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Motivated by recent experiments on an S=1/2 antiferromagnet on the kagomé lattice, we investigate the
Heisenberg J1−J2 model with ferromagnetic J1 and antiferromagnetic J2, Classically the ground state displays
Néel long-range order with 12 noncoplanar sublattices. The order parameter has the symmetry of a cubocta-
hedron, it fully breaks SO�3� as well as the spin-flip symmetry, and we expect from the latter a Z2 symmetry
breaking pattern. As might be expected from the Mermin-Wagner theorem in two dimensions, the SO�3�
symmetry is restored by thermal fluctuations while the Z2 symmetry breaking persists up to a finite tempera-
ture. A complete study of S=1/2 exact spectra reveals that the classical order subsists for quantum spins in a
finite range of parameters. First-order spin wave calculations give the range of existence of this phase and the
renormalizations at T=0 of the order parameters associated to both symmetry breakings. This phase is de-
stroyed by quantum fluctuations for a small but finite J2 / �J1��3, consistently with exact spectra studies, which
indicate a gapped phase.
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I. THEORETICAL AND EXPERIMENTAL ISSUES

Whatever the nature of the spin, classical or quantum, the
first neighbor Heisenberg antiferromagnet on the kagomé lat-
tice fails to display Néel-like long-range order. Classically, it
is characterized by an extensive entropy1,2 at T=0. Quantum
mechanically the spin-1 /2 system has an exceptionally large
density of low lying excitations3,4 reminiscent of the classical
extensive entropy. It is still debated whether and eventually
how this degeneracy is lifted in the quantum limit.5,6

An essential issue concerns the influence of perturbations:
classically the effect of a second neighbor coupling J2 has
been very early studied by Harris and co-workers.7 They
showed that an infinitesimal J2 is sufficient to drive the sys-
tem toward an ordered phase with the three spins around a
triangle pointing 120° from each other. Antiferromagnetic
second-neighbor coupling �J2�0� favors the q=0 Néel order
of this pattern on the Bravais lattice, whereas there are nine
spins per unit cell for J2�0 �q=�3��3 order�. The effect of
Dzyaloshinsky-Moriya interactions has also been analyzed.8

To our knowledge the reduction of the order parameter by
quantum fluctuations has only been studied through exact
diagonalizations.9 This approach points to an immediate
transition from the “disordered phase” at the pure J1�0
point, to the semiclassical Néel phases.

Up until now the J1−J2 model on the kagomé lattice has
only been studied for antiferromagnetic J1. Many magnetic
compounds,10–13 with this geometry, have been studied so
far, but most of them have spin S=3/2. A few compounds
with S=1/2 Cu ions have recently been synthetized.14–16

None of them can be described by a pure isotropic, first
neighbor antiferromagnetic Heisenberg model. Recent ex-
perimental work on an organic compound with copper ions
on a kagomé lattice17 gives indication of competing ferro-
magnetic and antiferromagnetic interactions.

It is thus the purpose of the present work to extend the
previous study of the J1−J2 model to ferromagnetic nearest
neighbor coupling �J1�0�. The Hamiltonian reads as

H = J1�
�i,j�

Si · S j + J2 �
��i,k��

Si · Sk, �1�

where the first and second sums run, respectively, over pairs
of nearest neighbors �i , j� and next-nearest neighbors ��i ,k��.

For a pure ferromagnetic J1�0 coupling the system is
indeed in a ferromagnetic phase. For a pure antiferromag-
netic second neighbor interaction the model reduces to three
decoupled kagomé lattices with antiferromagnetic interac-
tions, and has thus an extensive entropy in the classical limit.
The behavior of the model between these two limits is the
object of the present study.

In Sec. II the classical ground state of the Hamiltonian �1�
is investigated and the phase diagram of the model is given
in the classical limit. For competing interactions J1�0 and
J2�0 the model exhibits an ordered phase with 12 sublat-
tices that fully breaks SO�3� as well as a discrete symmetry
�chiral symmetry breaking�. We show that contrary to the
Néel order, which breaks a continuous symmetry and there-
fore is destroyed down to infinitesimal temperatures, the chi-
ral order survives thermal fluctuations and undergoes a phase
transition at finite temperature.

In Sec. III we study the S=1/2 quantum model using
exact diagonalizations and show the premise of the semiclas-
sical ordering on samples of up to 36 spins.

In Sec. IV we study the effect of long-wavelength quan-
tum fluctuations on this semi-classical order in the spin-wave
approximation. It appears that the 12 sublattice Néel order
survives quantum fluctuations in an extended range of pa-
rameters, but is destroyed for a nonzero J2�0 �J2 / �J1��3�.
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In Sec. V we show that exact diagonalizations in this
range of parameters indeed point to �a� gapped phase�s�.

II. CLASSICAL APPROACH

In this section we restrict ourselves to classical spins: the
spins Si are usual unit vectors living in a three-dimensional
space.

A. Ground state for J1�0 and J2� 	J1	 /3

To investigate the nature of the ground state of the Hamil-
tonian �1�, we first Fourier transform it to find its lowest-
energy modes. The kagomé lattice having three sites per Bra-
vais cell, we get three branches. For J1�0 and J2�0 we find
a single minimum at q=0 corresponding to the expected fer-
romagnetic ground state. Upon increasing J2�0, we find
three degenerate minima at the edge centers of the first Bril-
louin zone, the classical transition occuring at J2= �J1� /3. The
three modes q=X1,2,3 �Fig. 1� are the only solution as long as
J2� �J1� /3 and in the limit of pure J2�0 one recovers the flat
zero-energy branch of the pure J1�0 case: we then have
three decoupled kagomé lattices with nearest neighbor cou-
pling J2.

In the J1�0, J2� �J1� /3 region, the unit cell compatible
with the three edge centers contains 12 sites and the direct
minimization of �1� for small samples of size multiple of 12
indeed reveals a Néel long-range order with 12 noncoplanar
sublattices pointing toward the 12 centers of edges of a cube
�Fig. 2�.

The apparent complexity of this structure is somewhat
lightened when one considers the six spins around an hexa-

gon: they lie in the same plane and make an angle � /3 with
their nearest neighbors. We thus have four hexagons in the
unit cell defining four different planes oriented like the faces
of a tetrahedron. The polyedron whose vertices coincide with
the directions of the sublattices is named a cuboctahedron,
and we will refer to that order parameter as the cuboc phase
in the following. Consistently, Monte Carlo simulations with
a Metropolis algorithm reveal a local cuboc Néel order with
fluctuations increasing with temperature.

We now have a complete picture of the classical phase
diagram of the Hamiltonian �1� at T=0 in the entire J1−J2
plane �Fig. 3�.

B. Discrete symmetry breaking

It is clear that O�3� is fully broken in the cuboc phase at
T=0: the point group symmetry of a cuboctahedron is simply
that of the cube, i.e., Oh=O� 
Id, i�, where O is the octa-
hedral group containing the 24 rotations leaving a cube or an
octahedron invariant, and Id and i are, respectively, the iden-
tity and the spin inversion, or spin flip.

An important result arises when one considers the action
of the spin-flip alone. It is clear that i acting on a cubocta-
hedron takes it onto another cuboctahedron, but the labels of
the two cuboctahedra cannot be made to coincide by means
of a global rotation. Namely, the order parameter we obtain
is the mirror-symmetry image of the previous one �Fig. 4�.

The order parameter in the cuboc phase thus breaks the
spin-flip symmetry, and we are able to divide the ground
states manifold into two classes. This makes us expect a
transition at finite temperature associated with this Z2 sym-
metry breaking.

To show that this is indeed the case, we define a variable
labeling the two classes of ground states. Consider the nor-
malized scalar chirality on a triangle, namely ��

= �Si∧S j� ·Sk / ��Si∧S j� ·Sk� with �i , j ,k� labeling the three
sites clockwise. An inspection of the order parameter of Fig.
2 reveals that �� is alternatively +1 on upward triangles and
−1 on downward triangles �Fig. 5�. We naturally define the
alternate scalar chirality as

FIG. 1. �Color online� The first Brillouin zone of the kagomé
lattice with its points of high symmetry: the center of zone � �q
=0�, the two zone corners M1 and M2, and the three edge centers
X1, X2, and X3.

FIG. 2. �Color online� Classical order parameter for J1�0 and
J2� �J1� /3 with the associated lattice symmetry breaking. The 12
sublattices and the 4 different types of hexagons are numbered. Also
shown is the plane containing the six spins of hexagon 1 �dashed�.

FIG. 3. �Color online� Classical phase diagram of the Heisen-
berg J1−J2 model on the kagomé lattice at T=0. The transition
between the ferromagnetic state and the antiferromagnetic cuboc
state occurs at J2=−J1 /3.
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m� =
3

2N
�
�

�− 1�	���, �2�

where the sum runs over the 2N /3 triangles of the kagomé
lattice, and 	� is, respectively, 0 and 1 on upward and down-
ward triangles.

The spin flip trivially changes the sign of ��, so that m�

= ±1 at zero temperature, depending on the class of the order
parameter. Hence, m� is the order parameter associated with
the spin-flip symmetry breaking.

Monte Carlo simulations have been performed on samples
with up to 1200 spins: they show that m� vanishes at finite
temperature, while the associated chiral susceptibility, de-
fined as

kB
� =
2N

3T
��m�

2� − ��m���2� , �3�

and the specific heat, seemingly both diverge �Fig. 6�. Typi-
cal simulations involved 106 Monte Carlo steps per spin. The
first results indicate that the transition is not in the two-
dimensional Ising universality class. The complexity of the
global set of excitations that does not reduce to those of the
above-mentioned �� variable are probably at the origin of a
more complex behavior, presumably a weak first-order phase
transition.18 The complete study of this classical phase tran-
sition will be published elsewhere.19

III. SPIN-1/2 MODEL

We now turn to the spin-1 /2 quantum model. Considering
the classical analysis, the question is whether quantum fluc-
tuations are strong enough to wipe out the classical order. If
so, we end up with a purely quantum phase such as a valence
bond solid or a RVB liquid.6 If not, this means that quantum
fluctuations merely dress the classical order parameter, re-
ducing the mean sublattice magnetization while preserving
its symmetries. Such states may thus be referred to as semi-
classical states.

A. À la Néel SU„2… symmetry breaking

The exact spectra of finite size samples have already been
shown to be a powerful tool to find eventual Néel orders in
quantum spin systems.20,21 Of course they allow for the exact
computation of the square of the sublattice magnetization or
any relevant structure factor. But mostly, while the extensive
use of the symmetries of the Hamiltonian is compulsory in
order to diagonalize large enough samples �typically 36 spins
today�, it also gives a clear signature of SU�2�-breaking
phases, even on small samples spectra.

Namely, for an SU�2� symmetry breaking, we expect a
large set of low-lying eigenstates of the Hamiltonian, with
different total spin S values, to collapse onto the ground state
when the size of the sample N→�. These states have been
called the quasidegenerate joint states �QDJS� and they have
been recently observed experimentally on nanomagnets.22 If
the semiclassical picture is valid, these QDJS are expected to
have energies well below the magnon excitations and to
scale as S�S+1� /N, as expected for a quantum top. Exact
spectra are thus displayed versus S�S+1� and the QDJS are
often referred to as the Anderson’s tower of states.21 To have
a true SU�2� symmetry breaking in the thermodynamic limit,
the QDJS should have total spins up to S�O��N�. The
breaking of the SU�2� symmetry then occurs with all the
QDJS collapsing onto the absolute ground state like 1/N
when N→�, i.e., faster than the softest magnons, whose

FIG. 4. �Color online� An order parameter and its image by a
spin flip. After a global rotation of the sublattice directions, it is
clear that the two order parameters are related one to the other by a
mirror symmetry.

FIG. 5. The normalized scalar chirality �� computed on the
order parameter of Fig. 2. The spin-flip trivially permutes the � and
.

FIG. 6. �Color online� Specific heat C /kB �red dashed line� and
chiral susceptibility kB
� �blue solid line� versus temperature on a
1200 spins sample for J2 / �J1�=0.5: both quantities diverge at Tc

=0.24, simultaneously with the vanishing of the chiral order param-
eter m� �not shown�.
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energies scale as 1/�N, defining the à la Néel
SU�2�-symmetry breaking scheme.21 This result explains
why it is numerically more favorable to look at the QDJS,
since order parameters only scale as 1/�N. In the thermody-
namic limit, the ground state is a superposition of an infinite
number of QDJS with different S values, which clearly
breaks SU�2�.

The crucial point is that in each spin sector the number
and symmetries of the QDJS are exacly determined from
group representation theory3,21 by the symmetry of the ex-
pected ground state.

B. Determination of the QDJS

If the thermodynamic ground state exhibits a semiclassi-
cal 12-sublattice Néel order then the QDJS, if ever they exist,
should be of symmetry compatible with both those of the
Hamiltonian �1�, since they are eigenstates, and those of the
cuboc phase, i.e., Oh.

A classical result of group theory is that the number of
such states is completely determined by the structures of the
two groups. Indeed, if we restrict ourselves to the rotational
symmetry breaking, we see that the original SO�3� symmetry
of �1� is reduced to its subgroup O in the Néel-ordered
ground state.

Thus, while DS is an irreducible representation �IR� of
SO�3� of spin S, it is an a priori reducible representation of
O that one can decompose onto the five IRs �� of O ac-
cording to

DS = �
�=1

5

n��S���, �4�

with

n��S� =
1

24 �
g�O


�
*�g�
s�g� , �5�

where 
��g� and 
s�g� are the characters of g�O in the IR
�� of O, and in the IR DS of SO�3�, respectively. The char-
acter table of O is given in Table I and 
s�g�=sin�2S
+1�� /2� / sin�� /2�, with � the angle of the rotation g, For
completeness we give the explicit decomposition �4� for
spins up to S=6 in Table II.

The decomposition �4� directly gives the number of states
that belong both to DS and ��, i.e., that are compatible with
both the SO�3� and O symmetries, as required for the QDJS.
It should be emphasized that for a given S value the number
of such states is n�S�=��=1

5 n��S�dim ��=2S+1, as expected
for a complete SO�3� breaking.21

We stress that �4� relies only on group theory and that it
makes no reference to the representation space.24

Now, if we are to find the total content of each spin sector
of the Anderson’s tower of states, we should treat the whole
Oh group, not limiting ourselves to the rotational symmetry-
breaking SO�3�→O as in �4�.

This is particularly simple since Oh is the direct product
of O with the group 
Id, i�, and the spin flip being also a
symmetry of the Hamiltonian, there is no compatibility issue
here. Thus, everytime an IR �� appears in �4�, we actually
get two copies of it associated to the two IRs of the 
Id, i�
group �Table I�. Since these two IRs differ only in their par-
ity under the spin-flip operation, which itself transforms any
order parameter into its Z2 image, this double quasidegen-
eracy is clearly reminiscent of the Z2 symmetry breaking
observed classically.

We thus have formally determined the number and sym-
metries of the QDJS appearing in each spin sector of the
tower of states. However, for a given total spin, their sym-
metries are given in terms of the IRs of Oh while exact
diagonalizations provide eigenstates of given symmetry un-
der the lattice symmetry group.

It thus remains to map the IRs of Oh onto those of the
lattice symmetry group, namely GN=TN∧ PN, where TN con-
tains the N /3 translations by a Bravais lattice vector and PN
is the point group of the sample �in general, PN is a subgroup
of C6v, the point group of the infinite kagomé lattice�.

Such a mapping clearly exists since the labeling of the 12
vertices of the cuboctahedron induces a labeling of the lattice
�Fig. 2�. Applying an element of Oh to a cuboctahedron
means permuting its 12 labels, which itself is equivalent to a
lattice transformation.

We thus have a mapping between Oh and some elements
of GN. Note that while the mapping between the group ele-
ments is not necessarily one to one, and in fact it is a one-
to-many mapping for all the elements of the subgroup O, the
resulting mapping between the IRs of the two groups is one
to one, as is explicited in Table III.

A notable exception is the spin flip, which is exactly
mapped onto the rotation of the lattice R� by angle � around
the center of an empty hexagon. Hence, the parity of an
eigenstate of the Hamiltonian �1� under R� is directly equal
to its parity under the spin flip.

TABLE I. Character table of O. Its irreducible representations
are named both with the usual nomenclature and with the number-
ing 1���5 used throughout the article. Also shown is the charac-
ter table of the group 
Id, i�. The character table of the whole Oh

group is obtained by forming the direct product of the two tables.

O Id 8C3 3C2 6C2 6C4 � 
Id, i� Id i

A1 1 1 1 1 1 1 �e 1 1

A2 1 1 1 −1 −1 2 �o 1 −1

E 2 −1 2 0 0 3

T1 3 0 −1 −1 1 4

T2 3 0 −1 1 −1 5

TABLE II. The decomposition �4� explicit for S�6.

D0=A1

D1=T1

D2=E+T2

D3=A2+T1+T2

D4=A1+E+T1+T2

D5=E+2T1+T2

D6=A1+A2+E+T1+2T2

DOMENGE et al. PHYSICAL REVIEW B 72, 024433 �2005�

024433-4



Thus, if ever the thermodynamic ground state has the
classical 12-sublattice structure, we are able to find the num-
ber and degeneracies of the expected QDJS using Table II
and the one-to-one mapping between the IRs of Oh and
those of GN �Table III�.

However, there is still one subtlety. Indeed, in order not to
artificially frustrate the 12-sublattice order, we choose
samples containing multiples of 12 spins, i.e., N=12, 24, and
36 spins. The representation spaces of these three samples
have different properties since the total spin on each sublat-
tice is N /24, which may be integer or half-integer.

To be more specific, we want to write down the matrix

Û�g��SU�2� associated with a particular rotation g�O that
acts on the wave function �cuboc� of a cuboc-ordered state.
The Hilbert space that contains such states is a subspace of
� i=1

12 DN/24, where DN/24 is the Hilbert space of one spin

N /24. Thus, a natural choice for Û�g� would be the tensor

product of 12 ÛN/24�g� matrices, each one of them represent-
ing g in DN/24.

Now we know that in each subspace DN/24, if N /24 is a

half-integer, ÛN/24�g� and −ÛN/24�g� are equally suitable
choices, and we cannot decide between them other than ar-
bitrarily, due to the double connectedness of SO�3�.

Let us choose 12 such matrices anyway and form their

tensor product Û�g�. When acting on a particular order pa-
rameter, named �cuboc�, we get

Û�g��cuboc� = ��g��cuboc�� , �6�

where �cuboc�� represents the order parameter obtained by
applying the global rotation g�O on �cuboc�, and ��g� is an
overall phase factor that we cannot get rid of since it embeds

the arbitrariness of our choice of the matrices ÛN/24�g�. Re-

call, however, that Û�g� acts in a subspace of � i=1
12 DN/24,

which is known from spin algebra to contain states with
integer spins only, whatever N /24, integer, or half-integer.

Hence Û�g� is always a true representation of g, i.e., no
ambiguity should remain in it and consequently in ��g�.
Thus the group law should be exactly verified by ��g�, which

is then simply a one-dimensional, thus irreducible, represen-
tation of O.

Direct computation for N=12, 24, and 36 spins indeed
shows that ��g�=
�0

�g�, where �0=1 for N=24 spins, and
�0=2 for N=12 and 36 spins.

Finally, to embed this subtlety in the decomposition �4�,
one simply has to permute A1↔A2 and T1↔T2 in Table II
for N=12 and 36 spins, as can be seen directly on the char-
acter table of O �Table I�. Note that no additionnal ambigu-
ity arises from the consideration of the 
Id, i� part of Oh,
since the whole discussion relies on the double connected-
ness of SO�3� that is irrelevant here.

C. Analysis of exact N=36 spectrum

We determine the number and degeneracies of the QDJS
expected for a sample with N=36 spins and compare this to
the exact diagonalization result.

We first compute the decomposition �4� for total spin S
�6, the approximate maximum spin of the QDJS for N
=36. As stated earlier, we just have to take Table II and
perform the relevant permutations A1↔A2 and T1↔T2. In
order to take the whole Oh group into account we recall that
each one of the IRs of the decomposition should actually
appear twice with the two possible parities under the spin-
flip operation. Then we map these IRs onto those of GN and
here we need to specify the shape of the sample we diago-
nalize �Fig. 7�.

The mapping is readily done since the N=36 sample has
the full C6v symmetry and we may directly use Table III.
Hence we have obtained the full composition of the Ander-
son’s tower of states in the lowest spin sectors 0�S�6
�Table IV�. Again we stress that each QDJS appearing in
Table IV should be present twice, with the two parities under
the R� operation, this last result being the hallmark of the Z2
symmetry breaking observed classically.

The comparison with the exact spectrum of the Hamil-
tonian �1� for the N=36 sample is straightforward �Fig. 8 and
Table V�. Indeed, one clearly notes a set of low-energy
eigenstates, well separated from the magnon excitations for
total spin S�6, which scale reasonably as S�S+1�. But the
main point is that for each total spin S the number and sym-

TABLE III. One-to-one mapping between the IRs of Oh and
those of GN. We considered a sample having the three edge centers
in its first Brillouin zone and the full C6v point symmetry. C6v is
generated by R2�/3, the rotation of the lattice by angle 2� /3 around
an empty hexagon, R� and �, a reflection whose axis is a diameter
of an empty hexagon, and the IRs of C6v are labeled by the associ-
ated three quantum numbers R2�/3, R�, and �. The IRs of TN are
labeled by the k vector of the first Brillouin zone.

O k R2�/3 � � 
Id, i� R�

A1 0 1 1 1 �e 1

A2 0 1 −1 2 �o −1

E 0 j , j2 3

T1 X1,2,3 −1 4

T2 X1,2,3 1 5 FIG. 7. The N=36 sample.
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metries of the low-lying eigenstates are exactly those ob-
tained from our symmetry analysis, as can be readily verified
in Table V.

In particular, we note that we have 2�2S+1� QDJS in each
total spin S sector, consistently with a complete SU�2� break-
ing in the thermodynamic limit, with the factor 2 coming
from the two replica R�= ±1 of each QDJS and taking care
of the Z2 symmetry breaking. The same analysis has been
made for N=12 and 24 nonfrustrating samples, leading to the
same result.

These symmetry arguments are strong enough to claim
that, at least in a certain range of parameters, quantum fluc-
tuations do not destroy the complicated 12-sublattice classi-
cal long-range order and that there exists a quantum cuboc
phase in the thermodynamic limit, in the sense of a ground
state consisting of the classical cuboc state renormalized by
quantum fluctuations, as explained earlier.

However, it can be objected that long-wavelength quan-
tum fluctuations, which cannot be accounted for on the small
samples we diagonalized, may wipe out the cuboc order.

IV. SEMICLASSICAL APPROACH

Now that we are convinced that the 12-sublattice Néel
order observed in the classical cuboc phase also exists in
small samples of spins 1/2, we may compute the effect of
long-wavelength quantum fluctuations on the energy, sublat-
tice magnetization, and chiral order parameter in the ground
state using the spin-wave approximation.

The route to compute the quantum deviations to a classi-
cal cuboc state is straightforward: at each site of the kagomé
lattice we define a local frame in spin space whose z axis is
aligned with the local spin in the classical ground state. Thus,
in this frame the classical cuboc ground state is simply a
ferromagnetic state to which one can readily apply the
Holstein-Primakov transformation.

First, we choose a particular cuboc state, say, the one of
Fig. 2. At a given site i of the kagomé lattice we define the
local frame �xi ,yi ,zi� with zi the unit vector parallel to the
local classical spin Si. To choose xi we note that each site of

the kagomé lattice belongs to two triangles pointing in op-
posite directions. Consider the other two spins on the down-
ward triangle and label them j and k, with �i , j ,k� turning
clockwise. The directions of the two spins j ,k in our cuboc

FIG. 8. Top: Exact spectrum of the Hamiltonian �1�, with
J2 / �J1�=0.5, for the N=36 sample shown in Fig. 7. The exact ener-
gies per spin are displayed versus S�S+1�. The � �resp. � symbols
are eigenstates with even �resp. odd� parity under the R� lattice
rotation. Other symbols are eigenstates without the R� symmetry.
The full symmetries of the lowest eigenstates are given in Table V.
The expected QDJS for the 12-sublattice Néel order appear between
the two dashed lines. In particular, even and odd parity eigenstates
come in an equal number in each spin sector, as expected for the Z2

symmetry breaking. Bottom: Zoom on the QDJS �energies
rescaled�.

TABLE IV. Expected symmetries �k: wave vector, R2�/3: phase factor in a lattice 2� /3 rotation, and �:
phase factor in a lattice reflection� and dimensionality �d� of the IRs appearing in the QDJS of the 12-
sublattice Néel state. Each of these IRs actually appears twice in the spectra with R�= ±1 �not shown�, these
two copies will be noted in the following e �for even� and o �for odd�. The last columns give the number of
each IR expected in the S sector �up to S=6� for the N=36 sample, according to Eq. �5�. The last line gives
the number n�S� of QDJS in each sector counting the Z2 replica gives a total number of 2n�S� QDJS in the
spin S sector�.

S 0 1 2 3 4 5 6

1 k=0 R2�/3=1 �=1 d=1 0 0 0 1 0 0 1

2 k=0 R2�/3=1 �=−1 d=1 1 0 0 0 1 0 1

3 k=0 R2�/3= j , j2 d=2 0 0 1 0 1 1 1

4 k=X1,2,3 �=−1 d=3 0 0 1 1 1 1 2

5 k=X1,2,3 �=1 d=3 0 1 0 1 1 2 1

n�S� 1 3 5 7 9 11 13
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state are z j and zk and one can easily verify that xi= �zk

−z j� /�2 is indeed a unit vector orthogonal to zi, We com-
pletely determine the local frame by imposing yi=zi∧xi.

This construction is translationally invariant and repeating
it for all the sites of the kagomé lattice will lead to 12 dif-
ferent local frames associated to the 12 sublattices of the
classical ground state. Hence, using the appropriate transition
matrix Ri from the reference frame �x ,y ,z� to the local
frame �xi ,yi ,zi�, we may compute the components of the
spin at site i in its local frame Si�= �Si

xi ,Si
yi ,Si

zi� from Si

=RiSi� �Remark: there are only 12 different Ri matrices�.
Before computing the Hamiltonian �1� in the local frame,

we note that it can be rewritten as a sum over the N /3 empty
hexagons �Fig. 9�:

H = J1�̋ �
�i,j�

Si · S j + J2�̋ �
��i,k��

Si · Sk, �7�

where �i , j� and ��i ,k�� are now, respectively, the six nearest
and six next-nearest neighbor pairs of sites enclosed in the
empty hexagon ˝. Now, using Si ·S j =Si�TijS j�, with Tij
= tRiR j, we may rewrite �7� in the local frame as

H = J1�̋ �
�i,j�

Si�TijS j� + J2�̋ �
��i,k��

Si�TikSk�. �8�

Now, we are able to quantize the fluctuations around the
classical cuboc state using Holstein-Primakov bosons. Up to
quadratic order the transformation at site i is written as

Si�
+ = Si

xi + jSi
yi = �2S − nici � �2Sci,

Si�
− = Si

xi − jSi
yi = ci

†�2S − ni � �2Sci
†,

Si�
z = Si

zi = S − ni, �9�

where ci
† and ci, respectively, create and annihilate a

Holstein-Primakov boson at site i, with S the length of the
classical local spin and ni=ci

†ci.
Inserting �9� into �8� we obtain the quantized version of

the original Hamiltonian �1� up to quadratic order. As usual
we Fourier-transform ci and ci

† according to

ci =� 3

N
�
q

e−jq·�R
˝

+e�i
�cq

�i, �10�

where the sum runs over the first Brillouin zone, R
˝

is a
vector of the Bravais lattice, and �i=	 ,� ,� indicates one of
the three possible sites in the Bravais cell �Fig. 9�.

Again, in the local frame the complicated 12 sublattice
order is just a ferromagnetic state, so that we need only three
flavors of bosons �i=	 ,� ,� associated with the three sites
per Bravais cell on the kagomé lattice. We may finally bring
the Hamiltonian to matrix form as

H = �J1 − J2�NS�S + 1� + �
q

Vq
†MqVq, �11�

where the sum runs over the entire first Brillouin zone, Vq is
the column vector �cq

	 ,cq
� ,cq

� ,c−q
	† ,c−q

�† ,c−q
�†�, and Mq is the 6

�6 matrix Mq= �J2−J1�S1+ � Aq Bq

B−q A−q
�, with 1 the identity ma-

trix, and

TABLE V. Energies per spin and symmetries of the lowest
eigenstates of the Hamiltonian �1� for S�4.

S E /N�J1� IR

0 −0.420 920 074 2e

0 −0.420 054 316 5 2o

1 −0.418 935 537 3 5o

1 −0.418 596 983 5e

2 −0.415 654 182 4 3e

2 −0.415 317 356 6 4o

2 −0.415 282 726 3 4e

2 −0.414 885 938 2 3o

3 −0.410 506 069 7 1e

3 −0.410 423 696 4o

3 −0.410 403 549 7 5o

3 −0.409 898 757 9 4e

3 −0.409 886 241 5e

3 −0.409 738 183 1o

4 −0.404 181 778 4 3e

4 −0.403 855 860 2 5e

4 −0.403 797 030 4 2e

4 −0.403 574 347 5 4o

4 −0.403 272 509 6 4e

4 −0.403 172 612 2 5o

4 −0.402 928 650 4 2o

4 −0.402 888 596 1 3o

FIG. 9. �Color online� Kagomé lattice with nearest �solid� and
next-nearest neighbor exchange �dashed�. Note that we span all the
exchange paths by considering the 12 links inside an empty hexa-
gon ˝ located at R

˝

and then iterate over the whole Bravais lattice.
u and v are the basis vectors of the Bravais lattice of length 2 and
the three sites 	, �, � per Bravais cell define the three unit vectors
e	=u /2, e�= �v−u� /2 and e�=−v /2.
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Aq = � 0 a	��q� a	��q�
a	��q� 0 a���q�
a	��q� a���q� 0

� , �12�

and

Bq = � 0 b	��q� b	��q�
b	��− q� 0 b���q�
b	��− q� b���− q� 0

� , �13�

with

a	��q� =
J2S

4
cos q�−	 −

J1S

4
cos q� −

J1S
�2

sin q�,

b	��q� =
J2S

4
cos q�−	 −

J1S

4
cos q� +

J2S
�2

sin q�−	,

with the four remaining matrix elements obtained by cyclic
permutation of the indices and where we have used the con-
densed notation q�−	=q · �e�−e	�.

Note that the first term in �11� contains the usual dominant
contribution to the renormalization of the classical ground
state energy �J1−J2�NS2. Note also that Aq

† =Aq and Bq
†

=B−q so that Mq is indeed hermitic.
As usual, the next step is to find a transition matrix Pq

such as Mq is diagonal in the new basis.
It should be emphasized that Pq is strongly prescribed by

the fact that it has to preserve the boson commutation
relations,23 much in the same way as the Bogoliubov tranfor-
mation for the collinear antiferromagnet on the square lattice.

We end up with three Bogolioubov bosons, obtained from
Wq= �dq

	 ,dq
� ,dq

� ,d−q
	† ,d−q

�† ,d−q
�†�= PqVq, and the six eigenvalues

give the corresponding three dispersion branches.
In the new basis �11� reads as

H = �J1 − J2�NS�S + 1� + �
q

�
�=	,�,�

�q
��dq

�†dq
� +

1

2
� ,

�14�

so that the energy per spin in the ground state, which is the
vacuum �0� of dq

� Bogoliubov bosons, is simply

e0
N =

1

N
�0�H�0� = �J1 − J2�S�S + 1� +

1

2N
�
q

�
�=	,�,�

�q
�.

�15�

As for the collinear antiferromagnet, note that the Bogoliu-
bov transformation Pq is actually singular wherever �q

�=0,
namely at q=X1,2,3, where soft modes are expected in the
thermodynamic limit. One indeed verifies that the lowest
branch vanishes at each one of the three edge centers of the
first Brillouin zone giving exactly three Goldstone modes in
the thermodynamic limit, as expected for a complete SU�2�
symmetry breaking.

We may then compute the renormalization of the magne-
tization in the local basis,

mN =
1

NS�0��
i=1

N

Si
zi�0� = 1 +

1

S
�1 −

1

N
�
q

� �
i,j=1

3

�Pq
i,j�2� ,

�16�

where the prime denotes a sum over the first Brillouin zone
deprived of its three edge centers and where Pq

i,j is the �i , j�th
matrix element of the matrix Pq.

Another quantity of interest to us is the renormalization of
the scalar chirality on a triangle. It is naturally normalized by
its value in the classical ground state, so that we define ��

= ��2/S3��Si∧S j� ·Sk on each triangle �i , j ,k�, with �i , j ,k�
turning clockwise. We may then compute the renormaliza-
tion of the alternate scalar chirality in the ground state as

m�
N =

3

2N�0��
�

�− 1�	����0� = 1 +
3

S�1 −
1

N
�
q

�Dq� ,

�17�

where the sum runs over the 2N /3 triangles of the kagomé
lattice, while 	� is, respectively, 0 and 1 on upward and
downward triangles, and

Dq = �
i,j=1

3

�Pq
i,j�2 −

1

2�
j=1

3 �
cos q	�Pq

2,j + Pq
5,j��Pq

3,j + Pq
6,j�

+ cos q��Pq
1,j + Pq

4,j��Pq
3,j + Pq

6,j�
+ cos q��Pq

1,j + Pq
4,j��Pq

2,j + Pq
5,j�

+
�2

3
sin q	�Pq

5,jPq
6,j − Pq

2,jPq
3,j�

+
�2

3
sin q��Pq

4,jPq
6,j − Pq

1,jPq
3,j�

+
�2

3
sin q��Pq

4,jPq
5,j − Pq

1,jPq
2,j�

� .

�18�

These quantities were numerically computed on finite size
samples with linear sizes L�102 Bravais lattice spacings. As
usual, the leading correction to the classical value comes
from the first magnon excitation whose energy scales as 1 /L.
We find very good agreement with the expected scaling laws
for e0

N ��1/L3�, mN ��1/L�, and m�
N ��1/L�, and perform

the extrapolation to the thermodynamic limit.
We first note in Fig. 10 that in the thermodynamic limit

m� and m�
� remain finite in a large region around the point

were exact diagonalizations were performed, thus showing
the stability of the cuboc phase against long-wavelength
quantum fluctuations. For J2 / �J1�=0.5 we find to lowest or-
der in the spin wave approximation that m� and m�

� are
renormalized by 16% and 50%, respectively.

However, upon increasing J2, both quantities decrease
drastically. For J2 / �J1��3 the chirality disappears which
casts a strong doubt on the stability of the 12-sublattice state
itself in this range of parameters.

V. A GAPPED PHASE FOR J2 / 	J1	=5.0

Exact spectra for J2 / �J1�=5.0 differ notably from spectra
of an ordered phase as described in Sec. III. First of all, their
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low-lying levels in each S sector do not scale as S�S+1� but
rather as S, as can be seen in Fig. 11. Second, the gap to the
first excitation seemingly does not close to zero with the
system size, as shown in Fig. 12. This second result is con-
sistent with the first one: in a gapped phase a finite magnetic
field Hc is needed to close the gap. This critical field is di-
rectly proportional to the first derivative of the energy versus
S. For this given model in this range of parameters, the avail-
able sizes of exact spectra are large enough to infirm the
presence of a 12 sublattice Néel order and confirm the exis-
tence of a gapped phase. They are not large enough to dis-
criminate between a true spin liquid or a valence bond crys-
tal, and to decide if there is one or two different gapped
phases in this range of parameter.

VI. CONCLUSION

In this paper we have studied the J1−J2 model on the
kagomé lattice, for J1�0 and J2�0. We have found a 12-

sublattice ordered phase for J1�0 and J2 / �J1��1/3. This
new phase was shown to resist quantum fluctuations. On the
exact spectra of small size samples, we found the complete
signature of this complicated Néel order, i.e., the number and
symmetries of the QDJS in the tower of states, based on a
very general group-theoretical approach. Moreover, in the
spin wave approximation, long-wavelength quantum fluctua-
tions were found to renormalize the order parameter to a
finite value in a finite range of parameters up to J2 / �J1��3.

The noncoplanarity of the 12 sublattices in the cuboc
phase was shown to induce a chiral symmetry breaking, to
which we associated a chiral order parameter. Classically, we
showed that this Z2 symmetry was restored at finite tempera-
ture, consistently with the Mermin-Wagner theorem, though
the exact nature of the transition remains to be investigated.
We were also able to find the signature of this discrete sym-
metry breaking on exact spectra.

Finally, we showed in the spin-wave approach that the 12
sublattice order is wiped out by quantum fluctuations for
J2 / �J1��3. Exact diagonalizations indeed confirm the exis-
tence of a spin-gap phase, with short-range order in spin-spin
correlations. For this model the largest available sizes �N
=36� are too small to give more information on the nature of
this quantum phase.

The Laboratoire de Physique Théorique de la Matière
Condensée is UMR 7600 of the CNRS.

FIG. 10. �Color online� Extrapolated values of the magnetiza-
tion in the local basis m� �solid line� and the alternate scalar chiral-
ity m�

� �dashed line� as a function of J2 / �J1�.

FIG. 11. An exact spectrum of the N=36 sample for J2 / �J1�
=5.0 versus total spin S, The symbol convention is the same as that
of Fig. 8.

FIG. 12. �Color online� Top: Finite size scaling of the spin gap
�E for J2 / �J1�=5.0, in the supposed to be gapped phase. Bottom:
The same gap in the 12-sublattice Néel phase, for J2 / �J1�=0.5,
closes as 1/N, as expected for the à la Néel SU�2� symmetry break-
ing �Sec. III A�.
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