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We study the critical properties in cubic systems of antiferromagnetically coupled spin dimers near
magnetic-field-induced quantum phase transitions. The quantum critical points in the zero-temperature phase
diagram are determined from quantum Monte Carlo simulations. Furthermore, scaling properties of the uni-
form magnetization and the staggered transverse magnetization across the quantum phase transition in mag-
netic fields are calculated. Excellent agreement is observed between the quantum Monte Carlo simulations and
previous analytical and experimental results near the magnetic field-induced transition. At the zero-field quan-
tum critical point, logarithmic corrections to mean-field behavior are observed, which match well recent
experiments for the pressure-induced quantum phase transition.
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I. INTRODUCTION

Recent improvements in high magnetic field technology
have made detailed investigations of quantum phenomena in
strong magnetic fields possible. In particular, they allow for
studies of quantum critical properties induced by high mag-
netic fields in weakly coupled spin dimer compounds, such
as TlCuCl3,1–3 KCuCl3,1,4 BaCuSi2O6,5 and Sr2Cu�BO3�2.6

The ground state of these materials consists of local spin
singlets. If a magnetic field is applied that exceeds their
singlet-triplet excitation gap, they undergo a transition into a
magnetically ordered state. This quantum phase transition
into a regime with transverse antiferromagnetic �AF� order
can be described as a Bose-Einstein condensation �BEC� of
triplet excitations, which behave as bosonic quasiparticles,
called triplons. In the corresponding Bose-Hubbard model,
this is analogous to the transition from the Mott-insulating
phase to the superfluid condensate, where the magnetic field
translates into the chemical potential. At very high magnetic
fields, there is a saturation threshold, beyond which the spins
fully align along the field direction, and the transverse anti-
ferromagnetic order is destroyed. A schematic zero-
temperature phase diagram is shown in Fig. 1. Because these
compounds are three-dimensional, field-induced transverse
antiferromagnetic order persists up to a finite transition tem-
perature, Tc�h�, between the upper and lower critical field
�hc�h�hs�. Approaching the critical field from the partially
polarized phase, h→hc, the critical temperature is expected
to vanish as Tc�h�� �h−hc�1/�, with a universal power-law
exponent that is predicted to be �=3/2.7,8 While early
experimental3 and numerical9 studies reported nonuniversal,
i.e., coupling dependent, values of ��2, it was recently
shown in Ref. 10 that careful fitting of both experimental and
numerical data indicates an effective exponent ��h��3/2,
which approaches 3/2 as hc. Motivated by this observation,
Shindo and Tanaka11 performed a fit of specific heat data in
TlCuCl3 in the close vicinity of the lower critical field, yield-
ing an exponent of �=1.67±0.07. This value is closer to the
universal value of � found in Ref. 10 than previous experi-
mental reports. Furthermore, using the windowing-technique

introduced in Ref. 10, the approach of ��h�→2/3 for
h→hc was also verified recently for the BaCuSi2O6 �Ref. 12�
and the NiCl2−4SC�NH2�2 �Ref. 13� compounds. Recently, it
was demonstrated that this mean-field exponent also controls
the XY model in the vicinity of the critical field.8

While numerical and experimental results on critical
properties of the field-induced ordering transition agree well
with analytical results at finite temperatures,8,14 there are no
comparable scaling predictions for the zero-temperature
quantum phase transitions. In this paper, we present a nu-
merical analysis of critical properties in cubic systems of
coupled dimers. In particular, zero-temperature scaling prop-
erties of the uniform and staggered magnetization in the par-
tially polarized phase are studied, based on large-scale quan-
tum Monte Carlo �QMC� simulations.

These systems, upon increasing the interdimer coupling,
enter an antiferromagnetically ordered state at a quantum
critical point �J� /J�c.

7 Magnetic exchange constants are

FIG. 1. �Color online� The schematic zero-temperature phase
diagram of a three-dimensional coupled dimer compound with
intra-dimer couplings J and inter-dimer couplings J�. h denotes the
strength of the external magnetic field.
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known to depend sensitively on the distance between the
magnetic sites. If their relative magnitudes are altered by the
application of external pressure, such magnetic ordering
transitions can be induced, as recently observed for
TlCuCl3.15,16 In this numerical study, the quantum critical
point is determined for the structures shown in Fig. 2. Fur-
thermore, the quantum criticality induced by an applied mag-
netic field is studied. In particular, the scaling behavior of the
uniform magnetization and the antiferromagnetic order pa-
rameter upon entering the partially polarized phase is deter-
mined. The associated critical exponents can be accessed ex-
perimentally and thus allow for a quantitative comparison.

The paper is organized as follows: in the next section, the
model used in the numerical simulations is defined, and de-
tails about the quantum Monte Carlo method are presented.
In Sec. III, the zero-temperature phase diagram of the sys-
tems is discussed, and the quantum critical points at zero
magnetic field are determined. A detailed scaling analysis of
the magnetic properties at the quantum phase transitions in a
magnetic field is presented in Sec. IV. Finally, conclusions
are given in Sec. V.

II. MODEL AND METHOD

We consider the spin-1 /2 Heisenberg antiferromagnet on
the lattice structures shown in Fig. 2. The Hamiltonian is
given by

H = �
�i,j�

JijSi · S j − h�
i

Si
z, �1�

where the Si denote localized spin-1 /2 moments, and Jij in-
dicates the coupling constant between sites i and j, which
takes values J for the dimer, and J� for the interdimer cou-
plings. Furthermore, h denotes the applied magnetic field.

Since the lattice structures that are considered here are
bipartite �cf. Fig. 2�, antiferromagnetism in these systems is
not frustrated, so that their properties can be studied using
large-scale QMC, without a sign problem.17 Here, we use the
stochastic series expansion QMC method18,19 with directed
loop updates.20,21 This update scheme results in higher sam-
pling efficiency than other methods based on the conven-
tional operator-loop update. Close to criticality, autocorrela-

tion times are reduced by up to an order of magnitude. This
allows detailed simulations of ground state properties on
clusters with up to 10 000 sites, even in the presence of large
magnetic fields. Furthermore, off-diagonal observables such
as the transverse magnetic structure factor can be measured
efficiently during the directed loop construction.21,22 There-
fore, the order parameter in the partially polarized phase, i.e.,
the staggered transverse magnetization perpendicular to the
magnetic field direction, can be calculated by using

ms
� =�Ss

�

L3 . �2�

Here, L denotes the linear system size and Ss
� the transverse

staggered structure factor,

Ss
� =

1

L3 �
�i,j�

�− 1�i+j�Si
xSj

x� . �3�

These observables have been shown to saturate in QMC
simulations at temperatures below T=J� /2L, which is used
throughout this study to ensure zero-temperature behavior.

III. ZERO-TEMPERATURE PHASE DIAGRAM

The zero-temperature phase diagram of coupled dimer
systems in a magnetic field can be obtained using the bond-
operator mean-field theory.23,24 A schematic phase diagram is
shown in Fig. 1. It consists of three phases: �i� at low fields
and small coupling ratios J� /J, the system is in a magneti-
cally disordered phase, i.e., a dimer spin liquid; �ii� at inter-
mediate fields and/or sufficiently large values of J� /J, the
ground state is partially spin polarized and has an antiferro-
magnetic long-range order transverse to the magnetic field
direction; and �iii� at large fields, h�hs=J+5J�, all spins are
fully polarized. These phase separations occur in both dimer
arrangements, shown in Fig. 2.

While bond-operator theory provides a reliable descrip-
tion of the phase diagram,10 a more precise estimate of the
critical interdimer coupling strength, �J� /J�c, is required for
the study of critical properties in finite magnetic fields, pre-
sented below. In order to determine this zero-field quantum
critical point, we perform a finite-size scaling analysis of the
staggered magnetization obtained from QMC simulations for
various system sizes. Defining the dimensionless coupling
ratio g=J� /J, the relevant finite-size scaling is obtained as
follows. The correlation length � diverges near the quantum
critical point gc as �� �g−gc�−�. The correlation time �c, dur-
ing which fluctuations relax and decay �equilibration�, is re-
lated to the correlation length � via �c��z� �g−gc�−�z, with
the dynamical critical exponent z.25 In the vicinity of the
critical point and at zero-field, the staggered magnetization
ms

�=ms for g�gc scales as

ms � �g − gc��, �4�

defining an exponent �.26 In general, this implies a finite-size
scaling relation of the order parameter at the quantum critical
point, g=gc:

FIG. 2. �Color online� The layers of coupled dimers, with stag-
gered �left panel� and aligned �right panel� arrangements of dimers.
The dimer bonds �J� are denoted by solid bars, whereas the inter-
dimer bonds �J�� are denoted by dashed lines. In the three-
dimensional crystal, these layers are coupled by interlayer cou-
plings of the same strength as J�. The arrangement of the dimers in
neighboring layers is staggered �left panel� or aligned �right panel�,
respectively.
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ms � L−�/�. �5�

Since these systems are explicitly dimerized, the Berry-phase
contributions to the path integral cancel.27 Therefore, this
QPT belongs to the universality class of the classical O�3�
Heisenberg model in 3+1 dimensions, with the dynamical
critical exponent z=1. Since the effective classical model is
at the upper critical dimension �dc=4�, the critical exponents
� and � take on mean-field values �=1/2, �=1/2, and the
above scaling laws hold up to logarithmic corrections.7

A scaling plot of ms
�L is shown in Fig. 3, using data from

system sizes L=10–20. On the scale of the main part of Fig.
3, a common intersection point of the finite-size data appears
to exist. However, on a smaller scale, the insets of Fig. 3
exhibit the logarithmic corrections to Eq. �5�. With increas-
ing system size, we observe that the intersections for neigh-
boring system sizes move towards increasing values of
�J� /J�. As seen in inset �b� of Fig. 3, the systematic increase
of the crossing points scales well as a function of 1/L2,
which allows us to extrapolate the thermodynamic limit
value of �J� /J�c=0.2492±0.0002 for the quantum critical
point. These logarithmic corrections are best accessible when
system sizes of different orders of magnitude are compared.
However, because of computational restrictions, we follow
the approach described above.

Performing a similar analysis for the staggered configura-
tion of dimers in Fig. 2�a�, we find the quantum critical point
at �J� /J�c=0.2170±0.0002. This lower critical interdimer
coupling for the staggered configuration indicates a reduced
tendency towards the formation of dimer singlets for this

arrangement of dimers, as compared to the aligned dimer
configuration.

For both dimer arrangements, a finite staggered magneti-
zation develops beyond the critical inter-dimer coupling �J�
�Jc��, as shown in Fig. 4. The QMC data of ms are consistent
with the scaling law of Eq. �4� for a mean-field exponent �
=1/2.28

Recently, the magnetic excitation gap 	 of TlCuCl3 was
measured as a function of hydrostatic pressure close to the
pressure-induced quantum critical point.16 Assuming a linear
scaling of the pressure P with the interdimer interactions,16

we find the scaling of the gap near the critical point Pc to be

	 � 1/� � �1 − P/Pc�1/2�− ln	b�1 − P/Pc�
�1/6 �6�

from a renormalization group analysis of the classical 
4

theory at dc=4.29 Figure 5 shows that the experimental data
from Ref. 16 can indeed be fitted to this scaling law with
logarithmic corrections. It would be interesting to perform
this analysis on experimental data with increased accuracy
on TlCuCl3 or other coupled-dimer compounds, such as
KCuCl3, BaCuSi2O6, and Sr2Cu�BO3�2.

IV. FIELD-INDUCED QUANTUM PHASE TRANSITION

Having determined the quantum critical points of
coupled-dimer arrays, we proceed to study the effects of a

FIG. 3. �Color online� The scaling plot of the zero-temperature
staggered magnetization in the aligned arrangement of Fig. 2�b�
obtained from quantum Monte Carlo simulations using systems of
linear sizes L=10–20. J denotes the intradimer coupling. At the
critical interdimer coupling �J� /J�c, the different curves intersect
each other �main panel�. Inset �a� shows a magnification of the
intersection region. Inset �b� exhibits the corrections to the mean-
field scaling behavior, arising from logarithmic corrections in the
upper critical dimension. The statistical error bars fall within the
symbol size.

FIG. 4. �Color online� The staggered magnetization ms of
coupled dimer arrays as a function of the interdimer coupling
strength J�, for the two different dimer arrangements of Fig. 2.
Dashed lines show the mean-field scaling behavior with exponent
�=1/2 close to the quantum critical point.

FIG. 5. �Color online� The experimental data from Ref. 16 for
the critical field H=	 /g�B as a function of applied pressure P. The
dashed black line is the reported algebraic fit, 	� �Pc− P��, with
Pc=0.42 kbar and �=0.33 of Ref. 16. The 	solid red �gray�
 line
shows a fit corresponding to Eq. �6� with Pc=0.42 kbar and b
=0.0038.
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magnetic field in the different regimes. In particular, we de-
termine the scaling behavior of the uniform magnetization
and the order parameter upon entering the partially polarized
region. The corresponding scaling exponents are accessible
experimentally by direct measurement of the magnetization
and by neutron scattering. Thus, the numerical results can be
compared with analytical predictions and with measurements
on the materials mentioned above. Here, simulations for the
aligned configuration of dimers, shown in Fig. 2�b�, are pre-
sented. For the staggered configuration of dimers, the same
scaling exponents are obtained. This is due to the underlying
universality.

A. Scaling of the uniform magnetization

First, we discuss the behavior of the uniform magnetiza-
tion mu�h� as a function of the applied magnetic field. In the
dimer spin liquid phase, i.e., for coupling ratios smaller than
�J� /J�c, a finite magnetic excitation gap 	 separates the
ground state singlet and the lowest triplet state. Thus, a finite
magnetic field hc=	 is required to close this gap, and to
induce a finite uniform magnetization. The Ginzburg-Landau
approach of Ref. 31 predicts mu to increase linearly, mu
� �h−hc� for h�hc=	 and for J��Jc�. When the interdimer
coupling is increased, the gap 	 becomes smaller, until it
vanishes at the critical interdimer coupling Jc�. At the quan-
tum critical point, J�=Jc�, the Ginzburg-Landau approach
predicts the uniform magnetization to scale as mu�h3. For
larger values of J��Jc�, the excitation gap remains zero, and
the finite uniform susceptibility u results in a linear re-
sponse mu=uh of the uniform magnetization in the Néel-
ordered regime beyond Jc�.

Let us now compare these predictions with the QMC re-
sults obtained from simulations of systems with linear sizes
up to L=30. For such large system sizes, we did not detect

finite-size effects in the uniform magnetization. In Fig. 6,
results for various values of the interdimer coupling strength
are presented. The main part of Fig. 6 shows the uniform
magnetization over the full range of magnetic field strengths,
up to the saturation field hs=J+5J�. Thus inset �a� of Fig. 6
focuses on the region close to the critical field hc for various
interdimer couplings J�. The linear scaling in h, which is
predicted on both sides of the quantum critical point, is
clearly observed in this small-mu region. In contrast, at the
quantum critical point, J�=Jc�, the uniform magnetization in-
creases nonlinearly with h, as shown in Fig. 6�a�. Indeed, we
observe a scaling mu�h3, presented in Fig. 6�b�. This is ex-
pected from the Ginzburg-Landau theory31 and the bond-
operator mean-field theory.24 Using QMC, these scaling ex-
ponents of the uniform magnetization are verified.

Finally, we note that the field dependence of mu for the
entire region between hc and hs is linear for weakly coupled
dimers �see, e.g., Fig. 6 for J�=0.07J�, consistent with bond-
operator mean-field theory.24 For larger values of J�, mu
shows deviations from this linear behavior in high magnetic
fields. This nonlinear behavior can be accounted for within
bond-operator theory by including the contributions of
higher-energy triplet modes to the ground state.24

B. Scaling of the order parameter

Next, we discuss the scaling properties of the order pa-
rameter in the partially polarized phase, i.e., the staggered
transverse magnetization perpendicular to the magnetic field
direction, ms

��h�, as a function of the applied magnetic field
h. Before presenting numerical data, the expectations from
the Ginzburg-Landau theory from Ref. 31 can be summa-
rized as following. For J��Jc� and magnetic fields h�hc

=	, ms
����h−hc� is expected, consistent with bond-

operator mean-field theory.24 At the critical interdimer cou-

FIG. 6. �Color online� The zero-temperature uniform magneti-
zation of aligned dimer arrays for different interdimer couplings as
a function of the magnetic field h. Inset �a� focuses on the low-field
region, h /J�1. The scaling mu�h3 at J�=Jc� is demonstrated in
inset �b�.

FIG. 7. �Color online� The zero-temperature staggered trans-
verse magnetization ms

� in coupled aligned dimer arrays as a func-
tion of an applied magnetic field h. Quantum Monte Carlo data of a
16�16�16 system are shown for different values of the interdimer
coupling J�. The intradimer coupling is denoted by J. The off-sets
of ms

� outside the range hc�h�hs are due to finite-size effects.
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pling, J�=Jc�, a linear relation ms
��h is expected. Within

the antiferromagnetically ordered regime, J��Jc�, a finite
staggered magnetization ms

�=ms exists. For small fields,
the order parameter scales with ms

�−ms�h2, as presented in
Ref. 24.

QMC calculations of ms
� for different values of J� /J in a

system with L=16 are shown in Fig. 7. This figure demon-
strates that for J��Jc�, the staggered magnetization is largest
for h= �hc+hs� /2 and decreases upon approaching hc and hs.
In the thermodynamic limit, ms

� vanishes in the fully polar-
ized regime, h�hs, and below hc for weakly coupled dimers.
In contrast to the uniform magnetization, the field depen-
dence of ms

� shows a strong finite-size dependence. Finite-
size effects are most pronounced for magnetic field regimes
outside the partially polarized phase, i.e., for h�hc and h

�hs, where ms
�=0 in the thermodynamic limit. On the finite

systems accessible to QMC, the values of ms
�, defined in

Eq. �2�, do not vanish. However, they scale to zero upon
increasing the system size. In order to extract the scaling
behavior of ms

�, we thus need to perform a careful finite-size
scaling analysis of the numerical data.

Such an analysis can be directly applied in the weak cou-
pling regime, for J��Jc�. Here, the field-induced ordering
transition is known to constitute a Bose-Einstein condensa-
tion of triplons,7 with a dynamical critical exponent z=2,
reflecting the quadratic dispersion relation of these bosonic
excitations. Therefore, the quantum phase transition at the
critical field hc is in the universality class of the classical
five-dimensional O�2� model, and a finite- size scaling analy-
sis similar to the one performed for the zero-field quantum
critical point in Sec. IV A can be applied. Since the classical
theory is now above dc=4, mean-field scaling without loga-

FIG. 8. �Color online� The scaling plot �a� and data collapse
�b� for the zero-temperature staggered transverse magnetization
ms

� of weakly coupled aligned dimers as a function of the applied
magnetic field h for a coupling-ratio of J� /J=0.2. Results from
quantum Monte Carlo simulations are shown for systems sizes of
L=10 to 20.

FIG. 9. �Color online� The extrapolation of finite-size data of
staggered magnetization for different magnetic fields close to the
transition. At hc, the thermodynamic limit is obtained from a
1/L-extrapolation. Higher order polynomials are required away
from criticality. For all data presented here, up to the third order is
used. Dashed lines are for h�hc.

FIG. 10. �Color online� The scaling behavior of the zero-
temperature staggered transverse magnetization as a function of the
applied magnetic field h. Quantum Monte Carlo data are shown
after extrapolation of finite-size data �L=10–20� to the thermody-
namic limit. �a��b� In the dimer spin liquid phase �J��Jc��, �ms

��2

scales linear with h−hc. �c� Near the critical coupling �Jc��, ms
�

scales linear with h−hc. �d� For J��Jc�, ms
�−ms increases quadrati-

cally with h.
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rithmic corrections applies. In particular, at the critical field
hc, one finds

ms
�L � F�L/�� , �7�

where F is a scaling function that depends on the ratio of the
correlation length � and the system size L. In order to deter-
mine hc for a given value of J��Jc, we can thus construct a
scaling plot of ms

�L as a function of h /J. Figure 8 illustrates
an example of such a plot for an interdimer coupling J�
=0.2J. In Fig. 8�a�, data for ms

�L are shown for system sizes
L=10, 14, 18, and 20. The intersection point of the different
finite-size data allows the extraction of the critical field hc
=0.383±0.001 for this value of J�=0.2J.

Once the critical field hc is determined, data collapse of
the finite-size data is verified in the vicinity of hc. Namely,
from the scaling of the correlation length close to the critical
field, �� �h−hc�−�, one obtains

ms
�L � F̃�L1/��h − hc�� , �8�

with a new scaling function F̃ and �=1/2. An example of the
data collapse for J�=0.2J is shown in Fig. 8�b�.

In order to extract the behavior of ms
��h� for h�hc in the

thermodynamic limit, we perform an extrapolation of the
finite-size data ms

��L� as a function of 1/L. An example of
such an extrapolation, again for J� /J=0.2, is shown in Fig. 9
for various values of h. While for h close to hc a linear
scaling in 1/L is obtained, extrapolation away from hc re-
quires the use of higher order polynomials. Using these ex-
trapolated values of ms

��h�, representing the thermodynamic
limit, we then obtained the scaling behavior of ms

��h� shown
for different values of J� /J in Fig. 10.

For weakly coupled dimers with J�=0.07J Fig. 10�a� ex-
hibits a scaling of ms

���h−hc. The scaling exponent 1
2 is

also found for stronger interdimer couplings, as shown in
Fig. 10�b� for J�=0.2J. This square root dependence ms

�

��h−hc is consistent with the analytical results and ex-
pected from the mean-field value �=1/2.

Next, let us consider the scaling of ms
��h� for a critical

interdimer coupling J�=Jc�. In Fig. 10�c�, we show results
from simulations at the critical point J�=0.249. Here, a linear
scaling ms

��h is observed, consistent with the Ginzburg-
Landau calculations.31 Finally, we consider the Néel-ordered
phase �J��Jc��. The results from the extrapolated QMC data
are shown for J�=0.3J in Fig. 10�e�. Increasing the magnetic
field, a nonlinear increase of ms

��h� from its zero-field value

ms is found, which can be fitted well to the analytical pre-
diction, ms

��h�−ms�h2. We thus obtain agreement of the
QMC data with the analytical results based on Ginzburg-
Landau and bond-operator mean-field theory also for the
scaling of the order parameter.

V. SUMMARY

We examined quantum phase transitions in three-
dimensional coupled dimer arrays. The zero-temperature
phase diagrams of these systems feature a low-field dimer
spin liquid phase at weak interdimer couplings, a partially
polarized regime with long-range transverse magnetic order
for intermediate magnetic fields hc�h�hs, and a fully po-
larized phase at high magnetic fields.

The critical exponents associated with quantum phase
transitions between these regimes were extracted using
finite-size scaling analysis of quantum Monte Carlo data.
The numerical values of these exponents compare well with
Ginzburg-Landau calculations and bond-operator mean-field
theory. In particular, for small interdimer coupling, the order
parameter is found to scale as �h−hc�1/2, whereas the uniform
magnetization scales linear in h−hc. Moreover, at the quan-
tum critical point �J� /J�c, we demonstrated linear scaling for
ms

��h. In a recent magnetization study on the TlCuCl3 sys-
tem under hydrostatic pressure,16 a cubic scaling of the uni-
form magnetization mu�h3 at the critical value of the applied
pressure was observed. This is in perfect agreement with
numerical results and analytical predictions based on
Ginzburg-Landau calculations and bond-operator theory.

We found that corrections to mean-field scaling emerge at
the zero-field pressure-induced quantum phase transition in
three-dimensional compounds, such as those studied in Refs.
15 and 16. In particular, we showed that the experimental
data from Ref. 16 can be well fitted to a mean-field scaling
law taking into account logarithmic corrections.
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