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We consider an XXZ spin-1 /2 chain coupled to optical phonons with nonzero frequency �0. In the adiabatic
limit �small �0�, the chain is expected to spontaneously dimerize and open a spin gap, while the phonons
become static. In the antiadiabatic limit �large �0�, phonons are expected to give rise to frustration, so that
dimerization and formation of spin gap are obtained only when the spin-phonon interaction is large enough. We
study this crossover using bosonization technique. The effective action is solved both by the self-consistent
harmonic approximation �SCHA� and by renormalization group �RG� approach starting from a bosonized
description. The SCHA allows to analyze the low-frequency regime and determine the coupling constant
associated with the spin-Peierls transition. However, it fails to describe the SU�2� invariant limit. This limit is
tackled by the RG. Three regimes are found. For �0��s, where �s is the gap in the static limit �0→0, the
system is in the adiabatic regime, and the gap remains of order �s. For �0��s, the system enters the
antiadiabatic regime, and the gap decreases rapidly as �0 increases. Finally, for �0��BKT, where �BKT is an
increasing function of the spin-phonon coupling, the spin gap vanishes via a Berezinskii-Kosterlitz-Thouless
transition. Our results are discussed in relation with numerical and experimental studies of spin-Peierls
systems.

DOI: 10.1103/PhysRevB.72.024434 PACS number�s�: 75.10.Pq, 71.10.Pm, 63.70.�h, 05.10.Cc

I. INTRODUCTION

The properties of the spin-Peierls �SP� state in quasi-one-
dimensional materials has attracted considerable attention
over the last decades since its discovery in the organic com-
pounds of the TTF and TCNQ series,1–3 and more recently in
the inorganic compound CuGeO3.4,5 In analogy to the Peierls
instability in quasi-one-dimensional metals,6 a spin chain un-
dergoes a SP transition by dimerizing into an alternating pat-
tern of weak and strong bonds,7–9 with the magnetic energy
gain compensating the energy loss from the lattice deforma-
tion. Although this physical picture gives a good qualitative
understanding of the SP phenomenon, the real SP transition
is in fact much more complicated to describe. In particular,
the above picture of SP transition is only valid in the adia-
batic regime, in which the frequency of the phonons is neg-
ligible compared to the magnetic energy scales in the system,
such as the spin gap or the exchange interaction J. The va-
lidity of this approximation is clearly dependent on the sys-
tem at hand. Recently, it was pointed out that the difference
between CuGeO3 and the other SP compounds consists in the
high energy of the optical phonons involved in the transition,
which is of the order of the exchange integral J.10–12 Another
feature that distinguishes CuGeO3 from the other organic SP
compounds is that no softening of the phonon modes is ob-
served near the transition. All these findings stem from the
fact that an adiabatic treatment of the phonon subsystem8,9 is
inadequate to describe the SP transition in CuGeO3, and an
appropriate treatment of phonons in the antiadiabatic regime
is required.13,14

Unfortunately, not many analytical methods to study the
system of coupled spin and phonons in the full frequency
range are available. The main difficulty relies in the fact that
when the phonon frequency becomes comparable to the en-
ergy gap in the spin-excitation spectrum, one is entering a
quantum regime in which quantum fluctuations completely
impregnate the ground state. This is why many of the known
studies involving dynamical phonons rely on numerical
methods such as exact diagonalization �ED�,15–18 strong cou-
pling expansions,19 density matrix renormalization
group20–23 �DMRG�, or quantum Monte Carlo
simulations.24–28 From the analytical point of view, various
approaches have been developed, but they work well either
in adiabatic or in the antiadiabatic regime. In the former case,
most approaches are based on the mean-field
approximation.9,29,30 In the latter case, various perturbation
studies were performed to derive an effective spin
Hamiltonian.31,32 Another approach was developed, based on
integrating out the phonon modes,33 in order to map the
model onto the Gross-Neveu model,34 for which various ex-
act results are available.35,36 Other approaches are based on
the flow-equation method13 that works well in the antiadia-
batic regime, or on the unitary transformation method for the
XY spin chain.37 Since various compounds are rather close to
the border between the two regimes,12 it would be thus
highly desirable to have a good method to tackle the
adiabatic-antiadiabatic crossover. In this paper we provide
such a method. We combine the renormalization group �RG�
method and the self-consistent harmonic approximation
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�SCHA� to study the adiabatic-antiadiabatic crossover in a
spin-1 /2 Heisenberg chain coupled to dynamical phonons. A
previous attempt to use the RG to study this adiabatic-
antiadiabatic crossover has been published.38 We will com-
ment on the differences of the two approaches.

The plan of the paper is as follows. In Sec. II we intro-
duce the model of spin chain coupled to dynamical phonons,
and write it in the continuum limit using the bosonization
representation. In Sec. III we describe a variational approach,
inspired from the self-consistent harmonic approximation,
and use it to describe the crossover. In the adiabatic regime
we find an expression for the spin-Peierls gap consistent with
the mean-field treatment of Cross and Fisher.9 In the antia-
diabatic regime, the gap is essentially described by a sine-
Gordon model. In Sec. IV we study the crossover using a
renormalization group method. The RG is specially well
adapted around the Heisenberg isotropic point. This allows
one to extract the phase diagram as a function of the strength
of the electron-phonon coupling and the phonon frequency.
In Sec. V we discuss the findings of the two methods, both
relative to each other and in connection with experiments.
Conclusions can be found in Sec. VI, and some technical
details have been put in the appendices.

II. MODEL AND CONTINUUM LIMIT

As a simple model which describes a SP system in the
following we consider an antiferromagnetic spin-1 /2 chain
coupled to a set of Einstein oscillators, given by

H = Hs + Hp + Hsp, �1�

with

Hs = J�
n

Sn · Sn+1, �2�

Hp = �
n
� pn

2

2m
+

m

2
�0

2qn
2� , �3�

where Sn are spin-1 /2 operators, J�0, �qn , pn��= i�n,n�. The
quantity m�0

2=ke is the stiffness of the Einstein phonon. The
interaction of spins with phonons can be modeled by

Hsp = g�
n

qnSn · Sn+1. �4�

The coupling to optical phonons described by �4� is adequate
for the CuGeO3 since it would correspond to a side group
effect by Germanium atoms as discussed in Refs. 39 and 40.
Acoustic phonons could of course be treated in a very similar
way, but one would have to replace qn with �qn+1−qn�. Note
that some authors13,18 prefer to diagonalize the phonon
Hamiltonian in �2� using the boson operator b=�m�0 /2q
+ ip /�2m�0, and write the interaction g̃�n�bn

†+bn�Sn ·Sn+1. It
is obvious that one has g̃=g /�2m�0. This remark will be
useful when we will compare the results of the different ap-
proaches. The adiabatic limit is �0→0, m→� with ke fixed.
In that limit, the phonons become classical, i.e., the qn’s
commute with the Hamiltonian �1�, and one can simply mini-

mize the ground state energy with respect to their expecta-
tion value. In that limit, the results of Ref. 9 are recovered.
The opposite antiadiabatic limit is �0→�. In that limit, one
can integrate out the phonons, and one is left with the Hamil-
tonian of a frustrated spin-1 /2 chain.31 For a frustration large
enough,41–43 i.e., for large enough spin-phonon coupling, a
spontaneous dimerization of the spins takes place, and the
system presents a spin gap. Our purpose is to provide a uni-
fied treatment of these two limits.

To solve the spin-phonon problem, we use first the well-
known Jordan-Wigner transformation to express the spin op-
erators in terms of spinless fermions. Thus, the Hamiltonian
Hs becomes

Hf = − t�
n

�cn+1
† cn + H.c.� + V�

n
	cn+1

† cn+1 −
1

2

	cn

†cn −
1

2

 ,

�5�

with t=J /2 and V=J. The spin-phonon Hamiltonian Hsp is
transformed into

Hfp = g�
n

qn�1

2
�cn+1

† cn + cn
†cn+1�

+ 	cn+1
† cn+1 −

1

2

	cn

†cn −
1

2

� . �6�

We now proceed in the standard way to take the continuum
limit �see, e.g., Ref. 44, Chap. 6�. In the continuous approxi-
mation, �6� generates a coupling between the lattice defor-
mation �phonon mode� and the q=2kF=� component of the
charge density, 	�2kF ,x�.

In order to get a continuous description we separate fast
and slow components of the phonon field and similarly for
the fermion fields, and we get the interaction45

Hfp = i� dx�q�x�	�2kF,x� − H.c.� . �7�

We now use the boson representation of one dimensional
fermion operators. In this representation the Hamiltonian Hf
becomes

Hf =
1

2�
� dx uK��
�x��2 +

u

K
����x��2, �8�

where the field ��x� is related to the density of fermions44

and ���x� ,
�x���= i��x−x��. We have u= �� /2�J�, with �
the lattice spacing, K=1/2, qn=q�x=n�� and we have kept
only the most relevant terms. Changing the parameter K al-
lows one to explore the more general case of XXZ spin
chains with an easy plane anisotropy.44 The long-wavelength
part of the fermion density is 	q�0�x�=−�1/�����x�,
whereas the higher Fourier components are46–48

	2kF
�x� =

3

�2�
	�

2

1/4

cos�2��x�� , �9�

where we have specialized to an isotropic spin chain. The
prefactor in Eq. �9� has been shown in Ref. 48 to yield a
good agreement of the gap calculated within bosonization
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and numerical calculations.49 The Matsubara action for the
phonon field has a standard quadratic form

Sp =
	

2
� dx�

0



d�����q�2 + �0
2q2� , �10�

where 	=m /� is the mass density of the optical phonon
mode, and q�x=n��=qn is the lattice deformation field. In
the first approximation �2�, we have neglected the fact that
the phonon disperses. It can be shown that the dispersion
along the chain leads to insignificant corrections. On the con-
trary, if the phonons are three-dimensional; i.e., if � dis-
perses with the transverse momentum, then significant
changes can occur. Indeed in that case, since the phonon are
three-dimensional they couple the different spin chains and
can induce a three-dimensional transition at low tempera-
tures. We will come back to the case of three-dimensional
phonons in Sec. V.

Since the total action is quadratic in the phonon fields, we
can integrate them out to obtain the following bosonized
action with a retarded interaction between the electronic den-
sities:

S =� dx�
0

 d�

2�K
�u��x��2 +

1

u
�����2�

−
g2

2����2	�0
2 � dx�

0



d��
0



d�� cos 2��x,��

�D�0,�� − ���cos 2��x,��� , �11�

where D�0,��� is the propagator of an Einstein phonon of
frequency �0 corresponding to the action �10�:

D�0,�� − ��� = q���q�����

=
�0

2
�e−�0��−��� +

2 cosh��0�� − ����
e�0 − 1

� .

�12�

The action �11� fully describes a one-dimensional spin chain
coupled to phonons, and does not rely on adiabatic or antia-
diabatic limit. However, one has to note that because of the
cutoff, the action �11� is valid only for �0�u /�. For higher
values of the phonon frequency �0, the phonon propagator
�12� must be replaced with ���−���. In that case the action
�11� is simply the continuum action of a frustrated spin
chain,41 in agreement with the canonical transformation
approach.13,31.

The action �11� is of course impossible to solve exactly. In
order to obtain the physical properties of the system, we will
analyze it using two different techniques in the next sections.
The first technique is a self-consistent approximation. Such
an approximation will be very useful to define the various
phases of the system as well as the relevant parameters. As
any variational approximation, although it can be very effi-
cient in describing the various phases, it can only describe
the transitions between these phases approximately. There-
fore, in order to study the critical points we use a renormal-
ization group method, building on the knowledge of the rel-
evant parameters extracted from the SCHA.

III. SELF-CONSISTENT HARMONIC APPROXIMATION

To study the action �11�, we apply first the self- consistent
harmonic approximation or Gaussian variational
method.50–53 The idea is that the action �11� would be clas-
sically minimized by �=0. One can thus expect that the
physics will be dominated by small deviations around this
minimum and approximate the action �11� by a quadratic
action. We thus consider as a trial action

S0 =
1

2�
�
q,�

G−1�q,�n��*�q,�n���q,�n� . �13�

We have to find the propagator G�q ,�n� so that �13� is the
best approximation for �11�. For that we define the varia-
tional free energy

Fvar = F0 + S − S0�0, �14�

where

F0 = −
1

L
ln Z0 = −

1


�
q,�n

ln G��n� , �15�

Z0 =� D�e−S0���, �16�

and ¯�0 represents an average with respect to the action S0.
The second term in the action �11� can be rewritten as

−
g2

2����2	�0
2 � dx�

0



d��
0



d��D�0,�� − ���

��cos�2��x,�� + 2��x,���� + cos�2��x,�� − 2��x,����� .

�17�

Given that the phonon propagator �12� decays for a large
time difference ��−���, one can see from �17� that the cosine
of the sum is roughly equivalent to �cos�4��x ,��� and can
be responsible for the opening of a gap in the spectrum,
while the cosine of the difference is ���−���2�����x ,���2

and thus will modify the quadratic part of the action.
In the following, we consider the gapless ��=0� and the

gapful ���0� case separately, at zero temperature. The gap-
less case is interesting in connection with systems of elec-
trons at an incommensurate filling interacting with
phonons.54–56 In these systems, the term cos�2��x ,��
+2��x ,���� does not appear in �17�, leading to �=0. The
spin-Peierls problem corresponds to the half-filling case for
the fermions.

A. Incommensurate case

Using �13�, the variational free energy is given by

Fvar =
1

2
� dq

2�
� d�

2�
��G0

−1�q,�� − G−1�q,���G�q,��

− ln G�q,��� −
g2

2����2	�0
2�

−�

�

d�
�0

2
e−�0���

�cos�2��0,�� − ��0,0��� , �18�
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where G0
−1�q ,��= �1/�K��uq2+�2 /u� and we used �12� for

=�. Introducing the propagator for the field �, G�x ,��
= ��x ,����0,0��, we can rewrite

cos 2��0,��cos 2��0,0��

=
1

2
exp�− 4� dq

2�
� d�

2�
G�q,���1 − cos������ .

�19�

Using this expression, we obtain

Fvar =
1

2
� dq

2�
� d�

2�
�G0

−1�q,��G�q,�� − ln G�q,���

−
g2

4����2	�0
2�

−�

�

d�
�0

2
e−�0���

�exp�− 4� dq

2�
� d�

2�
G�q,���1 − cos������ .

�20�

Minimizing the action �20� with respect to G�q ,�� and using
the fact that G−1�q ,��=G0

−1�q ,��−��q ,��, where � is the
self-energy, we get

�Fvar

�G�q,��
= 0 =

1

2
� dq

2�
� d�

2�
���q,�� +

g2

����2	�0
2

��
−�

�

d�
�0

2
e−�0����1 − cos�����exp�− 4� dq

2�

�� d�

2�
G�q,���1 − cos������� . �21�

As is obvious from the above equation, the low-frequency
behavior of G−1�q ,��=G0

−1�q ,�� is similar to the one of
G0

−1�q ,��, and corresponds to a variational action of the form

S0 =� dx�
0

 d�

2�K̄
�ū��x��2 +

1

ū
�����2�; �22�

thus, G−1�q ,��= �1/�K��ūq2+�2 / ū�. In the equation above
we thus have

� dq

2�
� d�

2�
G�q,���1 − cos�����

= �K̄� dq

2�
� d�

2�

�1 − cos�����
�ūq2 + �2/ū�

=
K̄

2
ln��c�� , �23�

where �c=u /�, is a frequency cutoff. Using �23� we can
write our variational equation as

��q,�� +
g2

����2	�0
2�

−�

�

d
��0��

2
e−�0��� �1 − cos�����

��c��2K̄
= 0.

�24�

If we confine to an expansion up to order �2 in �1
−cos�����, as requested by the analytical behavior of the
Green’s function for �→0, we obtain

��q,�� = −
g2

����2	�0
2�

−�

�

d
��0��

2
e−�0��� �2�2

��c��2K̄

= −
g2

����2	�0
2	�0

�c

2K̄��3 − 2K�

�0
2 �2, �25�

where � is the gamma function. As we see the integral is
convergent when K�3/2. Going back to the definition of the
self-energy, we have

��q,�� = �G0
−1 − G−1��q,�� = 	 1

2�uK
−

1

2�ūK̄

�2.

�26�

Equating �25� with �26�, and using the fact that u /K= ū / K̄,
we obtain the following value of the parameter K:

K2 = K̄2�1 +
2Kg2

�u	�0
2	 u

��0

2−2K̄

��3 − 2K�� . �27�

Expanding around K, we obtain the renormalized value of K̄:

K̄2 � K2�1 −
2Kg2

�u	�0
2	 u

��0

2−2K

��3 − 2K�� . �28�

One thus recovers a Luttinger liquid but with a renormalized
value of the Luttinger parameter K. Equation �28� implies

that K̄�K. A similar result can be obtained via the renormal-
ization group analysis �see the next section�. In a RG analy-
sis, the result �28� would correspond to integrating the RG
equation for the coupling constant g, assuming that K is not
renormalized and then computing the lowest-order correction
to K with the renormalized coupling constant. Our method
thus reproduces in a crude way the renormalization of K
downwards. As in Refs. 55–57, we find that the tendency of
the system to form charge density waves is increased.

B. Commensurate case

In the commensurate case the derivation of the variational
free energy from �14�–�21� remains the same. Let us rewrite
�20� in slightly different way:

Fvar =
1

2
� dq

2�
� d�

2�
�G0

−1�q,��G�q,�� − ln G�q,���

−
g2

4����2	�0
2�

−�

�

d�
�0

2
e−�0����1

2
exp�− 4� dq

2�

�� d�

2�
G�q,���1 − cos������

+
1

2
exp�− 4� dq

2�
� d�

2�
G�q,���1 + cos������� .

�29�

Minimizing this action with respect to G�q ,��, we obtain the
following expression for the self-energy:
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��q,�� = −
g2

����2	�0
2�

−�

�

d�
�0

2
e−�0�����1 − cos�����

�exp�− 4� dq

2�
� d�

2�
G�q,���1 − cos������

+ �1 + cos�����

�exp�− 4� dq

2�
� d�

2�
G�q,���1 + cos������� .

�30�

As is obvious from Eq. �30�, ��q ,�� is in fact independent
of q. Moreover, we can use the following expansion for the
self-energy:

��q,�� = −
1

�ūK̄
��2 + ��2� . �31�

In Eq. �31�, the variational parameter � stands for the gap
caused by the commensurability, and the variational param-
eter � stands for the renormalization of the bare Luttinger
exponent K. Such a restricted ansatz is justified by the fact
that higher powers of � in ���� are associated with irrel-
evant operators in the action, whereas � and � correspond,
respectively, to a relevant and a marginal operator. Keeping
only � amounts to neglect any renormalization of K by the
spin-phonon interaction.

The self-energy �31� leads to a Green’s function G�q ,��:

G�q,�� =
�K̄

ūq2 + �2/ū + ū�2 , �32�

where � is the mass term. The integral of the Green’s func-
tion is:

� dq

2�
� d�

2�
G�q,��ei�� =

K̄

2
K0��ū�� , �33�

where K0 is the Bessel function. The corresponding varia-
tional action is

S0 =� dx�
0

 d�

2�K̄
�ū��x��2 +

1

ū
�����2 +

ū

�2�2� , �34�

where u /�=� is the gap and u /K= ū / K̄ as no term ��x��2 is
generated from �17�.

Equating the coefficient of �31� with that coming from the
expansion for small � of �30�, we obtain the following two
equations:

ū�2

�K̄
=

2g2

����2	�0
2�

−�

�

d�
�0

2
e−�0��� exp�− 4� dq

2�

�� d�

2�
G�q,���1 + cos ���� , �35�

�

�ūK̄
=

2g2

����2	�0
2�

−�

�

d�
�0

2
e−�0���

�
�2

2
�e−4��dq/2����d�/2��G�q,���1−cos�����

− e−4��dq/2����d�/2��G�q,���1+cos������ . �36�

Using that u /K= ū / K̄, the left-hand side �l.h.s.� of �36� can
also be rewritten as

�

�ūK̄
= −

1

2�uK
+

1

2�ūK̄
. �37�

The two self-consistent equations �35� and �36� can be
solved analytically in the antiadiabatic limit ��0���. Using
�33�, and after a straightforward but lengthy calculation, we
obtain

K̄2 � K2�1 −
Kg2

�u	�0
2	 u

��0

2−2K

��3 − 2K�� �38�

which is the same change of K than in �28�. The system also
develops a gap given by

� =
u

�
� Kg2

�u	�0
2	 u

��0

2K

��1 + 2K��1/�2−4K̄�

. �39�

As we can see from �38�, for K�1/2, we can have K̄
�1/2, so that �39� can still lead to a gap provided that g is
large enough. Combining the two Eqs. �38� and �39�, we
finally have

K̄2 � K2�1 − ����2−4K̄��3 − 2K�
��1 + 2K�� . �40�

The SCHA thus correctly describes the formation of a gap in
the antiadiabatic limit. As for the incommensurate case, the
SCHA captures part of the effects of the renormalization of
the parameters. Note that the SCHA, as any variational
method, is efficient in capturing the nature of the ordered
phases, but in order to determine the nature of transition one
needs the full RG analysis. Such an analysis will be dis-
cussed in Sec. IV.

C. Adiabatic-antiadiabatic crossover in the SCHA

Using the SCHA we are now in a position to describe the
crossover from adiabatic to antiadiabatic regime. We will
assume that we are far from the point K=1/2 and in fact that
we have K�1/2. For the spin chain this would correspond
in being in the Ising limit. In that regime, we can neglect the

renormalization of K and take K= K̄ in our variational action.
The variational free energy �29� can be written

F = F0 −
u

2�K�2G�0,0� −
g2

4����2	�0
2	 e��

2�

2K�

0

�

d�D���

��e−4G�0,�� + e4G�0,��� , �41�

where G�0,�� is given by Eq. �33�. Using the expansion for
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the Bessel function we obtain the following approximate ex-
pression:

G�0,�� = −
K

2
ln	��u��2 + �2

�

e�

2

, if u� � 2e−�� ,

G�0,�� = 0, if u� � 2e−�� , �42�

where � is the Euler-Mascheroni constant.58 Using the above
expression for the Green’s function, we are able to calculate
the variational free energy �41�, and minimizing it with re-
spect to � we obtain the following variational equation:

u

4�K�2 =
g2

����2	�0
2�	 e��

2�

2K

e−2e−��0�/u

+ 	 e��

2�

4K	 u

��0

2K

�	1 + 2K,
�0�

u

� , �43�

where ��· , · � is the incomplete gamma function.58

Two interesting limits in Eq. �43� must be discussed. If
�0� /u→0, one is in the adiabatic limit, whereas the antia-
diabatic one corresponds to �0� /u→�. In the adiabatic
limit, one sees that the term on the right hand side of �43�
reduces to a contribution ��a /��2K, the term depending on
the incomplete Gamma function being zero in that limit. As a
result, the Cross-Fisher prediction for the gap,9

� =
u

�
	 g2

2ke

1/�2−2K�

�44�

is recovered. In the antiadiabatic limit, the exponential term
in �43� disappears, and the incomplete Gamma function can
be replaced by a gamma function, leading to the result for
the gap we have found in Sec. III B, in �39�. In this limit, the
gap can be understood as resulting from a cos 4� interaction
induced by integrating out the phonon modes.

To perform a general study for any �0� /u, we rewrite �43�
for � as

	�

�

2−2K

e−2e−���0�/u� + �ue�/2�0��2K�	1 + 2K,2e−��0�

u



=
4Kg2

�u	�0
2	 e�

2

2K

. �45�

In terms of the gap, this equation reads

f	 �

�0

 =

4Kg2

�u	�0
2	 u

�0�

2−2K	 e�

2

2K

, �46�

where

f�x� =
x2−2K

e−2�e−��/x + 	x
e�

2

2K

�	1 + 2K,2
e−�

x

 . �47�

The graph of the function f�x� is represented on Fig. 1. In
this figure, the crossover from the adiabatic to the antiadia-
batic regime is easily observed, with the two limiting forms

of the gap given, respectively, by Eqs. �44� and �39�. The
SCHA allows one to obtain the full interpolating function
between the two regimes, and thus to obtain precisely the
crossover scale. We obtain that the limit between the adia-
batic and the antiadiabatic regime is given by �0�� and not
by �0�J. This point will be further discussed in the forth-
coming Sec. IV.

The SCHA also yields the expectation value of the
nearest-neighbor correlations Sn ·Sn+1, as it is proportional to
�−1�ncos 2��. One finds

Sn · Sn+1� � 	�

�

K

. �48�

For �0��, i.e., in the adiabatic regime, one has

Sn · Sn+1� � 	 g2

�	u�0
2
K/�2−K�

. �49�

In the antiadiabatic regime, for K�1/2, we find

Sn · Sn+1� � � g2

�	u�0
2	 u

��0

2K�K/�2−4K�

. �50�

IV. RG ANALYSIS

As we have discussed in the previous section, the SCHA
describes only approximately the renormalization of the qua-
dratic part by the phonon coupling term. Such a renormal-
ization of the parameter K is of course especially crucial to
take into account precisely close to the isotropic Heisenberg
point K=1/2. In this section, we thus apply an RG method to
analyze the adiabatic-antiadiabatic crossover.

Attempts to an RG analysis of such a problem or of di-
rectly related fermionic problems have been described in the
literature. In particular, an RG analysis was performed18 at

FIG. 1. The graph of the function f�x� �solid line� defined in Eq.
�47� with K=1/3. Two regimes are visible. For ���0, f�x�
�x2−2K �dashed curve�. In that regime, the gap is given by the
adiabatic formula Eq. �44�. For ���0, f�x��x2−4K �dotted curve�
and the gap is given by the antiadiabatic formula Eq. �39�. The
crossover regime is observed for 0.3�� /�0�3.

CITRO, ORIGNAC, AND GIAMARCHI PHYSICAL REVIEW B 72, 024434 �2005�

024434-6



T=0 based on a previous work on spinful fermions coupled
to phonons.59–61 In this work, the interaction of the spinful
fermions with the electrons is viewed as a retarded back-
scattering interaction. However, although this description is
appropriate for fermions, in the case of the spin chain it
neglects the fact that the staggered dimer operator gives rise
to more relevant interactions than current-current ones. As a
result, this fermionic description underestimates the size of
the dimerization gap. Our analysis, directly based on the bo-
son representation of the spin chain does not suffer from
such a limitation. In addition to providing us with a better
description of the dimerization gap, the use of the boson
representation also allows us to tackle the case of a finite
frequency �0 and nonzero temperature.

Another closely related problem is the one of fermions in
a random potential,62 which has an action quite similar to
�11� but with a constant D. One could be tempted to simply
reuse the RG equations derived for this system. However,
here, the situation is more subtle. In �12�, for �0 /T→0,
D���→T. Therefore, we see that the rescaling of the tem-
perature is going to modify the RG equations with respect to
the case of disordered fermions. Moreover, for �0 /T→�,
D���= ��0 /2�e−�0���. As a result, the limit of T→0 is delicate
to handle properly. In particular, the definition of the spin-
phonon coupling constant becomes ambiguous in this limit.

However the variational analysis performed in the previ-
ous section allows us to build the correct RG procedure.
First, the variational approach shows that in order to obtain
the correct results, it is important to first perform the calcu-
lation of the ground state free energy for 0�T��, where �
is the spin-Peierls gap, and then take the limit of T→0.
Second, it gives us that the proper dimensionless coupling
constant measuring the strength of the electron-phonon inter-
action is

G =
g2

�u	�0
2 . �51�

We now proceed with the RG. We start from the following
action:

S =� dx�
0

 d�

2�K
�u��x��2 +

1

u
�����2�

−
1

2	�0
2	 g

�a

2� dx�

0



d��
0



d�� cos 2��x,��

�D�0,�� − ���cos 2��x,���

−
2g�

�2�a�2 � dx�
0



d� cos 4� . �52�

The cos�4�� operator is the marginal operator needed to de-
scribe an spin-isotropic spin chain. The derivation of the
equations is given in Appendix C. They read

d

dl
	 1

K

 = 	 g�

�u

2

+
g2

�u	�0
2

�

u
D�0�l�	�

u

 , �53a�

d

dl
	 g�

�u

 = �2 − 4K�

g�

�u
+

g2

�u	�0
2

�

u
D�0�l�	�

u

 , �53b�

d

dl
	 g2

�u	�0
2
 = �2�1 − K� +

g�

�u
� g2

�u	�0
2 , �53c�

d�0

dl
= �0. �53d�

These RG equations are conveniently expressed using the
coupling constant G defined in Eq. �51�. At this one-loop
order, we find no corrections to the phonon frequency as can
be seen in �53d�. However, we expect such corrections to be
obtained in a higher-loop-order calculation.

A. Anisotropic case

Since the action �11� also describes spinless fermions
coupled to phonons, our equations have similarities with the
RG equations that have been derived for the electron-phonon
problem.55–57,60,63 There are however important differences.
First, for a spin chain the equivalent fermionic band is auto-
matically half-filled �in the absence of an external magnetic
field�. Thus, in addition to the standard terms that were con-
sidered for the electron-phonon problem with incommensu-
rate filling, one has here to take into account the marginal
umklapp operator cos�4�� as in Ref. 63. Second, in the
electron-phonon problem a different coupling constant is
used,55–57 namely, Ysp

2 =G��0�l�� /u�. Such a definition ap-
pears natural when looking at the RG Eqs. �53a� and �53b�,
since Ysp seems to be the amount by which K is renormalized
in the limit T=0. However, such definition would be at odds
with the calculations performed with the SCHA. In fact, the
integral �0

�dl�� /u�D�0el�� /u�=1 for all �0. As a result, if we
neglect g� in �53a�, and the renormalization of K in �53c�,
we find the following approximate RG equations for
G and K:

G�l� = G�0�e�2−2K�l, �54�

d

dl
�K−1� = G�0�e�2−2K�l�0�

u
el exp	−

�0�

u
el
 , �55�

and by a variable change to V= ��0� /u�el, we easily obtain
that

K−1��� − K−1�0� = G�0�	 u

�0�

2−2K

��3 − 2K� . �56�

This equation is easily understood: �0 gives an energy cutoff
that stops the RG flow of K induced by G at an energy scale
of order �0=u /�e−l*. We note that it is identical to the
SCHA result �28�. We thus see that at that scale, K is renor-
malized by an amount proportional to G�l*� and not G�l�
���0�l�� /u� as a result of the exponential factor in �55�.
This confirms that the right coupling constant in this theory
is G and not G�0�l�� /u. In Ref. 63, the same prescription
was used to define the coupling constant, whereas in Ref. 38,
the incorrect rescaling of Ref. 55 was used. As a result, we
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expect the conclusions of Ref. 38 to be incorrect in the adia-
batic regime.

Until now, we have assumed that at the scale l*

=ln�u / ���0��, the coupling constant G�l*��1. If this as-
sumption breaks down, since the coupling constant G�l�
=e�2−2K�lG�0�, one finds a gap

� =
u

�
G�0�1/�2−2K� � �0. �57�

This gap is in agreement with the SCHA result and with the
mean-field theory treatment of Cross and Fisher.9 For K
�1/2, in the antiadiabatic limit �0�u /�, we know from the
SCHA that the phonons can generate a relevant perturbation
cos 4� and thus induce a gap.33 This effect is also captured
in the RG by �53b�. This can be seen by a two step renor-
malization procedure. In the first step, for l� l*=ln�u /��0�,
a term g� is induced by the RG flow. This term is found to
be of order

y�l*� =
g��l*�

�u
= G�0�	 u

��0

2−2K���2K + 1,1�

− �	2K + 1,
��0

u

� . �58�

Since �0�u /�, we can actually neglect ��2K+1,��0 /u� in
Eq. �58�. For l� l*, D�0�l��� /u�→0, and we can drop G from
the RG equations. We then have a simple Kosterlitz-Thouless
RG flow, which leads to a gap of the form

� =
u

�
�G�0�	 u

��0

2K

��2K + 1,1��1/�2−4K�

. �59�

This gap is in agreement with the SCHA prediction in the
antiadiabatic limit �38�. Therefore, we see that SCHA and
RG methods agree perfectly, far from the isotropic point,
once the proper coupling constant is used in the RG.

Using our RG equations, we can now study the SU�2�
invariant limit for which the SCHA cannot be used, due to
importance at that point of the marginally irrelevant operator
cos�4��.

B. SU(2) invariant case

In the isotropic limit, we have

K =
1

2
	1 −

g�

2�u

 . �60�

This ensures that, in the absence of spin-phonon coupling,
the flow will renormalize to the fixed point K*=1/2 and
g�

* =0. It is then easily seen that the Eqs. �53a� and �53b�
reduce to a single equation for y=g� /�u. This leads to the
following RG flow:

dy

dl
= y2 + G�l�

�0�

2u
ele−��0�/u�el

, �61�

dG

dl
= 	1 +

3

2
y
G . �62�

These RG equations allow for the full interpolation between
the adiabatic and antiadiabatic limit.

The simple analysis of the previous section showed that
the gap should behave as �= �u /��G�0� in the adiabatic
limit. For the isotropic case, using �61� and �62�, we obtain
logarithmic corrections to the gap �= �u /��G�ln G�−3/2 re-
sulting from the marginal flow of y�l�. These logarithmic
corrections �for details see the Appendix D� are identical to
those obtained by incorporating the logarithmic corrections
to the gap of the dimerized spin-1 /2 chain42,49,64 into the
Cross-Fisher mean-field theory. This confirms that G is the
right coupling constant to study the formation of the spin-
Peierls gap in the adiabatic limit. On the other hand, as dis-
cussed in the previous section, in the antiadiabatic limit, it is
the flow of y�l� that determines whether or not the gap is
formed. To analyze the flow in the antiadiabatic regime, we
can use the approximation G�l�=G�0�el; i.e., we neglect the
logarithmic corrections to the flow of G. We have checked
that this approximation leads to a good agreement with the
numerical study of the RG flow using the fourth-order
Runge-Kutta algorithm. Using the previous approximation,
the RG flow ��61� and �62�� can be reduced to a Ricatti
differential equation �cf. Appendix E� leading to the follow-
ing dependence of the gap on G:

� = �0e�−1 exp�−
2�0�

uG�0�� , �63�

for the case of y�0�=0. When y�0��0, it is found that a gap
exists only if

uG�0�
2�0�

�
�y�0��

1 + �y�0��ln�ue1−�/��0�
. �64�

The physical content of this equation is transparent. At the
scale l* such that �0el* =u /�, G�l*� is equal to the l.h.s. of the
inequality, whereas �y�l*�� is equal to the right-hand side of
the inequality. The gap can form only if the renormalized
spin-phonon interaction is stronger than the renormalized
marginal coupling at the energy scale �0. This is in agree-
ment with the two-step RG approach60 of the preceding sec-
tion. When the condition �64� is satisfied, the gap behaves as

� = �0e−�1−�� exp�
− 1

uG�0�
2�0�

+
y�0�

1 − y�0�ln	ue1−�

�0�

 � . �65�

This expression shows that the gap vanishes as
exp�−Ct./ �G�0�−Gc�� when the spin-phonon coupling con-
stant goes to the critical value, indicating that the phase tran-
sition between the gapped phase and the gapless phase in the
antiadiabatic regime is in the Berezinskii-Kosterlitz-Thouless
�BKT� universality class. For fixed G�0�, Eq. �65� also indi-
cates that there exists �BKT such that for �0��BKT the gap
vanishes via a BKT transition. The implicit equation giving
�BKT reads
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uG�0�
2�

= �BKT

�y�0��

1 + �y�0��ln	 ue1−�

��BKT

 , �66�

which shows that �BKT is an increasing function of the spin-
phonon coupling constant.

The functional dependence of the gap on the spin-phonon
coupling constant �65� is similar to the one obtained in the
case of a frustrated spin chain. This result is roughly in
agreement with the results of canonical transformations that
eliminate the phonons from the spin Hamiltonian.13,31 Upon
closer inspection however, one finds that the factor of u /��0
does not appear in the formulas giving the spin gap in that
case. The reason is that the canonical transformations of
Refs. 13 and 31 are valid in the limit �0�J and only the
instantaneous interactions are present, whereas in our theory
one needs to renormalize until the scale �0 reaches J before
the interactions can be considered instantaneous. Thus, we
find that there is an intermediate regime ���0�J, in which

the gap is still larger than in the frustrated chain limit. The
frustrated chain results are recovered only when �0→J. In
the case of the Heisenberg spin chain, the value of y�0� has
been estimated to be of the order of −0.25,42 which is rather
large. For this reason, we cannot make quantitative predic-
tions on the value of the gap. However, we can expect from
this large value of the marginal interaction that the critical
value of the spin-phonon interaction needed to obtain the
spin gap in the antiadiabatic regime will be rather large. The
behavior of the gap as a function of the strength of the cou-
pling constant for the case y�0�=0 as given by Eq. �E20� is
represented in Fig. 2. The behavior of the gap as a function
of frequency is represented in Fig. 3. Concerning the expec-
tation value of Sn ·Sn+1, we have that cos 2���e−Kl0. In the
adiabatic regime, we find

cos 2�� � 	 g2

2�u	�0
2
1/3

, �67�

whereas, in the antiadiabatic regime, we have

cos 2�� � 	�0�

u

1/2

exp�−
1

2� u

��0

g2

2�u	�0
2 −

�y�0��

1 + �y�0��ln	ue1−�

�0�

��

. �68�

An ansatz can be made to describe the crossover between the
adiabatic and the antiadiabatic regime. In the adiabatic re-
gime, G�l��1 for l such that �0el�u /� and y�l��1. We
can analyze the crossover from the adiabatic to the antiadia-
batic regime by matching the expressions obtained in the two

cases. This matching procedure �see Appendix E� predicts
that the crossover of the two regimes is obtained when
uG�0� /�=2�0 �for the case of y�0�=0�. The resulting phase
diagram is shown in Fig. 4, where three regimes are visible.
As �0 increases, we go from the gapped adiabatic regime to

FIG. 2. The behavior of the gap � as a function of the spin-
Peierls coupling constant G in the case y�0�=0. When G���0 /u,
the system is in the adiabatic regime, and the gap � varies linearly
with G. When G���0 /u, the gap decreases very rapidly with an
essential singularity for G�0�=0 described by Eq. �65�.

FIG. 3. The behavior of the gap ∆ as a function of phonon
frequency �0 for a fixed value of G�0� and y�0�=0. In the adiabatic
regime �0�uG�0� /�, the gap is independent of �0 and is equal to
�0=uG�0� /�. In the antiadiabatic regime, the gap is a rapidly de-
creasing function of phonon frequency given by Eq. �65�.

ADIABATIC-ANTIADIABATIC CROSSOVER IN A… PHYSICAL REVIEW B 72, 024434 �2005�

024434-9



the gapped antiadiabatic regime and finally to the gapless
regime. As is shown, the strength of spin-phonon interaction
increases the size of the gapped regime.

V. DISCUSSION

We shall here discuss our results for the spin-Peierls
model and compare with the ones present in the literature.
The main purpose is to give an overview of the informations
that can be extracted using the SCHA and the RG analysis.
We stress that our results are also applicable to strongly in-
teracting fermionic systems via the Jordan-Wigner transfor-
mation. Moreover, for fermionic systems, both the case of
on-site �Holstein� phonons and on-bond phonons can be
dealt with as they correspond, respectively, to a term cos 2�
or sin2� in the action.

A. Comparison with numerical calculations

The first result, obtained within SCHA, is the criterion for
the crossover from the adiabatic to the antiadiabatic regime,
which is �0��s, where �s is the static gap, and not �0�J,
as could have been naively been expected. This criterion was
obtained previously by a two-cutoff renormalization group
analysis in Ref. 60 in the case of interacting fermions. Such
result is in agreement with a DMRG study of the XY spin
chain coupled to dispersionless phonons of frequency �0,
where the crossover is observed when �s��0.65 Another
DMRG study in Ref. 21 also showed that in the case of
spinless fermions interacting with Holstein phonons, the
phase transition between the gapful Peierls state �adiabatic�
to the gapless Luttinger liquid state �antiadiabatic� was also
obtained when �0��s.

The second result, obtained using the RG for the SU�2�
invariant case concerns the behavior of the spin gap in the
adiabatic and antiadiabatic cases. We have found that for low
frequency ��0��s�, one is in the adiabatic regime with a

spin gap given by the mean-field approximation9 ���s
�g2 /m�0

2, but for �0��s, in the antiadiabatic regime, the
spin gap starts to decrease rapidly with the frequency. This
result is in agreement with the DMRG study of Ref. 65. In
fact, in this regime the RG analysis yields

� = �0e−�1−�� exp�
− 1

uG�0�
2�0�

+
y�0�

1 − y�0�ln	ue1−�

�0�

 � , �69�

for g2 /2�2m�0
3� �y�0�� / �1+ �y�0��ln�ue1−� / ��0����; other-

wise the gap vanishes. In �69�, we have assumed that y�0�
�0; i.e., that we are dealing with an unfrustrated spin chain
that would not dimerize spontaneously if g=0. The three
different regimes are illustrated in Fig. 4. An immediate con-
sequence of �69� is that for a sufficiently high frequency �0,
or for sufficiently weak spin-phonon coupling constant, a
BKT transition to a gapless state is obtained. This transition
is analogous to the one that takes place in the frustrated
Heisenberg chain when J2�0.24J1.66–69

Our findings for the behavior of the gap, both in the adia-
batic and in the antiadiabatic regime, are in qualitative agree-
ment with the quantum Monte Carlo results of Ref. 28 on the
one-dimensional S=1/2 Heisenberg model. There, it was ob-
tained that for heavy phonon �i.e., low frequency�, a static
gap was present, while in the case of a light phonon �i.e.,
high frequency�, no spin gap was observed at the lowest
temperature accessible in the simulation. It is not obvious
whether the absence of a dimerization gap was because the
temperature was still above the zero temperature gap or be-
cause of the true absence of a gap above the ground state. In
either case, these results indicate that the spin gap is very
strongly decreased with respect to the static result when the
phonon frequency is increased. References 24 and 70, using
stochastic series expansion methods, also found that for
small spin-phonon coupling and �0 /J=1/4 no spin gap was
obtained, but that increasing the spin-phonon coupling above
a critical �c=0.225J caused a phase transition from the uni-
form gapless phase to the dimerized gapped phase, in agree-
ment with our results. In Ref. 26, the existence of dimeriza-
tion and spin gap was analyzed by quantum Monte Carlo
simulations of the Heisenberg model for various spin-phonon
couplings and phonon frequencies. A phase diagram �Fig. 9
of Ref. 26� was plotted. In agreement with �69�, it was
shown that the critical spin-phonon coupling to induce
dimerization was an increasing function of the phonon fre-
quency. ED studies17,18 also show unambiguously the exis-
tence of a threshold in the spin-phonon interaction to induce
a spin gap when the phonon frequency is nonzero. A constant
spin gap is obtained when g̃ behaves roughly as �0

1/2 which
seems in agreement with the predictions of �69�. Finally, a
similar qualitative agreement is found in the one-dimensional
Holstein model for spin-1 /2 electrons by DMRG study.22

The system undergoes a quantum phase transition between
the metallic phase and the Peierls insulating phase at a finite
critical value of the electron-phonon interaction. Concerning
the BKT universality class of the transition predicted by �69�,
in the DMRG study of Ref. 23 it was indeed found that as a

FIG. 4. The phase diagram in the �G ,�0� plane, where G is the
spin-Peierls coupling constant and �0 the phonon frequency. The
solid line corresponds to the BKT transition between the gapped
and the gapless phase described by Eq. �64�. The dash-dotted line is
a crossover line between the antiadiabatic regime uG�0� /���0,
and the adiabatic regime uG�0���0.
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function of the coupling constant the quantum phase transi-
tion from the gapless to the gapped state is a BKT transition.
A BKT transition was also found in the related fermionic
case in Refs. 21 and 65. Another result of Ref. 23 regards the
evaluation, by finite-size scaling, of Luttinger exponent K	 of
the spinless fermions. It was found that approaching the tran-
sition at a critical value of gc, K	 has small deviation from
1/2 from 0.59 to 0.42. Such finding is in agreement with a
BKT transition driven by the operator cos 4� since the value
of the Luttinger exponent at the transition is then K=1/2.

In the antiadiabatic regime we predict a power-law rela-
tionship between the critical spin-phonon coupling gc and the
frequency �0. We note that a power-law relation between the
critical spin-phonon coupling was found in Ref. 20. How-
ever, the results of Ref. 20 are obtained in the limit of XY
anisotropy, so that a direct comparison of the exponents is
not possible. We can make a more direct comparison with the
data of Ref. 18. If we call gDA the spin-phonon coupling
constant used in Ref. 18, it is related to our spin-phonon
coupling constant by

g2

m�0
= 4J2gDA

2 , �70�

yielding for the dimensionless spin-Peierls coupling constant

G =
4gDA

2

�2�0
. �71�

The exact diagonalizations in Ref. 18 were performed for
�0=0.3J. The dimensionless parameter u / ���0�=� / �2
�0.3��5.2, indicating that a continuum description such as
ours should be still applicable. The values given in Ref. 18,
Fig. 1, lead to a dimensionless coupling constant in the range
�0.17, 0.27�, which is at the limit of the perturbative regime.
Since �G /2� .429�2�0 /J=0.6, we are in the antiadiabatic
regime, not far from the crossover. The gap we are calculat-
ing is �01 since our RG approach does not take solitons into
account. The result of the comparison is shown in Fig. 5,

where we have replotted the data of Ref. 18 for the gap �01,
along with the formula �E20� in which logarithmic correc-
tions are neglected. Obviously, the overall behaviors of the
gap with the coupling constant are very similar. On a more
quantitative level, there is a discrepancy between our results
and those of Ref. 18 by roughly a factor of 2. Such difference
is clearly not due to the logarithmic corrections. Because our
coupling constant is already rather large, the logarithmic cor-
rections should be rather small. Moreover, if the discrepancy
was caused by logarithmic corrections, it would diminish as
the coupling constant increases, which is not the case here.
This leaves us with three possible explanations of the quan-
titative difference between our results and those of Ref. 18.
The most likely explanation is that a coupling constant G in
the range �0.17, 0.27� is already a rather large value of the
coupling constant, and a one-loop RG such as ours is not
sufficient to obtain the gap quantitatively in this regime. A
two-loop or higher-order calculation may reduce the scale of
the gap with respect to one loop and lead to better agree-
ment. However, since the usual techniques for deriving
renormalization group equations71–73 are restricted to one
loop, one needs to develop a field theoretic RG approach74 to
check this. Such an approach is beyond the scope of the
present paper. Alternatively numerical data for a smaller cou-
pling constant would be interesting to compare to. The sec-
ond possible explanation is that our procedure to match the
results of the RG in the adiabatic and the antiadiabatic is
introducing an incorrect scale factor in the antiadiabatic
limit. This is possible, if for instance, when we are in still the
adiabatic regime but near the crossover, the interaction with
the phonons is causing a reduction of the gap. Such an effect
is ignored in the Eq. �E20�. A possible last explanation is that
because the ratio of the phonon frequency to the exchange
coupling is still not very small, the continuum treatment is
not sufficiently accurate. Note, however, that despite the rela-
tively extreme case of this numerical data �large coupling
constant and phonon frequency� with respect to a continuum
approach and first-order RG analysis, the quantitative agree-
ment is still reasonably good.

In addition to providing an analytical framework to de-
scribe the behavior of the spin-Peierls gap as a function of
coupling constant or frequency, our analysis allows us to
extract other physical quantities. In particular a quantity that
can be deduced from our calculations to describe the Peierls
ordering structure of the ground state is the dimerization �
= qn�. We can calculate it from the magnetic order parameter
through the relation, �= �−�n�g /ke�Si ·Si+1�= �−�n�g /ke�
�cos�2���. In the adiabatic regime, the results of the RG
analysis gives

� � �− �n g

ke
	 g2

2�u	�0
2
1/3

, �72�

whereas in the antiadiabatic regime we obtain

FIG. 5. Comparison of our prediction for �01 with the results of
exact diagonalization �Ref. 18�. In both cases, the gap is an increas-
ing function of the spin-phonon coupling constant. Our results are
roughly twice the exact diagonalization result.
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� � �− �n g

ke
	�0�

u

1/2

exp�−
1

2� u

��0

g2

2�u	�0
2 − �y�0��� � .

�73�

Since by scaling, the expectation value of cos�2��� is re-
lated to the spin-Peierls gap by the relation cos 2��
��� /J�K, we immediately obtain the scaling relation for the
dimerization order parameter: ���g /ke��� /J�K. It was found
in ED studies18 �Fig. 1 of Ref. 18� that the alternation � in
the exchange integral and the spin gap were increasing func-
tions of the spin-phonon coupling constant with a threshold.
The correlation of displacement and dimerization predicted
by �72� and �73� are also neatly illustrated on Fig. 8 of Ref.
26.

From the behavior of cos�2��� in the adiabatic and an-
tiadiabatic regime we can also immediately infer some fea-
tures of the spin-spin correlations function. In the antiadia-
batic regime, from �68�, we deduce that for a fixed
frequency, the correlations decrease at increasing the spin-
phonon coupling �Fig. 15 of Ref. 26�. At a fixed spin-phonon
coupling and increasing �0, the spin-spin correlation func-
tions become instead less and less affected by g. These find-
ings are again in agreement with the results obtained in Ref.
26. We thus see that our derivation provides a unified frame-
work explaining and generalizing the previous studies.

B. Relation to experiments

Let us now turn to experimental systems. Our results
clearly show that nonadiabatic phonon dynamics strongly
renormalizes the magnetic correlations and the dependence
of the gap.

A well known example of a material where such strong
renormalizations are observed is the spin-Peierls material12

CuGeO3. In this material, the phonon frequency is rather
high compared to the actual spin gap ��0�310 K�. Interest-
ingly, the thermodynamics of this material can be fitted with
a frustrated spin chain model,75 with J2 /J1=0.36, i.e., well
into the spin gap regime. As was pointed out,12,13 such a
dimerization is not intrinsic but due to the spin-phonon cou-
pling itself. Indeed, our RG analysis shows that the low-
energy properties of a spin chain coupled to dynamical
phonons are similar at low energy to those of a frustrated
spin chain provided that the phonon frequency is above the
zero temperature spin gap, which is the case in CuGeO3. In
such a system one can expect a very strong reduction of the
gap due to the finite phonon frequency as shown in Fig. 3,
and was noted before for CuGeO3. As a point of comparison
of the interplay between the phonon frequency and the pho-
non coupling constant, we have reported in Fig. 6 the various
compounds listed in Table 1 of Ref. 12. From Eq. �44�, we
expect �MF��u /��G�0�, and therefore using Eq. �E20�, �
=�0e−3.93�0/�MF. Note that the values of the gap taken here
are only indicative, in connection with our one-dimensional
analysis. Indeed, they are dependent �i� on the measurement
method and differ slightly depending on which quantity is
measured and �ii� in part of the interchain couplings, which

we have not treated in the present theory. We nevertheless
see in Fig. 6 that the agreement between our calculated val-
ues of the spin-Peierls gap and the observed one for various
systems both in the antiadiabatic regimes is quite decent.
Although CuGeO3 is the material for which the effects of the
phonon frequency are the stronger, another material for
which the present study could be relevant is MEM�TCNQ�2.
For this material the phonon frequency is of the same order
as the spin-Peierls gap ��30–60 K, and one can thus still
expect effects of the finite phonon frequency on the spin-
Peierls gap. The other two compounds �TMTTF�2PF6 and
�BCPTTF�2PF6 are closer to the adiabatic regime �since they
have ��

MF��0� and thus are expected to have a gap less
dependent of the phonon frequency than CuGeO3 or
MEM�TCNQ�2. We note that for these two compounds, the
agreement with our formula is not good. For �TMTTF�2PF6,
this might result from the fact that the charge localization
temperature T	�200 K is relatively low compared to the
spin-Peierls transition temperature and charge fluctuations
can still influence the transition. Indeed, a description based
on adiabatic phonons interacting with both charge and spin
fluctuations can account for both the magnetic susceptibility
and the NMR relaxation rate in this material.61 A related
explanation of the discrepancy could be the existence of a
charge ordering transition76,77 in �TMTTF�2PF6. Such a tran-
sition can affect the mean-field spin-Peierls transition tem-
perature of the material78,79 and can thus invalidate our sim-
plistic estimate of the spin-Peierls coupling constant. Finally,
in both TTF materials, antiferromagnetic interchain coupling
could be relatively important, and may diminish the spin-
Peierls ordering, resulting in a smaller spin-Peierls gap.80

In order to further test the above determination of the gap,
it would be interesting to be able to vary continuously the

FIG. 6. Various compounds exhibiting a spin-Peierls transition
plotted on a gap � /�0 vs Cross-Fisher gap �MF /�0. The data for
the gap �, the phonon frequency �0 and the Cross-Fisher gap �MF

are extracted from Table 1 of Ref. 12. Note that the experimental
determination of the gap is to be taken with a grain of salt given the
differences between the various determinations from various mea-
surements �neutrons, thermodynamics, etc.� The full line is Eq.
�E20�, which is the dependence of the gap on frequency that we
expect when logarithmic corrections to scaling is neglected.
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phonon frequency. Pressure could be an interesting way to
address this question. Since when applying pressure, both the
exchange constant and the phonon frequency are to be af-
fected, one has to compute the net effect on the gap, which
our theory allows us to do. Such measurements could allow
to follow the behavior of the gap such as described in Fig. 3.

VI. CONCLUSIONS

In the present paper, we have analyzed spin-Peierls prob-
lem for a single spin-1 /2 chain coupled to an optical phonon
of frequency �0 using bosonization techniques. The
bosonized action was approximately solved by using the
self-consistent harmonic approximation.51,52 In the low-
frequency limit, we have reproduced the result obtained by
Cross and Fisher by the mean-field approximation.9 In the
high-frequency limit, we have shown that the retarded inter-
action was giving rise to a term that was local in time and
was identical to the bosonized form of a frustrating next-
nearest-neighbor interaction, in agreement with the canonical
transformation approach.31 The self-consistent approxima-
tion also allowed us to describe entirely the crossover be-
tween the two regimes. In the regime that we have consid-
ered, the crossover frequency was given by the spin-Peierls
gap �s calculated for a static phonon ��→0 with ke=m�0

2

fixed�. The adiabatic regime extends in the region �0��s,
and the antiadiabatic regime extends in the region �0��s.
All the previous findings can be recovered by the renormal-
ization group by using a two-step approximation as in Ref.
60. We stress that although we use the same two-step ap-
proximation as Ref. 60, the behavior of the spin gap that we
obtain in the low-frequency limit in our renormalization
group is different from the one that one would deduce from
the renormalization group applied to spinful fermions at half-
filling coupled to optical phonons, as in Ref. 60. The reason
for this is that in our problem the charge mode is absent,
making the spin-phonon interaction more relevant than in
Ref. 60. The advantage of the renormalization group ap-
proach over the self-consistent approximation is that the
former is applicable in the SU�2� invariant case, where the
induced nonretarded approximation becomes marginal. For
the SU�2� invariant case, the crossover frequency between
the adiabatic and the antiadiabatic limit remains �0��s.
However, due to the marginality of the induced term, a BKT
transition in the antiadiabatic limit between the gapped state
and the gapless state becomes possible. Near the transition,
the spin gap � drops very rapidly with the phonon frequency
as ��e−C�0/��BKT−�0� and vanishes for �0��BKT. These re-
sults are in qualitative agreement with numerical studies23

and with the canonical transformation method.31 As the fre-
quency �BKT is a increasing function of the spin-phonon cou-
pling, for fixed �0 there exists a critical spin-phonon cou-
pling below which the spin gap disappears. We have also
examined in the light of the present theory the existing ex-
perimental compounds exhibiting a spin-Peierls transition, as
summarized, for example, in Ref. 12. We find a good quali-
tative agreement with the dependence of the gap predicted by
our theory.

Our analysis thus provides a unified analytical framework
in which to analyze the spin-Peierls transition. It leads the

way to interesting extensions. In particular one could expect
to tackle with similar methods the effects of the interchain
couplings, or the effect of impurities on the spin-Peierls tran-
sition �see, e.g., Ref. 81 and references therein�.
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APPENDIX A: EXPRESSION OF THE PROPAGATOR IN
THE SCHA

We need to obtain an expression for the propagator G. We
have

G�x,�� =
�Ku


�

�n=2�n/
� dq

2�

ei�qx−�n��

�n
2 + u2�q2 + �−2�

=
�K

u
G�x,�� .

�A1�

The reduced propagator G satisfies the partial differential
equation �PDE�

�u2��
2 + �x

2 −
1

�2�G�x,�� = − ��x� �
n=−�

�

��� − n� , �A2�

and the following properties:

G�x,� + � = G�x,�� ,

G�±x, ± �� = G�x,�� . �A3�

To solve the partial differential equation �A2�, we consider
first the auxiliary partial differential equation

�u2��
2 + �x

2 −
1

�2�G0�x,�� = − ��x����� . �A4�

Clearly, if we have a solution of �A4�, we can easily deduce
from it a solution of �A2�:

G�x,�� = �
n=−�

�

G0�x,� − n� . �A5�

An explicit solution of the PDE �A4� is readily found by
Fourier transformation, and application of Eq. 9.6.21 of Ref.
58. One has

G0�x,�� =
u

2�
K0	�x2 + u2�2

�

 , �A6�

and thus
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G�x,�� =
u

2�
�

n=−�

�

K0	�x2 + u2�� − n�2

�

 . �A7�

It is easily seen that the series in �A7� is convergent, and that
the function defined by �A7� satisfies all the conditions �A3�.
The result �A7� could also have been obtained by using the
Fourier transform of the Dirac comb. We note that in reality
we have cheated slightly. Because of the cutoff on the mo-
mentum integral in �A1�, the function ��x� is in fact smeared
out into a function ���x�, which goes to the delta function
only for �→�. Consequently, the true propagator G� is in
fact the convolution of ���x� with the function defined by
Eq. �A7�. A simple way to incorporate the cutoff in �A7� is to
perform the replacement x2→x2+�2, with ���−1. This sub-
stitution has the advantage of preserving the symmetries
�A3�. Finally, we have

G�x,�� =
K

2 �
n=−�

�

K0	�x2 + u2�� − n�2 + �2

�

 . �A8�

APPENDIX B: SOLUTION OF THE VARIATIONAL
EQUATIONS

In the present section, we study the solution of the varia-
tional equations derived from minimization of the free en-
ergy �41� with respect to �. The contribution of the region
��� /u can be written as

g2

4����2	�0
2	 e��

2�

2K�

0

2e−��0�/u

dve−v�	 e�u

2��0

2K

v2K

+ 	 e�u

2��0

−2K

v−2K�
=

g2

4����2	�0
2	 e��

2�

2K�	 e�u

2��0

2K

�	1 + 2K,2e−��0�

u



+ 	 e�u

2��0

−2K

�	1 − 2K,2e−��0�

u

� , �B1�

where � is the incomplete gamma function �see Ref. 58,
Chap. 6, p. 260�. Using the identity

	�

�

2K	 u

��0

−2K

�	1 − 2K,2e−��0�

u



= 	��0

u

2K���1 − 2K� − �	1 − 2K,2e−��0�

u

� �B2�

and noting that the first term in the right-hand side is inde-
pendent of �, we can rewrite up to a renormalization the
short-distance contribution to the variational free energy as

	 u�e�

2�2�0

2K

�	1 + 2K,2e−��0�

u



− 	��0

u

2K

�	1 − 2K,2e−��0�

u

 . �B3�

The contribution of the region ��� /u can be rewritten as:

2
g2

4����2	�0
2	�e�

2�

2K�

2e−��0�/u

�

dve−v

=
g2

2����2m�0
2	�e�

2�

2K

e−2e−��0�/u. �B4�

Thus, the variational free energy to use reads

F = F0 −
u

2�K�2 �2� −
g2

4����2	�0
2�2	�e�

2�

2K

e−2e−��0�/u

+ 	�e�

2�

4K	 u

��0

2K

�	1 + 2K,2e−��0�

u



− 	��0

u

2K

�	1 − 2K,2e−��0�

u

� . �B5�

APPENDIX C: DERIVATION OF THE
RENORMALIZATION GROUP EQUATIONS

To derive the renormalization group equations, we start
from the action �52�, where the function D�0,��� is defined
in �12� and satisfies

�
−/2

/2

D�0,���d� = 1. �C1�

Renormalization group equations are obtained from operator
product expansion techniques �OPE�.72,82 The following
OPEs are needed:

cos 2��x,��cos 2��x�,��� �
1

2
�1 −

1

2
�2�x − x���x��x,��

+ 2�� − �������x,���2

+ cos 4��x,��� , �C2�

cos 2��x,��cos 4��x�,��� �
1

2
cos 2��x,�� , �C3�

cos 4��x,��cos 4��x�,��� �
1

2
�1 −

1

2
�4�x − x���x��x,��

+ 4�� − �������x,���2� . �C4�

To find the renormalization group equations, we write the
partition function, and expand to second order around the
Gaussian fixed point. The important contributions are of first
order in g2 �due to the nonlocality of the action �52��, and of
second order in g�

2 and g�g2. Then, we change the cutoff by
�→�edl. We then apply the OPEs �C2� to obtain the short-
distance contributions of the terms with �2� �x−x��2+u2��
−���2��2e2dl to the renormalization of the coupling con-
stants. Proceeding in that way, we obtain the following cor-
rections O�dl� to the action:
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−
1

2	�0
2	 g

��

2

D�0�l�	�

u



��
��u��−�����edl

dxd�d���− �� − ���2�����2 +
1

2
cos 4�� ,

�C5�

coming from the g2 term

−
1

2u
	 2g�

�2���2
2�
��r��edl

rdrd�
1

2
�1 − 8r2 cos2 ���x��2

− 8
r2

u2 sin2 ������2� , �C6�

coming from the g�
2 term, and

− 2g�

�2���2 � −
1

2	�0
2	 g

��

2� dxd�d�� cos 2��x,���

�D�0�l��� − ��� � 2�
���r−r����edl

dx�d��
1

2
cos 2��x,��

�C7�

coming from the g�g2 term. The term �C5� contributes to the
renormalization of K ,u ,g�. The term �C6� contributes to the
renormalization of u ,K. Finally, the term �C7� contributes to
the renormalization of g2. After having performed the mode
integration, we have to restore the original cutoff.72 An op-
erator O of scaling dimension dO is rescaled as O→Oe−dOl,
whereas coordinates are rescaled as x→xedl and �→�edl.
One also finds →e−dl, i.e., T→Tedl. As a result of this
operation, we obtain g�→g�e�2−4K�dl. The rescaling of g2 is
a bit more subtle. First, we notice that the rescaling of �
→�edl amounts to a rescaling of �0 , inside the function D.
Hence, the rescaling acts on D as

D�0, → D�0�l�edl,e−dledl, �C8�

and this way of rescaling D�0
guarantees that the constraint

�C1� remains satisfied. The rescaling of D absorbs the oppo-
site rescaling of one of the components x ,� ,��. As a result,
the rescaling of g2 is given by g2→e�2−2K�dlg2. We notice that
this result is in contrast with the case of a disordered
system,62 in which the disorder D is rescaled as D
→De�3−2K�dl. Mathematically, the difference arises because
in the case of phonons, we want to keep the weight in the
function D constant under the RG flow. This constraint
means that physically we are converting the non-local inter-
action that exists at high energy into a local one represented
by the g� term by integrating out successively its short-
distance contributions. The remaining weight is then given

by 2��
/2e−l

D�el,e−l���d� and goes to zero as l is increased.
Adding all the O�dl� contributions, both from integration of
short-distance terms and from rescaling, we finally obtain the
renormalization group equations as

d

dl
	 1

2�uK

 =

�

u
	 g

�u

2 1

	�0
2D�0

��/u� +
g�

2

2�3u3

d

dl
	 u

2�K

 =

g�
2

2�3u
,

d

dl
	 g�

�u

 = �2 − 4K�

g�

�u
+ �	 g

�u

2 1

	�0
2D�0

��/u� ,

d

dl
	 g2

�u	�0
2
 = 	2 − 2K +

g�

�u

 g2

�u	�0
2 ,

d�0

dl
= �0,

dT

dl
= T . �C9�

We note that for g=0 these equations reduce to the usual RG
equations of the sine-Gordon model.73 If we neglect the con-
tribution of g� to the renormalization of g2, we see that the
gap obtained for g2 / �u	�0

2��1 coincides with the gap pre-
dicted by Cross and Fisher.9 Taking g� into account for K
�1/2 leads to logarithmic corrections in the dependence of
the gap on G. These corrections are discussed in Appendix
D.

APPENDIX D: LOGARITHMIC CORRECTIONS TO
SCALING

Let us consider a spin-1 /2 chain with a static dimeriza-
tion, described by the Hamiltonian

H = J�
n

�1 + ��− �n�Sn · Sn+1. �D1�

Bosonization and scaling arguments9,41 lead to the prediction
of a gap ���2/3. However, the presence of a marginally
irrelevant operator induces corrections to scaling42,48,64,83,84

and the gap behaves in fact as

� = � 1.723�2/3

	1 +
2

3
�y�0��ln

�y�0��
1.3612�


�
1/2

. �D2�

As a result of logarithmic corrections, the ground state en-
ergy of the dimerized spin chain behaves as

E0

J
= −

0.2728�4/3

1 +
2

3
�y2�0��ln� �y�0��

1.3612�
� . �D3�

If we now consider that the chain �D1� is coupled to adia-
batic phonons, one needs to minimize the total energy
ke /g2�2−B�4/3�ln ��−1 with respect to � yielding �2/3�ln ��
�g2 /ke. The gap thus behaves as

� = 6.07
g2

m�0
2�ln

g2

m�0
2�−3/2

, �D4�

where we have used the factors quoted in Eqs. �D2� and �D3�
and Ref. 48. We know show how the expression �D4� can be
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recovered within our RG approach. Using the initial condi-
tions with SU�2� symmetry, the RG equations are given by
the Eqs. �61� and �62�.

If we now assume that G�0��y�0�, in Eq. �61� we can
take G=0, so that the previous equations reduce to the single
BKT equation

dy

dl
= y2. �D5�

For y�0, this equation flows to a fixed point y�=0 with the
flow given by

y�l� =
y�0�

1 − y�0�l
. �D6�

Using �D6� in Eq. �62�, we can easily integrate it and obtain

G�l� = G�0�
el

�1 + �y�0��l�3/2 . �D7�

This equation should break down for G�l0���y�l0��, and after
that an exponential flow of G is expected. Using Eq. �D7�,
the strong coupling behavior is obtained when

el* =
1

G�l0�e−l0
=

�1 + �y�0��l0�3/2

G�0�
, �D8�

where l0 is given by

G�0�el0 = �y�0���1 + �y�0��l0�1/2. �D9�

Solving Eq. �D9� by iteration and using the first iteration,
one finds the following scaling for the spin-Peierls gap valid
for small G:

�sp � e−l* =
G�0�

�1 + �y�0��ln	 �y�0��
G�0�


�3/2 . �D10�

This behavior is in agreement with the behavior obtained in
Eq. �D4� by considering logarithmic corrections to the en-
ergy of the dimerized chain.

APPENDIX E: STUDY OF THE SU(2) INVARIANT RG
EQUATIONS

We consider the system of two coupled first-order differ-
ential equations �61� and �62�. A convenient approach in the
antiadiabatic regime is to recast this differential system as a
single differential equation. It is also convenient to make the
approximation G�l�=G�0�el as to render the second-order
equation linear. Introducing85

Y�l� = exp�− �
0

l

y�l��dl�� , �E1�

we obtain the following second-order differential equation:

d2Y

dl2 = −
�0G�0��

2u
e2le−��0�/u�el

Y�l� , �E2�

=−
uG�0�
2�0�

	�0�el

u

2

e−��0�/u�el
Y�l� , �E3�

with the initial conditions for Y�0�=1 and Y��0�=−y�0�.
It is possible to simplify the second-order differential

equation �E2� by a variable change to s= ��0� /u�el. Writing
Y�l�=Z���0� /u�el�, one finds that Z�s� satisfies the differen-
tial equation

d2Z

ds2 +
1

s

dZ

ds
+

uG�0�
2�0�

e−sZ�s� = 0, �E4�

with initial conditions

Z	�0�

u

 = 1, �E5�

�0�

u

dZ

ds
	�0�

u

 = − y�0� . �E6�

Equation �E4� can be recast in the form of an integral equa-
tion which reads

Z�s� = 1 − y�0�ln	 su

�0�



−
uG�0�
2�0�

�
�0�/u

s ds�

s�
�

�0�/u

s�
s�e−s�Z�s��ds�. �E7�

We study first the antiadiabatic limit, uG�0� /���0. Let us
begin with the case y�0�=0. By iterating Eq. �E7� once, we
obtain

Z�s� = 1 −
uG�0�
2�0

�	1 +
�0�

u

ln	 su

�0�

 + e−s − e−�0�/u

+ E1�s� − E1	�0�

u

� + o	uG�0�

2�0

 , �E8�

where E1 is defined in Ref. 58. Using the fact that �
−0� /u�1, and �0� /uel�1, we can rewrite this equation as

Y�l� = 1 −
uG�0�
2�0

�l − ln	 u

�0�

 + � − 1� , �E9�

where �=0.577. . . is Euler-Mascheroni’s constant.58 The gap
is obtained when Y�l*�=0, i.e.,

l* = ln	 u

��0

 +

2�0�

uG�0�
+ 1 − � . �E10�

The differential equation �E4� can also give some indica-
tion on the crossover scale to the adiabatic regime. Assuming
that uG�0� /2�0��1, it is reasonable to replace the term e−s

with 1 in �E4�, yielding the approximate equation

d2Z

ds2 +
1

s

dZ

ds
+

uG�0�
2�0�

Z�s� = 0. �E11�

The solution of the above differential equation is easily
found58 in terms of Bessel functions. One has
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Z�s� = AJ0�	uG�0�
2�0�


1/2

s� + BY0�	uG�0�
2�0�


1/2

s� .

�E12�

The initial conditions yield the following linear system for
A ,B:

AJ0�	�0�G�0�
2u


1/2� + BY0�	�0�G�0�
2u


1/2� = 1,

AJ1�	�0�G�0�
2u


1/2� + BY1�	�0�G�0�
2u


1/2� = y�0�

�� 2u

�0�G�0�
. �E13�

If we consider the case of y�0�=0, we find

A = −
�

2
	�0�G�0�

2u

1/2

Y1�	�0�G�0�
2u


1/2� , �E14�

B =
�

2
	�0�G�0�

2u

1/2

J1�	�0�G�0�
2u


1/2� . �E15�

For �0�G�0� /u�1, an approximate solution is Z�s�
=J0(�uG�0� / �2�0���1/2s). We obtain Z�s�=0 for
�uG�0� / �2�0���1/2s= j0,1�2.40482 �cf. Ref. 58�. The result-
ing strong coupling scale would be given by

l* = ln� j0,1

G�0�
	 2u

�0�

� . �E16�

We note that at this scale G�l*��1, but ��0� /u�el* �1. This
indicates that G�l� is reaching strong coupling before the
scale l* is reached, and in this regime, the gap is produced by
G directly. The true strong coupling scale in this adiabatic
regime is then lad

* =ln�1/G�0��. The above calculation thus
allows to determine when the crossover from adiabatic to
antiadiabatic regime is obtained.

Comparing lad
* with lantiad

* we find that their difference is
minimal when uG�0� /�0�=2. Thus, for uG�0���0�, we
are in the antiadiabatic regime, and

� = �0e−�1−��e−2�0�/uG�0�. �E17�

For uG�0���0�, the gap behaves as �=CuG�0�. We need to
match the two results. To do this, we require that the two
expression of the gap are equal and have the same derivative
with respect to G�0� when uG�0� /�=2�0. This yields the
following ansatz for the gap:

� =
C
2e

u

�
G�0�,

u

�
G�0� � �0, �E18�

� = C�0e−2�0�/uG�0�,
u

�
G�0� � �0. �E19�

The constant C can be obtained using results for the adiabatic
limit. Using Eq. �8� of Ref. 86, we find that C / �2�e�
=0.627, leading to C=10.7. This leads us to the following
ansatz for the gap:

� = 0.627
g2

m�0
2 for 2�0 �

u

�
G�0� , �E20�

� = 10.7�0e−2�m�0
3/g2

for 2�0 �
u

�
G�0� . �E21�

The above ansatz Eq. �E20� tends to overestimate the gap in
the adiabatic regime as it neglects completely the effect of
the nonzero frequency on the gap. However, the lack of a
precise criterion to decide when the RG flow has reached the
strong coupling regime prevents us from finding a better an-
swer.

We now turn to the case of y�0��0. We first look at the
antiadiabatic limit. We obtain by iterating the equation �E7�
that

Z�s� = 1 − y�0�ln	 us

�0�

 −

uG�0�
2�0�

�	1 +
�0�

u

e−�0�/u − y�0�

��e−�0�/u + E1	�0�

u

��ln	 us

�0�

 +

uG�0�
2�0�

�1

− y�0�ln	 u

�0�

��E1	�0�

u

 + e−�0�/u − E1�s� − e−s�

−
uG�0�
2�0�

y�0��2E1	�0�

u

 + 2G	�0�

u



+ e−�0�/u ln	�0�

u

 − E1	�0�

u

ln	�0�

u

E1�s�ln s

− 2E1�s� − 2G�s� − e−s ln s� . �E22�

Using the expansions of E1 and G for small argument,

E1�s� = − � − ln s + o�1� , �E23�

G�s� = −
1

2
�ln s�2 +

���1�
2

+ o�1� . �E24�

We find the following expression for Y�l� at small
uG�0� / ��0��:

Y�l� = 1 +
uG�0�
2�0�

�1 − � + ln	 u

�0�

� − �y�0��ln2	 u

�0�



+ 2�1 − ��ln	 u

�0�

 + ���1� − 2�� − �uG�0�

2�0�
+ y�0�

−
uG�0�
2�0�

y�0��1 − � + ln	 u

��0

��l . �E25�

For y�0��0 a solution exists if

uG�0�
2�0�

�
�y�0��

1 + �y�0��ln	ue1−�

��0

 . �E26�

In other words, the existence of the gap is controlled by the
ratio of the coupling constant to the marginally irrelevant
perturbation measured at the energy scale �0e1−�. We have58

���1�=�2+�2 /6. However, for what follows, it is convenient

ADIABATIC-ANTIADIABATIC CROSSOVER IN A… PHYSICAL REVIEW B 72, 024434 �2005�

024434-17



to make an approximation ���1���2+1. One can then can
rewrite

Y�l� = 1 +
uG�0�
2�0�

�1 − y�0�ln	ue1−�

�0�

�ln	ue1−�

�0�



− �y�0� +
uG�0�
2�0�

�1 − y�0�ln	ue1−�

�0�

��l .

�E27�

The strong coupling scale is obtained for Y�l*�=0 which
gives us

l* = 1 − � + ln	 u

�0�

 +

1

uG�0�
2�0�

+
y�0�

1 − y�0�ln	ue1−�

�0�



. �E28�

We note that making y�0�=0 in the above formula gives back
the expression �E10�.

Turning to the crossover to the adiabatic regime, we note
that again, due to the lack of a precise criterion for cutting
the RG flow, we can only propose an ansatz to relate the two
regimes. Extending the reasoning made in the previous dis-
cussion of the case y�0�=0, we expect that the crossover
happens when lad

* − lantiad
* is minimal. The lengthscale lad

* has
been obtained in section D. It reads

lad
* = − ln G�0� +

3

2
ln�1 − �y�0��ln G�0�� . �E29�

Minimizing the difference of length scales then gives

uG�0�/2�0�

�uG�0�
2�0�

−
�y�0��

1 + �y�0��ln�ue1−�/�0���2 = 1

+
3

2

�y�0��
1 − �y�0��ln G�0�

. �E30�

In the case of y�0��1, one can write �u /��G�0�=2�0�1

+��. The quantity � is straightforward to obtain by expanding
�E30�. Finally, one has

u

�
G�0� = 2�0�1 + 2

�y�0��

1 + �y�0��ln	ue1−�

�0�



−
3

2

�y�0��

1 + �y�0��ln	 u

2�0�

� . �E31�

Therefore, the crossover scale is only weakly affected by the
presence of logarithmic corrections. An ansatz similar to Eq.
�E20� can be derived in the case of a spin chain with mar-
ginally irrelevant operator. Using the results of Ref. 48, com-
bined with the Appendix D, we obtain the following expres-
sion of the gap in the adiabatic regime:

� = 1.96886
u

�
G�0�

1

�1 + �y�0��ln	 �y�0��2/3

2.1557G�0�

�3/2 .

�E32�

Our calculation of the crossover scale shows that this expres-
sion is valid provided 2�0�uG�0� /�. For 2�0�uG�0� /�,

an expression of the gap of the form ��Ce−l* with l* given
by Eq. �E28� is valid. Matching the two expressions for
2�0=uG�0� /� yields

� = 10.704�0
e�y�0��/�1+�y�0��ln�ue−�/�0���

�1 + �y�0��ln	 �y�0��2/3u

2 � 2.1557�0�

�3/2

� exp� − 1

uG�0�
2�0�

−
�y�0��

1 + �y�0��ln�ue−�/�0��
� �E33�

for 2�0�uG�0� /�. Letting y�0�→0, in Eqs. �E32� and
�E33�, we recover the previous formulas �E20�.
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