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We present a certain class of two-dimensional frustrated quantum Heisenberg spin systems with multiple
ring exchange interactions which are rigorously demonstrated to have quantum disordered ground states with-
out magnetic long-range order. The systems considered in this paper are s=1/2 antiferromagnets on a honey-
comb and square lattices, and an s=1 antiferromagnet on a triangular lattice. We find that for a particular set
of parameter values, the ground state is a short-range resonating valence bond state or a valence bond crystal
state. It is shown that these systems are closely related to the quantum dimer model introduced by Rokhsar and
Kivelson as an effective low-energy theory for valence bond states.
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I. INTRODUCTION

Quantum frustrated Heisenberg antiferromagnets have at-
tracted a great deal of interest in connection with the search
for exotic phases, such as spin liquids. Anderson proposed a
resonating valence bond �RVB� state as a prototype of spin
liquids three decades ago.1 Since then, a number of works
have studied the conjecture that both geometrical frustration
and strong quantum fluctuation may destroy magnetic long-
range order and stabilize a quantum disordered liquidlike
ground state without symmetry breaking.2–17 For example, it
is believed quite likely that quantum spin systems on
Kagome lattices and pyrochlore lattices can exhibit quantum
spin liquid states, though the elucidation of their ground
states remains an important unsolved problem. In related
works, the quantum dimer model �QDM� introduced by
Rokhsar and Kivelson has been extensively studied as an
effective low-energy theory of quantum disordered states
with short-range antiferromagnetic correlation and a spin ex-
citation gap.18–23 The important feature of the QDM is that
its Hilbert space is spanned by only dimer covering states
composed of singlet pairs of nearest-neighbor spins, and this
is the key to its success in describing quantum disordered
states.18 It was shown in the pioneer paper by Rokhsar and
Kivelson that a short-range RVB state is realized in the QDM
as its exact ground state. It was also argued by several au-
thors that the QDM may be an effective low-energy theory of
quantum antiferromagnets on the Kagome lattice.15,23

However, it is not clear how to derive the QDM directly
from the original quantum spin Hamiltonian by truncating
the Hilbert space. Indeed, it appears difficult to find a general
answer to this question. Therefore, in this paper, we do not
seek such a general result. Instead, to obtain better insight
regarding the mechanism stabilizing quantum spin liquids,
we attempt to make progress toward determining what kinds
of quantum spin systems possess a low-energy sector de-
scribed by the QDM.

The main result of this paper is the rigorous proof that a
certain class of quantum antiferromagnetic spin systems in
two dimensions with multiple ring exchange interactions is
equivalent to the QDM. These systems exhibit a short-range

RVB state or a valence bond crystal �VBC� state, depending
on the values of their parameters. Our results clarify the im-
portant role played by the ring exchange interactions in the
realization of quantum spin liquid states.24

This paper is organized as follows. In Sec. II, we present
results of an s=1/2 Heisenberg spin system with multiple
ring exchange interactions defined on a honeycomb lattice. It
is shown that for a particular parameter the rigorous ground
state is the short-range RVB. In this RVB state, spin-spin
correlations decay exponentially, and therefore there is no
magnetic long-range order. On the other hand, correlations
between spin-singlet dimers exhibit power-law long-distance
behavior, implying the existence of low-lying spin-singlet
gapless excitations. In Sec. III and Sec. IV, we consider an
s=1/2 model on a square lattice and an s=1 model on a
triangular lattice, respecticely. Discussion and summary are
given in Sec. V.

II. s=1/2 HEISENBERG ANTIFERROMAGNET
ON A HONEYCOMB LATTICE

A. Model hamiltonian

We consider the s=1/2 quantum Heisenberg antiferro-
magnet on a honeycomb lattice �see Fig. 1�a��, of which the
ground state is exactly obtained. The Hamiltonian is given by
H=HK+HR, with

FIG. 1. �a� Honeycomb lattice. �b� Three kinds of four-spin
exchange processes on a hexagon. �c� An example of a dimer cov-
ering state. The arrows indicate the phase convention of the singlet
states. An arrow from i to j represents Oij�0�. Hexagons containing
circles are covered with unflippable dimers. �d� Staggered VBC.
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Here, �ij�, 	ij�, and 		ij�� represent, respectively, the nearest-,
next-nearest-, and next-next-nearest-neighbor pairs, and J1

J2 ,J3�0. The summation ���¯ � �a
 is taken over sites
in the ath hexagon. The operators P4

a and P6
a represent, re-

spectively, the four-body and six-body ring exchange
interactions,25
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where the sum in Eq. �9� is taken over all combinations of
�i , j ,k , l ,m ,n� in three different pairs depicted in Fig. 2.
�−1�P is 1 �−1� when a combination is generated by an even
�odd� number of transpositions between different pairs. The
summations �A,B,C

a are, respectively, taken over the four-spin
configurations of types A, B, and C of the ath hexagon, as

depicted in Fig. 1�b�. The operator Pa
M projects the six spins

surrounding the ath hexagon �depicted as i , j ,k , l ,m ,n in Fig.
1�a�� onto the subspace with total spin S=3. The summation
�ij¯ � �ã
 is taken over these six sites in the ath hexagon.
HK is the Hamiltonian of the s=1/2 Klein model on a hon-
eycomb lattice, which was studied in detail by Chayes et
al.26,27 The ground-state space of HK is spanned by valence
bond �VB� states, which are formed from spin-singlet pairs
of nearest-neighbor sites. Thus, all dimer covering states on
the honeycomb lattice are macroscopically degenerate
ground states of HK. An example of the dimer covering states
is shown in Fig. 1�c�. The spin-spin correlation functions for
these VB states exhibit long-distance exponential decay, in-
dicating the absence of magnetic long-range order. Also, the
result of the single-mode approximation supports the exis-
tence of a spin excitation gap above the spin-singlet ground
states. However, because each dimer state breaks the spatial
symmetry of the system, a quantum spin liquid state is not
the unique ground state of the Klein model.

In the following, we show that HR introduces a resonance
among these dimer covering states and, as a result, selects an
almost unique ground state that can be expressed as a super-
position of VB states, preserving the spatial symmetry. To
this end, it is convenient to utilize the Schwinger boson rep-
resentation for spin operators:28 Si

+=ui
†di, Si

−=di
†ui, Si

z

= �ui
†ui−di

†di� /2, and Ŝi= �ui
†ui+di

†di� /2. Here the average

value of Ŝ is 1 /2. We also introduce the spin-singlet operator
Oij ��uidj −diuj� /
2. Then, each dimer state is expressed as

�D� = �
�ij��D

Oij
† �0� . �10�

Here, D is the set of nearest-neighbor pairs corresponding to
a particular realization of the dimer covering. We choose the
phase convention of Oij as depicted in Fig. 1�c�.

We now show that HR is a variant of the QDM repre-
sented by spin operators. The Hamiltonian of the QDM
is18,22

HQDM = − t��1�	2� + �2�	1�� + V��1�	1� + �2�	2�� . �11�

Here, �1� and �2� are the dimer covering states of a single
hexagon corresponding, respectively, to the states �1� and �2�
of Fig. 2. The first term in HQDM is the kinetic term that
transfers �1� to �2� and �2� to �1�. The second term is the
potential term. To construct operators that act as the first and

FIG. 2. The spin-singlet states of a hexagon.
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second terms of HQDM and are expressed in terms of spin
operators, we consider all possible spin singlet states of a
single hexagon, depicted in Fig. 2. Although the states except
�1� and �2� in Fig. 2 are not the ground state of HK, the
kinetic term for the states �1� and �2� are expressed by the
linear combination of these states. To see this, we introduce
the density operators for the singlet dimers on a hexagon
corresponding to these 15 states,

Ta
�1� = O��

† O��O��
† O��O��

† O��, �12�
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�2� = O��

† O��O��
† O��O��

† O��, �13�

and so forth. It is obvious that T�m��m�= �m� with m
=1,2 , . . . ,15. In particular, we are concerned with the action
of Ta
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4
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1

4
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The first pair of relations here implies that Ta
�1� and Ta

�2� act as
the potential terms of HQDM. In the following, it is conve-
nient to use the representations
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† h2a, �15�
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Note that Ka satisfies the following relations:

Ka�1� = − �2� +
1

4
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1

4
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These actions of Ka are similar to those of the kinetic term of
HQDM. To establish the complete set of relations between the
QDM and the operators Ka, Ta

�1�, and Ta
�2�, we need to verify

their actions on unflippable dimers that are not flipped by Ka,
as shown in Fig. 1�c�. It is easily shown that the actions of K
and T�1�+T�2� on the unflippable dimers generate dimer cov-
ering states that are not in the ground-state space of HK.
These nonground states contain at least one singlet pair in
the set of six spins surrounding the hexagon to which an
operation is applied, i.e., the spins on i , j ,k , l ,m ,n in Fig.

1�a� when the operators are applied to the ath hexagon. Thus,
the unwanted states are excluded by the projection onto the
maximum spin states of these six spins. This is carried out by
applying the operator Pa

M. Also, using the relation Si ·S j =
1
4

−Oij
† Oij, we find Ka=Ka, Ta

�1�+Ta
�2�=Va, thereby arriving at

the Hamiltonian �2�.

B. Exact ground state

We now show that the Hamiltonian H=HK+HR has the
same ground-state properties as the QDM in a certain param-
eter region. The lowest-energy sector in the Hilbert space of
H is spanned by VB states, provided that the ground state of
HR can be expressed as a linear combination of �D�. To find
the ground state, it is useful to rewrite HR in the form

HR =
J2 + J3

2 �
a

Pa
M�h1a

† − h2a
† ��h1a − h2a� +

J3 − J2

2

��
a

Pa
M�h1a

† + h2a
† ��h1a + h2a� . �21�

For J3�J2, the energy eigenvalues of HR are non-
negative, and only unflippable dimer states are zero energy
states. Therefore, the ground state of H is a dimer covering
without flippable dimers. If we simply impose periodic
boundary conditions in both x and y directions, the ground
state remains macroscopically degenerate. This degeneracy
is removed by imposing periodic boundary conditions with a
shift by one hexagon in the y direction. Then, the unique
ground state is the staggered VBC �see Fig. 1�d��, which was
previously identified by Moessner et al.22

The energy levels of HR are non-negative also in the case
of J2=J3. Although the staggered VBC is obviously a zero
energy state here too, in this case there also exists a non-
trivial, liquidlike ground state. It is easily seen that the equal-
amplitude superposition of dimer states �G���i�Di� is the
zero energy state of HR if the summation �i is restricted
within a sector of dimer states related by the local operations
�14� and �20�. Generally, a class of dimer states connected by
these local operations is characterized by a topological
number.18,29 On a honeycomb lattice, however, in addition to
a topological number, the total number of dimers in each
direction is also conserved by the local flip. Thus, �G� is the
unique ground state of H in a given sector specified by these
conserved quantities. This state, preserving both the spin-
rotational and spatial symmetries, is a spin liquid state, and it
is in the same universality class as the short-range RVB state.
In fact, the upper limit of the spin-spin correlation function
for this state exhibits long-distance exponential decay ex-
pressed by26

�	G�Si
zSj

z�G�� � �3/2�2−�ri−rj�. �22�

These results show that the QDM is realized as a spin system
with multiple ring exchange interactions, and the case J2
=J3 corresponds to the Rokhsar-Kivelson �RK� point of the
QDM.18

In the case of J2�J3, unfortunately, we have not been
able to derive an exact ground state of H analytically. How-
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ever, the plaquette VBC state obtained by Moessner et al.22

for the QDM in this parameter region is indeed an exact
eigenstate of H, and it is possible that this is the ground state.

We now consider the Hamiltonian H without the projec-
tion operator Pa

M in HR. Then, the model is more realistic,
though its exact ground state is no longer accessible by ana-
lytical method. The operation of Ka and Va on unflippable
dimers does not vanish, but creates states which are not in
the ground-state sector of HK. In this situation, the staggered
VB solid state is not the zero-energy state even for J3�J2,
and pushed up to a state with higher energy of order J1.
Thus, it is expected that, at the RK point J2=J3, the spin
liquid state is the most plausible candidate for the true
ground state provided that J1
J2, J3.

C. Dimer-dimer correlation in the spin liquid state

In contrast to the magnetic correlation, the dimer correla-
tion in the spin liquid state obeys a power law, as shown
below. In the ground-state space, the dimer-dimer correlation
is identical to that of the classical dimer model on a honey-
comb lattice, which belongs to the universality class of the
Gaussian model with central charge c=1.30 The correlation
function for the dimer density operator at the bond �ij�, Nij

=−Si ·S j +1/4, displays the long-distance behavior

	NijNlm� − 	Nij�	Nlm� �
�cos�4��ri − rl�/3� − 1�

�ri − rl�2
, �23�

when the two dimers on �ij� and �lm� are in the same
direction.30 This power-law decay implies that the low-
energy properties are governed by gapless nonmagnetic ex-
citations. The low-lying excitation energy is computed using
the single-mode approximation. We assume that the excited
state takes the form �k�=��ij�e

ikri�Nij�G�, with �Nij =Nij

− 	Nij�. By definition, �k� is orthogonal to the ground state,
i.e., 	k �G�=0. Therefore, the excitation energy is obtained
from

	k =
	G���N−k�H,�Nk���G�

	G��N−k�Nk�G�
. �24�

The denominator of the right-hand side of this relation can
be computed from the correlation function 	NijNkl� and be-
haves as �ln�R /a�, where a and R are the lattice constant
and the system size, respectively. When the excitation energy
is sufficiently smaller than the spin excitation gap of HK, the
total number of spin-singlet dimers is conserved, and also,
HK does not contribute to the low-lying excitations. Thus, the
numerator of the right-hand side of the above relation for 	k
reduces to �il	G��NijHR�Nlmrirl�G�k2 for small k. The coef-
ficient of the k2 term is expressed in terms of the three-body
dimer correlation functions, which exhibit a leading logarith-
mic behavior of the form �ln�R /a�. Hence, the logarithmic
divergences in the denominator and numerator of 	k cancel
out. We thus find that the gapless excitation energy in the
spin-singlet sector is given by 	k�ak2. This dispersion rela-
tion is in accordance with Henley’s conjecture based upon
height representations.31

III. s=1/2 HEISENBERG ANTIFERROMAGNET
ON A SQUARE LATTICE

The analysis presented in the previous sections is easily
extended to other lattice structures. For the model with s
=1/2 on the square lattice, the Hamiltonian is also given by
H=HK+HR, but in this case we have the following:
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Qa

140
−

Qa
2

280
+

Qa
3

1260
+

Qa
4

2520
, �29�

with Qa=�ij��ã
Si ·S j. Here the summation �ij��ã
 is taken
over the nearest-neighbor sites of the ath square �the eight
sites on i , j ,k , l ,m ,n ,o , p in Fig. 3�a��. The operator Ps4

a is
the four-body ring exchange interaction on the ath square.
The ground-state space of the s=1/2 Klein model on a
square lattice is more complicated than that of the model on
a honeycomb lattice. In the case of a square lattice, in addi-
tion to dimer covering states, some states with spin-singlet
pairs on next-nearest-neighbor sites are also in the ground-
state space. An example of such states is depicted in Fig.
3�b�. However, fortunately, such singlet states are not in the
ground-state space of HR, and they can be excluded from our
consideration. It is thus found that at the RK point J2=J3,
under periodic boundary conditions in both x and y direc-
tions, the ground state of HK+HR is the short-range RVB
state �D�D�, where �D� is the dimer covering state on the
square lattice. The low-energy properties of this short-range
RVB state were investigated in detail by Rokhsar and

FIG. 3. �a� Dimer covering on a square lattice. �b� A ground
state of HK that is not a ground state of HR. �c� The staggered VB
crystal.
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Kivelson.18 The dimer-dimer correlation obeys a opwer law,
and the low-energy nonmagnetic excitation has the disper-
sion relation 	k�ak2.18 For J3�J2, the staggered VBC state
depicted in Fig. 3�c� is the unique ground state.

IV. s=1 HEISENBERG ANTIFERROMAGNET
ON A TRIANGULAR LATTICE

A. Model and the exact ground state

In this case, we divide the triangular lattice into three
honeycomb lattices, hA, hB, and hC, as shown in Fig. 4�a�.
Here, each site consists of two sites of two different honey-
comb lattices. The Hamiltonian on this lattice is also given
by H=HK+HR. The Klein Hamiltonian HK for this system
has the same form as that given in Eq. �1�, but here it is
defined on a triangular lattice, and it is expressed in terms of
the s=1 spin operators. The ground-state space of this Klein
model is spanned by states fully packed with loops com-
posed of singlet dimers on the three kinds of hexagons ar-
ranged sequentially in the order A ,B ,C ,A ,B ,C , . . . . We
show an example of loop covering states in Fig. 4. Reso-
nance among these loop covering states is introduced as

HR = HA + HB + HC, �30�

where HA, HB, and HC are defined on hA, hB, and hC, respec-
tively, and take the form of Eq. �2� with Pa

M replaced by the
projection onto the maximum spin state of the 13 nearest-
neighbor spins of the ath hexagon on the parent triangular
lattice,

Pa
M = �

s=0

12 ��i��ã
 Si�2 − s�s + 1�

182 − s�s + 1�
. �31�

Here the summation �i��ã
 is taken over the nearest-neighbor
sites of the ath hexagon. �See Fig. 4�b�.�

The ground-state properties are similar to the models con-
sidered in the previous sections. At the RK point, the equal-
amplitude superposition of loop covering states is the unique
ground state in a given sector. The loop statistics of this state
are described by a classical loop model referred to as the
“red-green-blue model.” This ground state represents a new
universality class of a spin liquid described by the quantum
loop model.

B. Dimer-dimer correlation in the spin liquid state

As mentioned in the previous section, in the spin liquid
state realized at the RK point for the s=1 triangular model,
the loop-loop correlation is described by the red-green-blue
model, which is constructed from three honeycomb lattices
as explained in Sec. IV A, and belongs to the universality
class of the central charge c=1+1+1=3, i.e., the sum of
three mutually independent Gaussian models. For this loop
model, the local density of loops is equivalent to the local
dimer density in one of the three honeycomb-lattice dimer
models. Since the three honeycomb-lattice dimer models do
not couple with each other, the loop correlation function of
the triangular model is nothing but the dimer correlation
function of the honeycomb-lattice-dimer model, and exhibits
power-law long-distance behavior given by Eq. �23�.32 Then,
applying the single-mode approximation as discussed in Sec.
III C, we find that the low-energy excitation energy in the
spin singlet-singlet channel is gapless and its dispersion re-
lation is given by 	k�k2.

V. DISCUSSION AND SUMMARY

In this paper, we have presented rigorous results for two-
dimensional quantum spin systems with multiple ring ex-
change interactions that possess quantum spin liquid ground
states. It should be noted that Misguich et al. and LiMing et
al. showed that for the s=1/2 Heisenberg antiferromagnet on
a triangular lattice, sufficiently strong ring exchange interac-
tions destroy magnetic long-range order, and stabilize a spin
liquid state.16,17 The spin liquid state found by them has a
remarkable similarity with the ground state discussed in the
present paper: exponentially decaying spin-spin correlations,
and a large number of spin singlet excitations in the spin gap
�at least for some parameter regions�. Since the classical
Heisenberg model with ring exchange interactions does not
possess macroscopic degeneracy, we speculate that the un-
derlying structure of the model may have a close connection
with the Klein model, which is the origin of singlet gapless
excitations in our models.

These observations imply that the existence of strong ring
exchange interactions in addition to geometrical frustration
generically supports the realization of the spin liquid in
quantum antiferromagnets, though the models considered in
the present paper are rather complicated. The multiple ring
exchange interaction is a result of strong quantum fluctua-
tions, which destabilize conventional magnetic orders. In real
systems, the effects of such strong quantum fluctuations have

FIG. 4. �a� Triangular lattice divided into three honeycomb lat-
tices, hA �black solid�, hB �black dotted�, and hC �gray�. The bold
lines represent an example of loop covering. �b� Open circles rep-
resent the nearest-neighbor sites of the ath hexagon. The ath hexa-
gon is denoted by thick lines.
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been extensively studied so far in connection with the mag-
netism of solid 3He.25 Also, it has been discussed that mul-
tiple ring exchange interactions may affect significantly the
magnetic structures of NiS2.33 Thus, there is a possibility that
the quantum spin liquid state due to ring exchange interac-
tions may be realized in real systems with sufficiently strong
multiple ring exchange interactions.
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