A9�

where

Aij =
1

L
�

k

cos�k�i − j���1 − cos�k��
2 − cos k

, �A10�

Bij =
1

L
�

k

sin�k�i − j��sin�k�
2 − cos k

, �A11�

Cij =
1

L
�

k

cos�k�i − j��
4 − 2 cos k

. �A12�

For a simple demonstration, let us consider a special two-
leg ladder sample in which all plaquettes are unfrustrated. In
this particular sample, one knows that a spin wave is induced
under the AP boundary condition so that

�EP,AP = − 2L�cos�


L

 − 1� =


2

L
−

1

2!


4

L3 +
1

6!


6

L5 + ¯

�A13�

exactly. One can check that the first three terms in the last
equation can be obtained by the energies associated with the
two-body �Villain’s approximation�, the four-body and the
six-body interactions, respectively.
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