Ferro-orbital order in the charge- and cation-ordered manganite YBaMn₂O₆

Anthony J Williams and J Paul Attfield

Centre for Science at Extreme Conditions and School of Chemistry, University of Edinburgh, King's Buildings, Mayfield Road,

Edinburgh, EH9 3JZ, United Kingdom

(Received 27 January 2005; published 18 July 2005)

Powder neutron diffraction reveals a subtle triclinic distortion in the 300 K structure of the Y^{3+}/Ba^{2+} cation-ordered and Mn^{3+}/Mn^{4+} charge-ordered perovskite YBaMn₂O₆(Y_{0.5}Ba_{0.5}MnO₃). The refined structure shows a ferro-orbital ordering (FOO) in which d_z^2 -type orbitals associated with the Jahn-Teller Mn³⁺ states are oriented in a parallel fashion. This ground state has not previously been found in AMnO₃ manganites, although the alternative antiferro-orbital ordering (AFOO) is commonly observed, for example, in the analog TbBaMn₂O₆. Lattice distortions that determine the balance between FOO and AFOO states result from the size mismatch between Y or Tb and Ba, and a high-temperature AFOO to FOO transition is evidenced in TbBaMn₂O₆.

DOI: 10.1103/PhysRevB.72.024436

PACS number(s): 71.45.Lr, 61.66.Fn, 75.47.Lx, 61.12.Ld

I. INTRODUCTION

Manganese oxide perovskites have been the focus of much research over the last decade to understand their physical properties such as colossal magnetoresistance.1 The "cubic" AMnO₃ family $(A = L_{1-x}M_x; L = trivalent lanthanide, M$ =Ca, Sr, Ba) exhibit a very rich phase diagram, with several ground states-principally the itinerant ferromagnetic and insulating charge-ordered antiferromagnetic states. The charge-ordered (CO) ground state is most readily observed in 50% doped (x=0.5) manganites. The first model for the CO phase (in $La_0 Ca_0 MnO_3$) was proposed by Goodenough² after the magnetic structure was determined to be of the complex CE type, with ferromagnetic couplings along zigzag chains.³ "Checkerboard" layers of localized Mn³⁺ and Mn⁴⁺ states are stacked in a ferro- manner (directly above each other) to yield a "striped" CO arrangement. The structures of La_{0.5}Ca_{0.5}MnO₃ (Refs. 4 and 5) and several other half-doped manganites⁶⁻⁹ have subsequently been shown to adopt this arrangement. An alternative CO ground state, in which the same checkerboard layers of Mn3+/Mn4+ stack in an antiferro- (out of phase) sequence to give a "rocksalt" threedimensional charge ordering, has recently been observed in the A-cation-ordered manganite TbBaMn₂O₆ at 300 K.¹⁰

In addition to the charge ordering, symmetry-breaking orbital ordering is also observed in many insulating manganites, as a result of cooperative Jahn-Teller distortions of the high-spin $3d^4$ Mn³⁺ configuration. The coupling of the localized d_z^2 -type Mn³⁺ electron states to the lattice results in elongations of the corresponding Mn-O bonds that may be measured crystallographically. A theoretical model for manganites¹¹ has proposed that both antiferro-orbital-ordered [AFOO, an antiferroelastic phase; see Fig. 1(a)] and ferroorbital-ordered [FOO, a ferroelastic; Fig. 1(b)] ground states are possible. AFOO accompanies both striped CO in La_{0.5}Ca_{0.5}MnO₃ and rocksalt CO in TbBaMn₂O₆, and is also found in undoped LaMnO₃, but the FOO state has not previously been reported in AMnO₃ manganites. Here we show that rocksalt charge ordering is accompanied by a ferroorbital ordering in the 300 K structure of YBaMn₂O₆. A high-temperature AFOO to FOO transition is also evidenced in TbBaMn₂O₆. Magnetic and transport properties, and variable temperature structural studies of YBaMn₂O₆ have been reported previously.^{12,13} A paramagnetic insulating phase was found between the Néel transition at 200 K and a chargeordering transition at T_{CO} =480 K.

II. EXPERIMENT

An 8 g sample of polycrystalline YBaMn₂O₆ was prepared via the reduced intermediate YBaMn₂O₅.^{14,15} This was prepared by sintering pellets of Y₂O₃, Mn₂O₃ and BaCO₃ under flowing argon at 1400 °C for 24 h, and was then oxidized to YBaMn₂O₆ by annealing in an O₂ flow at 300 °C for multiple periods of 12 h until there was no further gain in sample mass. The YBaMn₂O₆ sample was found to contain ~1% of a secondary phase, tentatively assigned as BaMnO_{3-x}. High-resolution time-of-flight powder neutron diffraction data were collected on the HRPD instrument at the ISIS spallation neutron facility, U.K. Profiles from the backscattering (2 θ =168°) and the 2 θ =90° detector banks were Rietveld analyzed simultaneously using the general structure analysis system (GSAS) program.¹⁶

III. STRUCTURE ANALYSIS AND DISCUSSION

The 300 K powder neutron diffraction pattern of YBaMn₂O₆ is similar to that of CO and AFOO TbBaMn₂O₆.¹⁰ However, the (h k/2 l) superstructure peaks that signify the AFOO in TbBaMn₂O₆ are absent in the profile of YBaMn₂O₆ at 300 K (Fig. 2), and at temperatures down to 4 K. CO distortions in these A-cation-ordered manganites lower the space group symmetry from tetragonal P4/mmm for the aristotype LaBaMn₂O₆-type structure to monoclinic $P2_1/m$. This model gives a fairly good fit to the 300 K data (goodness of fit χ^2 =15.54, weighted residual R_{wp} =7.87% for eight symmetry-independent atoms, 18 refined variable coordinates) with refined lattice parameters a = 5.519 07(1), b = 5.5133(1), c = 7.6020(1)Å and $\beta = 90.267(1)^\circ$. The structure contains two distinct Mn sites

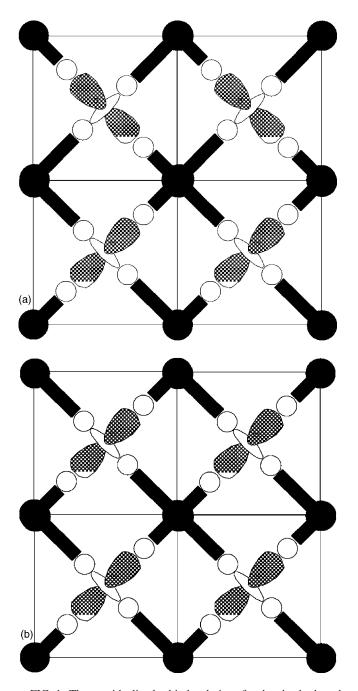


FIG. 1. The two idealized orbital orderings for the checkerboard charge-ordered layers of 50% doped manganites [Mn³⁺ shown as d_z^2 -type orbitals; Mn⁴⁺ (oxygen) as filled (open) circles]: (a) antiferro-orbital order (AFOO); (b) ferro-orbital order (FOO). The consequent distortions around Mn⁴⁺ are shown.

corresponding to the rocksalt CO arrangement of Mn³⁺- and Mn⁴⁺-like states observed in TbBaMn₂O₆. Close inspection of the fit of the $P2_1/m$ model to the neutron data revealed additional broadenings of some reflections, for example (220) (Fig. 3). These partly resolved splittings evidence a further, subtle lowering of symmetry, from monoclinic to triclinic. This was confirmed by comparing Le Bail fits, in which no structural model is assumed, to the entire profile; χ^2 fell significantly from 14.61 for the $P2_1/m$ symmetry fit to 11.72 for triclinic $P\overline{1}$ symmetry.

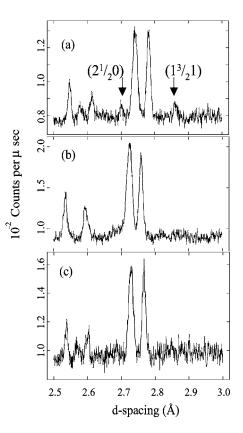


FIG. 2. Part of the 90° bank HRPD neutron powder diffraction profiles; the labeled reflections that evidence the $(0\frac{1}{2}0)$ AFOO superstructure of TbBaMn₂O₆ at 300 K in (a) are absent for YBaMn₂O₆ at 300 K (b), and for TbBaMn₂O₆ at 373 K (c).

Refinement of the YBaMn₂O₆ structure in space group P1 gave the atom positions in Table I with cell parameters a $=5.51974(8), b=5.51379(8), c=7.60319(10)\text{\AA}, \text{ and } \alpha$ =90.017(2)°, β =90.280(1)°, and γ =90.106(1)°.¹⁷ The relatively large departure of γ from 90° accounts for the prominent broadening of (hk0) peaks such as (220) in Fig. 3. Refinement of the Y/Ba fractional occupancies showed no antisite disorder to within 2%, and no oxygen deficiency was evidenced. The derived Mn-O distances (Table II) show that the MnO₆ octahedra in the structure of YBaMn₂O₆ (Fig. 4) are highly distorted, in part by the strains that result from the size difference between the A cations (the mean Ba-O and Y-O distances are 2.84 and 2.65 Å, respectively). The difference between the mean Mn-O distances within the two octahedra confirms that CO is present. The bond valence sums (BVS)¹⁸ for the Mn1 and Mn2 sites are, respectively, 3.36 and 3.81. We thus refer to the sites as being Mn³⁺ and Mn⁴⁺ hereafter, but we note that the apparent charges do not fully correspond to the ideal values. The apparent charge separation of 45% of the ideal value (=1) lies within the normal range of 20-65 % found in charge-ordered manganites and other transition metal oxides.19-23

The reduction in structurally observed charge separation is generic for symmetry-broken, charge-ordered transition metal oxides. The origin of this phenomenom remains unclear. However, it is apparent that the transition metal cations are adopting one of two electronic states rather than arbitrary

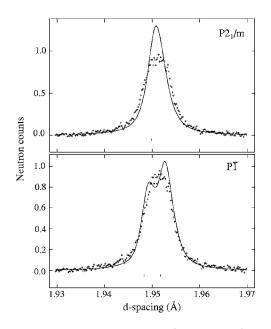


FIG. 3. Excerpts from the Rietveld (whole profile) fits to the time-of-flight powder neutron diffraction data for YBaMn₂O₆ at 300 K showing the (220) peak. The monoclinic $P2_1/m$ symmetry model (upper panel) predicts only a single Bragg reflection and gives a poor fit, whereas the triclinic $P\overline{1}$ model (lower panel) that describes the FOO distortions gives partially resolved (220) and (220) components that fit the peak width correctly.

nonintegral values, which could vary continuously over some range as found in classic charge-density wave materials. This is most strongly evidenced in NaV_2O_5 ,²¹ in which the local structure around eight independent V sites was analyzed. Four of the V sites BVS's cluster around one value (4.2; the V⁴⁺ state) and the other four cluster around 4.8 (V⁵⁺).

TABLE I. Refined atomic parameters for the triclinic $P\overline{I}$ YBaMn₂O₆ superstructure at 300 K (χ^2 =10.44, R_{wp} =6.44% for ten atoms, 30 variable coordinates). The labeling of oxygen sites shows the four unique sites in the higher-symmetry $P2_1/m$ structure. Isotropic thermal parameters U_{iso} for the Mn sites, and for the split O1 and O4 sites, were constrained to be equal.

Atom	x	у	Z	$U_{\rm iso}$ (Å ²)
Y	0.7546(9)	0.2455(9)	0.5061(8)	0.0271(6)
Ba	0.7557(10)	0.2439(11)	-0.0086(9)	0.0131(8)
Mn1	0.2430(8)	0.2465(14)	0.2579(9)	0.0084(4)
Mn2	0.2518(8)	0.2617(14)	-0.2528(9)	0.0084(4)
O1(a)	0.4828(7)	0.5012(10)	0.2950(6)	0.0284(8)
O1(b)	0.5195(9)	0.0147(10)	0.2529(6)	0.0284(8)
O2	0.2556(8)	0.2776(9)	-0.0047(9)	0.0148(9)
O3	0.1981(8)	0.2026(10)	0.5042(6)	0.0263(9)
O4(a)	0.0222(7)	-0.0348(9)	0.2649(5)	0.0219(8)
O4(b)	-0.0314(8)	0.4881(8)	0.2940(6)	0.0219(8)

TABLE II. Mn-O distances (Å) for the two octahedra in YBaMn₂O₆. Values for *trans* pairs of bonds are shown side by side, below the mean value for each octahedron.

⟨M	n1-O>	1.9	077(8)	
O1(a)	1.947(8)	O4(a)	1.971(8)	
O1(b)	1.993(9)	O4(b)	2.039(8)	
O2	2.005(9)	O3	1.906(8)	
$\langle Mn2-O \rangle$		1.931(8)		
O1(a)	1.989(7)	O4(a)	1.963(7)	
O1(b)	1.981(9)	O4(b)	1.866(9)	
O2	1.889(9)	O3	1.898(8)	

Although the MnO₆ octahedra in the monoclinic $P2_1/m$ description of the YBaMn₂O₆ structure are irregular, neither one has locally centric distortions of E_g -mode symmetry that would signify orbital ordering. The distortion from monoclinic to triclinic $P\overline{1}$ symmetry breaks the equivalence of the O1(a) and O1(b) sites, and of O4(a) and O4(b) (Table I). The consequence of this is seen in the Mn-O distances (Table II) derived from the freely refined atom coordinates. A further distortion, of E_{ρ} symmetry, is observed around Mn³⁺ as the O1(b)-Mn1-O4(b) trans pair of distances are longer, by 0.05 and 0.07 Å, than those in the O1(a)-Mn1-O4(a) trans pair. The elongated bonds are all approximately parallel to the [110] direction (Fig. 4), corresponding to a ferro-orbital ordering at the Mn^{3+} sites. The Mn^{3+} FOO results in E_g symmetry distortions at the Mn⁴⁺ sites, as shown in Fig. 1(b), whereas the more common AFOO results in acentric distortions at Mn⁴⁺ [Fig. 1(a)], as observed, e.g., in Pr_{0.5}Ca_{0.5}MnO₃.⁹ The octahedral distortions (Table II) in the triclinic YBaMn₂O₆ structure are thus a superposition of the mainly acentric distortions that result from Y/Ba cation order, breathing-type centric distortions from Mn³⁺/Mn⁴⁺ charge order, and the centric E_g modes that result from ferro-

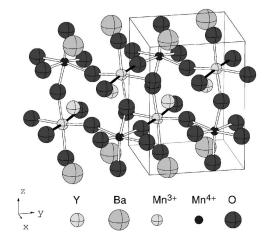


FIG. 4. The 300 K triclinically distorted perovskite structure of YBa Mn_2O_6 showing order of Y/Ba cations, Mn^{3+}/Mn^{4+} charge states, and Mn^{3+} orbital distortions (elongated Mn-O bonds are shaded black). The ferro-orbital ordering does not double the *y*-axis periodicity, whereas this is doubled in the antiferro-orbitally ordered analog TbBa Mn_2O_6 .

orbital ordering. FOO has not been reported in other AMnO₃ type manganites, although AFOO is common. This may be in part because FOO states are difficult to detect as they give rise only to (000) (Γ -point) distortions. Our discovery of a subtle triclinic distortion in the 300 K structure of YBaMn₂O₆ is consistent with an electron microscopy study that showed extensive microtwinning.¹³ Additional weak $(\frac{1}{2}, \frac{1}{2})$ superstructure was seen in some images, which may evidence more complex local charge and orbital orderings, but this superstructure is not seen in our neutron data.

The 300 K structures of YBaMn₂O₆ and TbBaMn₂O₆ are both triclinically distorted variants of the parent, chargeordered $P2_1/m$ arrangement. YBaMn₂O₆ has FOO and no enlarged superstructure, whereas TbBaMn₂O₆ has an additional $(0\frac{1}{2}0)$ propagation vector, and a partially constrained refinement of the atomic positions showed that AFOO is present.¹⁰ Although the ferrodistortive strain associated with the formation of a FOO state in a high-symmetry parent structure is greater than that required to form an AFOO state,¹¹ these results show that the two states are of comparable stability in the inherently distorted RBaMn₂O₆ perovskites. The slightly greater disparity in size between R^{3+} and Ba^{2+} for R=Y compared to R=Tb changes the ground state from AFOO in the latter material to FOO in the former. The comparable stability of the two states is corroborated by a high-temperature neutron diffraction experiment (full results of which will be reported elsewhere). The CO and FOO distortions in YBaMn₂O₆ persist up to a simultaneous chargeand ferro-orbital-ordering transition at $T_{\rm CO} = T_{\rm FOO} = 498$ K. However, TbBaMn₂O₆ shows two transitions. The superstructure peaks that characterize the $(0\frac{1}{2}0)$ AFOO distortion

- ¹Colossal Magnetoresistance, Charge Ordering and Related Properties of Manganese Oxides, edited by eds. C. N. R. Rao and B. Raveau (World Scientific, Singapore, 1998); Colossal Magnetoresistive Oxides, edited by Y. Tokura (Gordon and Breach Science, New York, 2000).
- ²J. B. Goodenough, Phys. Rev. **100**, 564 (1955).
- ³E. O. Wollan and W. C. Koehler, Phys. Rev. **100**, 545 (1955).
- ⁴P. G. Radaelli, D. E. Cox, M. Marezio, and S.-W. Cheong, Phys. Rev. B 55, 3015 (1997).
- ⁵P. G. Radaelli, D. E. Cox, M. Marezio, S.-W. Cheong, P. E. Schiffer, and A. P. Ramirez, Phys. Rev. Lett. **75**, 4488 (1995).
- ⁶P. M. Woodward, D. E. Cox, T. Vogt, C. N. R. Rao, and A. K. Cheetham, Chem. Mater. **11**, 3528 (1999).
- ⁷J. Blasco, J. Garcia, J. M. de Teresa, M. R. Ibarra, J. Perez, P. A. Algarabel, C. Marquina, and C. Ritter, J. Phys.: Condens. Matter **9**, 10321 (1997).
- ⁸O. Richard, W. Schuddinck, G. Van Tenderloo, F. Millange, M. Hervieu, V. Caigneart, and B. Raveau, Acta Crystallogr., Sect. A: Found. Crystallogr. 55, 704 (1999).
- ⁹R. J. Goff and J. P. Attfield, Phys. Rev. B 70, 140404(R) (2004).
- ¹⁰A. J. Williams and J. P. Attfield, Phys. Rev. B 66, 220405(R) (2002).
- ¹¹D. I. Khomskii and K. I. Kugel, Phys. Rev. B 67, 134401 (2003).
- ¹²T. Nakajima, H. Kageyama, and Y. Ueda, J. Phys. Chem. Solids

disappear at ~ 370 K [see Fig. 2(c)] evidencing a transition from AFOO to a FOO structure (like that of YBaMn₂O₆), and the CO and FOO melt at 473 K.

Comparison of these manganites to other CO perovskite oxides shows that high $T_{\rm CO}$'s are found when the structure is highly distorted from the ideal cubic structure. Nickelate perovskites²⁴ such as YNiO₃ are distorted through having small *A*-site cations and have $T_{\rm CO}$ up to 582 K. (Bi, Sr)MnO₃ manganites, which have local off-center distortions due to the bismuth nonbonding electron pair, are charge ordered up to 475 K.^{25,26} In *R*BaMn₂O₆ (*R*=Tb,Y) phases, internal distortions caused by the size mismatch of R^{3+} and Ba²⁺ cations lead to $T_{\rm CO}$'s up to 498 K, accompanied by FOO or AFOO.

In conclusion, we note that the remarkable interplay between the spin, charge, and orbital degrees of freedom in $AMnO_3$ manganites enables all of the ferro- and antiferroordered ground states to be observed by tuning the A-cation composition and ordering. Ferromagnetic (e.g., in $La_{0.7}Sr_{0.3}MnO_3$) or antiferromagnetic (in LaMnO_3) spin orderings are found; charge orderings can be ferrocheckerboard (striped, in $La_{0.5}Ca_{0.5}MnO_3$) or antiferrocheckerboard (rocksalt, in $Tb_{0.5}Ba_{0.5}MnO_3$); and now both ferro-orbital (in $Y_{0.5}Ba_{0.5}MnO_3$) and antiferro-orbital (in $Tb_{0.5}Ba_{0.5}MnO_3$) ordered states have been characterized.

ACKNOWLEDGMENTS

We thank EPSRC for the provision of neutron beam time, and Dr. R. Ibberson (ISIS) for his assistance with data collection. A.J.W. acknowledges EPSRC and the Rutherford Appleton Laboratory for support.

63, 913 (2002).

- ¹³T. Nakajima, H. Kageyama, M. Ichihara, K. Ohoyama, H. Yoshizawa, and Y. Ueda, J. Solid State Chem. **177**, 987 (2004).
- ¹⁴J. P. Chapman, J. P. Attfield, M. Molgg, C. M. Friend, and T. P. Beales, Angew. Chem. **35**, 2482 (1996).
- ¹⁵F. Millange, E. Suard, V. Caignaert and B. Raveau, Mater. Res. Bull. **34**, 109 (1999).
- ¹⁶A. C. Larson and R. B. Von Dreele, Los Alamos National Laboratory Report No. LAUR 86-748, 1994 (unpublished).
- ¹⁷This distortion was not resolved in a constant-wavelength neutron diffraction study of YBaMn₂O₆ in Ref. 13. The reported monoclinic *P2* symmetry model gives a significantly poorer fit to our data (residuals χ^2 =13.04, R_{wp} =7.15% for 14 atoms, 25 variable coordinates).
- ¹⁸This estimation of the formal cation charge uses the method and parameters in N. E. Brese and M. O'Keeffe, Acta Crystallogr., Sect. B: Struct. Sci. **47**, 912 (1991).
- ¹⁹P. Karen, P. Woodward, J. Linden, T. Vogt, A. Struder, and P. Fischer, Phys. Rev. B 64, 214405 (2001).
- ²⁰The highest value found for Mn³⁺/Mn⁴⁺ order is 62% in (Na_{0.25}Mn_{0.75})MnO₃; A. Prodi *et al.*, Nat. Mater. **3**, 48 (2004).
- ²¹H. Sawa, E. Ninomiya, T. Ohama, H. Nakao, K. Ohwada, Y. Murakami, Y. Fujii, Y. Noda, M. Isobe, and Y. Ueda, J. Phys. Soc. Jpn. **71**, 385 (2002).

- ²²J. Rodriguez-Carvajal, G. Rousse, C. Masquelier, and M. Hervieu, Phys. Rev. Lett. 81, 4660 (1998).
- ²³ T. Vogt, P. M. Woodward, P. Karen, B. A. Hunter, P. Henning, and A. R. Moodenbaugh, Phys. Rev. Lett. **84**, 2969 (2000).
- ²⁴J. A. Alonso, J. L. Garcia-Munoz, M. T. Fernandez-Diaz, M. A. G. Aranda, M. J. Martinez-Lope, and M. T. Casais, Phys. Rev. Lett. **82**, 3871 (1999).
- ²⁵C. Frontera, J. L. Garcia-Munoz, A. Llobet, M. A. G. Aranda, C. Ritter, M. Respaud, and J. Vanacken, J. Phys.: Condens. Matter 13, 1071 (2001).
- ²⁶J. L. Garcia-Munoz, C. Frontera, A. Llobet, M. A. G. Aranda, C. Ritter, M. Respaud, and J. Vanacken, Phys. Rev. B **63**, 064415 (2001).