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We construct a series of (2+ 1)-dimensional models whose quasiparticles obey non-Abelian statistics. The
adiabatic transport of quasiparticles is described by using a correspondence between the braid matrix of the
particles and the scattering matrix of (1+1)-dimensional field theories. We discuss in depth lattice and con-
tinuum models whose braiding is that of SO(3) Chern-Simons gauge theory, including the simplest type of
non-Abelian statistics, involving just one type of quasiparticle. The ground-state wave function of an SO(3)
model is related to a loop description of the classical two-dimensional Potts model. We discuss the transition
from a topological phase to a conventionally ordered phase, showing in some cases there is a quantum critical

point.
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I. INTRODUCTION

Understanding phases with topological order has become
an important theme in condensed-matter physics. Well-
understood examples of topological fluids include the frac-
tional quantum Hall states which arise for electrons in two
dimensions moving in large magnetic fields. The existence of
quasiparticles or quasiholes with fractional statistics is a cen-
tral and striking prediction of the theory of the fractional
quantum Hall effect and follows directly from the nature of
the electronic correlations in this quantum fluid." In spite of
its profound conceptual importance, only this week has there
been a report of experimental confirmation of this startling
prediction.?

Non-Abelian fractional statistics are a fascinating prop-
erty of some fractional quantum Hall states.* Here, the wave
function depends not only on which particles are exchanged,
but on the order in which they are exchanged. One of the
motivations for the current consideration of systems with this
behavior is that they can behave as a universal quantum
computer.’”’

The topological quantum fluids arising in the fractional
quantum Hall effect have an effective hydrodynamical de-
scription in terms of Chern-Simons gauge theories.®"'” Pure
Chern-Simons is a topological field theory, meaning that its
correlators are independent of the position of the operators
and depend only on topological invariants.'! It has a vanish-
ing Hamiltonian; the only nontrivial properties arise from the
braiding of its Wilson and its Polyakov loops. In this paper,
we are mainly interested in theories whose ground state is
topological, but whose gapped excitations have non-Abelian
statistics.

Fractional quantum Hall fluids do not have time-reversal
symmetry, but topological order occurs in models with un-
broken time-reversal invariance as well. These “spin-liquid”
phases were originally speculated to be responsible for the
unusual behavior of the “normal state” of high-temperature
superconductors,'>!3 although, in spite of much effort (both
theoretical and experimental), there is as yet no solid evi-
dence for any spin-liquid state. Nevertheless, as a conse-
quence of much (theoretical) effort, we know that topologi-
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cal order occurs in the ground states in certain gapped
systems with time-reversal invariance and reasonably local
interactions,’ for example in quantum dimer models on non-
bipartite lattices.'*!> Morally, these topological phases are
equivalent (in the sense of asymptotic low-energy theories)
to deconfined phases of an effective gauge theory. The exci-
tations of these time-reversal invariant phases do exhibit
electron fractionalization,'®'? but the statistics is Abelian.
Non-Abelian topological phases are even harder to come
by. Such phases with broken time-reversal symmetry do oc-
cur in the fermionic Pfaffian (a.k.a. Moore-Read) wave
function* for the v=5/2 fractional quantum Hall effect, and
in the v=1 bosonic Pfaffian state.?%->> The former occurs in
models of p-wave superconductors as well.”? Field theories
with such non-Abelian statistics also have been found.?*-28
In a number of these cases, the long-distance physics can be
described by a Chern-Simons gauge theory, which breaks
time-reversal symmetry. Non-Abelian topological phases,
however, occur in time-reversal-invariant systems as well.
The resulting effective Chern-Simons theory is doubled to
restore the time-reversal symmetry.’” To give the theory a
gap while keeping the topological theory as its ground state,
one can include the electric-field part of the Maxwell term

JdPxE-E in the Hamiltonian.23' Hence in these topological
phases, the ground-state wave function is a superposition of
configurations of Wilson loops in a two-dimensional space,
while the world lines of the excitations correspond to Polya-
kov loops in the (2+1)-dimensional field theory.” For ex-
ample, the lattice models discussed in detail in Refs. 32 and
33 have a continuum description in terms of doubled SU(2),
Chern-Simons gauge theory. The resulting configuration
space is naturally associated with the Temperley-Lieb
algebra.?

A natural description of the configuration space of models
in a topological phase is in terms of loops.’~73>33 This holds
in both Abelian and non-Abelian cases. Precisely, each basis
state in the Hilbert space of the quantum theory is a loop
configuration in two dimensions. Quantum dimer models and
their generalizations®'3> can also be viewed as quantum loop
gases.
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In this paper, we reexamine the problem of non-Abelian
topological phases by starting with the statistics we wish to
have, and working backward to construct a model which
exhibits them. We thus first give an algebraic way of charac-
terizing the braiding in both SU(2), and SO(3), Chern-
Simons theories. We show that such a braid matrix of a
(2+1)-dimensional theory is a limit of the S matrix of an
associated relativistic (1+1)-dimensional model, and we
give an intuitive argument as to why this is so. We then show
how to explicitly construct quantum two-dimensional models
with these braid relations by utilizing the structure of the
factorizable S matrices of integrable (I+ 1)-dimensional
models.

Specifically, we embed the (1+1)-dimensional model in
two-dimensional Euclidean space, and find a Rokhsar-
Kivelson-type quantum Hamiltonian'* acting on this two-
dimensional space whose ground state has the properties ex-
pected of a model with non-Abelian statistics. In both cases
we discuss in detail, the Hilbert space is that of a loop gas:
in the SU(2); case, the loops are self-avoiding and mutually
avoiding,> while in the SO(3), case, the loops intersect.
The latter are thus more akin to nets than loops.*® Both of
these loop gases are associated with well-known two-
dimensional classical statistical mechanical models: in the
SU(2), case, this is known as the O(n) lattice model with
n=2 cos[w/(k+2)], while in the SO(3), case, this is the
Q-state Potts model with Q=4 cos?[7/(k+2)]. The loop ex-
pansion of the former is well known,?’ but the one we utilize
for the Potts model does not seem to have been discussed
before.

Having an explicit lattice construction of the states en-
ables us to construct (reasonably) local quantum lattice mod-
els with these ground-state wave functions. By studying the
statistical properties of the absolute value squared of these
wave functions, we can investigate the correlations described
by these quantum states, and determine if they describe
quantum critical points or massive (topological) phases. Both
here and in the SU(2) case, the result depends on the level
k.

The paper is organized as follows. In Sec. II, we describe
the algebraic approach to non-Abelian statistics in both the
SU(2), and SO(3), cases. In Sec. III, we discuss quantum
loop gases and their relation to the § matrix of
(1+1)-dimensional integrable field theories. In Sec. IV, we
give an explicit construction of these S matrices for SO(3)
and SU(2) braiding. In Sec. V, we discuss the corresponding
(1+1)-dimensional field theories. In Sec. VI, we discuss lat-
tice models whose ground states are precisely the loop wave
functions, both SU(2), and SO(3),, with the desired braiding
properties. We give a set of criteria that the
(2+1)-dimensional quantum Hamiltonian ought to satisfy
and give an explicit construction. In Sec. VII, we discuss
under what circumstances these wave functions are topologi-
cal and when do they describe quantum critical systems. In
Appendix A, we give a summary of the Landau-Ginzburg
description of the (1+1)-dimensional theories whose S ma-
trix we use.
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II. BRAIDS AND ALGEBRAS

Particle statistics, of course, are the effect on the wave
function when particles are adiabatically transported around
each other a large distance away. This picture was developed
in detail in the context of the Laughlin states of the fractional
quantum Hall effect, where it follows from the Berry phase
accumulated during an adiabatic evolution of the state with
two quasiparticles.’

Adiabatic particle transport can be represented pictorially
by drawing the world lines of the particles, which are the
paths they trace out in space-time. Since the particles stay far
apart, we need only study paths which do not cross. (Non-
trivial statistics always requires the assumption that particles
have a hard-core short-distance repulsion.) The world lines
of the particles therefore braid around each other. Formally,
the set of all possible braidings is a group, acting on the
space of states of the system. Different types of statistics
correspond to different representations of the braid group. In
this paper, we consider two spatial dimensions, where both
Abelian and non-Abelian statistics are possible. A system
whose quasiparticles are associated with a non-Abelian rep-
resentation of the braid group has a degenerate set of states
of quasiparticles at fixed positions xq,x,,...,xy. Call this
space of states V(N). When a quasiparticle is taken around
another, states in this degenerate subspace are rotated into
each other. Since this is quantum mechanics, it can take a
state to a linear combination of other states: adiabatic particle
transport can entangle the states.

Studying the statistics of a (2+ 1)-dimensional system can
effectively be reduced to a two-dimensional problem. We
project the world lines onto the plane (ignoring boundary
conditions), and call them strands. A braiding in 2+ 1 dimen-
sions results in the crossing of two strands in the two-
dimensional picture. In this projection, there are overcross-
ings and undercrossings. As long as we are only interested in
the statistics of the particles, the other details of the projec-
tion are not particularly important: we can move the strands
around at will as long as we do not remove crossings or
create new ones.

It is useful to think of this collection of strands in the
plane in a (1+1)-dimensional fashion. The degenerate states
of the (2+1)-dimensional system correspond to a set of de-
generate multiparticle states in a one-dimensional quantum
system. In this (1+1)-dimensional quantum system, each
strand is the world line of a real local degree of freedom.
Consider a configuration at t=—o (i.e., before any of the
particles have been braided) where all the particles are very
far from each other (i.e., all at spatial infinity). We can thus
consider these particles to all be on a circle. This circle is our
one-dimensional space. We can construct the full configura-
tion by a sequence of adiabatic braidings as the particles
move inward. Since we are free to move around the strands
as long as we do not add or remove crossings, we can then
take all the particles at t=2 to lie on a circle as well. Thus
we can project all the original (2+1)-dimensional world
lines onto a two-dimensional annulus. We can then view the
angular direction of the annulus as one-dimensional space,
and the radial direction as (Euclidean) time. Thus, each con-
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FIG. 1. (Color online) Braid, reverse braid, and Temperley-Lieb
generator.

figuration in the plane can be regarded as an adiabatic evo-
lution in an equivalent (I+1)-dimensional Euclidean field
theory in which each strand (or particle) belongs to a given
Hilbert space associated with the species.

To make this more precise, let us consider the N-particle
space of states V(N) on which the braid group acts. For now
we let this space be the tensor product of N copies of the
single-particle space of states: V(N)=VN=V,@V,® -
® Vy. (Later, we will see that the actual space of states is a
subspace of V®V) In the (1+1)-dimensional picture, we can
think of V®V as the space of particles on a circle. The ele-
ments of the braid group corresponding to overcrossings and
undercrossings are denoted B; and Bi_l and are displayed in
Fig. 1. The subscript i means that B; is describing the cross-
ing between the ith and the (i+1)th particles, and so acts
nontrivially on the space V;® V,,,, and with the identity on
the other spaces Vi, with j#1i,i+1. For example, the braids
in Fig. 2 are described algebraically as =BEIB4B3B 1B. The
braid-group generators B; must satisfy the relations

BiB;,\B;=B;1BBi.1,

BB;=B;B;, |i—j|=2. (2.1)
These relate configurations which are topologically identical,
as can easily be seen from Fig. 3.

If the matrices B; are diagonal, then the statistics are Abe-
lian. For bosons, the B; matrices are all the identity; for
anyons their entries are phases. In this paper, we are inter-
ested in non-Abelian representations of the braid group, so
that particles obey non-Abelian statistics: the wave function
changes form depending on the order in which the particles
are braided. One can give explicit matrix representations of
the braid group. However, it is usually much more conve-
nient to study the algebra of the matrices involved. In the
cases of interest here, the statistics of the particles can be
obtained directly from the algebraic relations the matrices
obey, without need for their explicit representation.

4

(Color online) A typical braiding involving six

6

FIG. 2.
particles.
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FIG. 3. (Color online) Consistency relation for braiding.

A. The SU(2) theory

A famous one-parameter set of non-Abelian representa-
tions of the braid group arises from utilizing the Temperley-
Lieb algebra.>* These representations give rise to the Jones
polynomial in knot theory,’®-4? and correspond to the braid-
ing of Wilson and Polyakov loops in SU(2) Chern-Simons
theory.

The Temperley-Lieb algebra arose as a way of relating the
Potts models to the six-vertex model. The transfer matrices
of these two models (and others) can be written in terms of
different representations of this algebra, so any properties
computable from purely algebraic considerations will be the
same for any such model. A generator of the Temperley-Lieb
algebra ¢; acts nontrivially on the ith and (i+ 1)th particles; a

useful pictorial representation is given in Fig. 1. The algebra
- 34
is

2
e; =de;,
€i€ix1€; =€,

eiej=eje; ([j—i|=2), (2.2)
where d is a parameter. These algebraic relations are drawn
in Fig. 4.

From the picture, one can see that d can be thought of as
the weight of a closed loop.

Representations of the braid group can be found from
representations of the Temperley-Lieb algebra by letting

Bi=]—qei, (2.3)

where [ is the identity. This is illustrated in Fig. 5. The B;
defined in this fashion obey the braid-group relation (2.1)
when

d=q+q".

It is also easy to check that

LY J
& M

D OC

)?(

FIG. 4. (Color online) The Temperley-Lieb algebra.
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FIG. 5. (Color online) The braid in terms of the Temperley-Lieb
generator.

B'=1-qle,.

Note that in writing the braid group in this fashion, we have
resolved the crossings B and B™! in terms of strands which
no longer intersect.

These braid relations are those of Wilson loops in SU(2),
Chern-Simons theory when'!

T
d=2cos(—)
k+2

or equivalently g=¢!™**2) The integer k is the coefficient of
the Chern-Simons term in the gauge theory, and is known as
the level. It must be an integer to ensure gauge invariance of
the Chern-Simons theory.*!

Arbitrary superpositions of Wilson loops do not describe a
topological ground state. One condition a topological ground
state must satisfy can be enforced by means of a suitable
projection operator, known as the Jones-Wenzl projector.®’
This projector acts on k+ 1 strands; we will give an algebraic
description of this below. By construction, states obtained in
such a fashion are topological and do not support local low-
energy degrees of freedom. Conversely, unprojected states
can describe low-energy, even massless, degrees of freedom,
and are unphysical states in a topological gauge theory such
as Chern-Simons. However, unprojected states may describe
physical degrees of freedom in the full theory, which is of
course not topological.

B. The SO(3) theory

Here we discuss another one-parameter set of non-
Abelian representations of the braid group. These describe
the braiding in SO(3) Chern-Simons theory, instead of
SU(2). The algebras are of course the same; the key distinc-
tion is that Wilson and Polyakov loops in SO(3) Chern-
Simons occur in only integer-spin representations. The cor-
responding representation of the braid group is given in
terms of the SO(3) Birman-Murakami-Wenzl (BMW)
algebra,42 defined below. This algebra has two nontrivial
generators X; and E; acting on adjacent strands.

The SO(3) braid relations can be found by “fusing” to-
gether two strands obeying the Temperley-Lieb algebra: the
SO(3) BMW generators X; and E; can be written in terms of
the Temperley-Lieb generators e;. Heuristically, the idea is to
exploit the fact that a spin-1 representation of SO(3) can be
found from the tensor product of two spin-1/2 representa-
tions of SU(2). This statement is still true in the “quantum-
group” algebra U,(sl,), which is a one-parameter deforma-
tion of the ordinary Lie algebra s/,. One can define an action
of U,(sl,) on the space of states V*" which commutes with
the e;; see Ref. 43 for an extensive discussion of quantum
groups in the context of non-Abelian statistics (g there is ¢°
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FIG. 6. online)

representation.

(Color Projecting onto the spin-1

here). In particular, to relate the two algebras, first note that
e;/d is a projector. In U (sl,) language, this projects onto the
trivial spin-O representation. The projector onto the spin-1
representation is therefore

Pi:I—_E'

P (2.4)

so that P,e;=0. The single-particle space of states W; in the
s0(3) BMW algebra is comprised of two “fused” Temperley-
Lieb strands, projected onto the spin-1 representation. In an
equation, W;=P,; |[V,;_;®V,;]. Pictorially, just think of
each strand in the so(3) theory as the left-hand side of Fig. 6.

With this identification, the so(3) BMW algebra follows
from the Temperley-Lieb algebra. Since lines never cross in
the latter, they cannot cross in the former either. When two of
the fused strands come near each other, there are now three
possibilities for what happens, which we display in Fig. 7.
From the pictures, we read off that

Ej=P2j—lP2j+le2je2j—162j+le2jP2j—lP2j+1’

Xj=dPyj 1Psj1€3Psj 1Pojyy. (2.5)

These generators act on the two-particle states in W;® W;, ;.
It is straightforward to verify using Eq. (2.2) that they obey

the o(3) BMW algebra. We have
(E )2 (Q - ]‘)Eh

(Xi)2 =(0-2)X;+E,

EX;=X.E;=(Q-1)E,, (2.6)

where the parameter Q= d>.

Relations involving generators on adjacent sites (e.g.,
E.E..\E,=E;) are straightforward to work out using the
Temperley-Lieb algebra; they can be found, for example, in
Ref. 44. Most become fairly obvious after drawing the ap-
propriate picture. The relations involving only the E; are
those of the Temperley-Lieb algebra (2.2), but with d re-
placed here by Q—1, so that closed isolated loops of “spin-1”
particles get a weight Q—1=d?>~1=1+¢*+¢ 2. This factor

R

FIG. 7. (Color online) The generators of the SO(3) BMW
algebra.
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of d>~1 is obvious from the pictures; the d*> comes from the
d from each loop, and 1 must be subtracted because of the
projection onto spin-1 states (projecting out the singlet).
The reason we have done all this work is to give us an-
other representation of the braid group. Namely, defining

SOB3) _ 2 -2
it is straightforward to check using the so(3) BMW relations
that the B; satisfy the braid-group relations (2.1). Z is the
identity on the projected Hilbert space W*V; on V¥V, we
have Z=P,;_|P,;,, (see Fig. 7). One can also check that

BN =g T - X+ ¢E;.

Particles with braiding given by BS°® arise from SO(3)
Chern-Simons theory. This follows from our construction:
we basically have restricted the particles to be associated
with integer-spin representations of U,(sl,); this is precisely
what one does to go from SU(2) to SO(3).

C. The Jones-Wenzl projector

The Jones-Wenzl projector is simply expressed in terms
the projector P onto the representation of spin s of U, ,(5h):
for a given k it is simply P;[’””’”:o for all j. This projector
involves k+1 strands, so this amounts to being able to re-
place the identity acting on k+1 strands with a linear
combination of other Temperley-Lieb or BMW elements.
The necessity of this projection is also apparent from
the representation theory of U,(sly): when ¢“*?=-1, the
spin-(k+1)/2 representation is reducible but is indecompos-
able (it cannot be written as a direct sum of irreducible rep-
resentations). Performing the projection avoids all sorts of
complications such as zero-norm states.

We have already seen one example of such a projector.
The projector P;=1—e¢;/d is the projector onto the spin-1 rep-
resentation of the quantum-group algebra, so 73;.1)=P '~ When
k=1 (d=1), the Jones-Wenzl projector is simply P;: any
spin-1 combination of strands is projected out. Therefore, the
SO(3) theory at k=1 is trivial.

A case of great interest is SO(3)5, the “Lee-Yang” model.
This is the simplest model of non-Abelian statistics, because
there is only one type of nontrivial braiding. The name arises
because the braiding relation for the particle in this model is
the same as the fusion rule associated with the Lee-Yang
conformal field theory.*> We have for any k in both the SU(2)
and SO(3) models

1 !
22N @@
(2.8)

2
73;- )= Py Pojyy -

When k=3, the Jones-Wenzl projector sets P?'=0. In the
SU(2); theory, this is a relation involving four strands, while
in the SO(3); theory, this relates two of the fused strands.
This means that in SO(3)3, imposing the Jones-Wenzl pro-
jector allows us to replace any appearance of a generator X;
in favor of 7 and the E;: we have
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Plugging this back into the braid relation (2.7) and remem-
bering that Q—2=¢*+¢2 gives

B%i=— ?T-¢7’E;. (2.9)

Note that for this value k=3 (and this value alone), the
generators E; obey the same Temperley-Lieb algebra as the
e;, because d=2 cos(m/5)=d?—1. Moreover, ¢°=—-1 here, so
the braid generator (2.9) is equivalent to that in Eq. (2.3). We
thus are led to an intriguing result: the O(3); theory is almost
identical to that of SU(2);. There is one important difference:
in SO(3), we have already imposed the Jones-Wenzl projec-
tor, while in SU(2); this still needs to be imposed. Thus
(locally) SO(3); with the Jones-Wenzl projection imposed is
equivalent to SU(2); without it imposed.

II1. QUANTUM LOOP GASES AND THE S MATRIX

In the preceding section, we discussed some of the mar-
velous properties of particles with non-Abelian statistics.
Now we discuss how to associate the S matrix of a relativ-
istic (1+1)-dimensional field theory to the type of braiding
discussed above. We argue that knowing the S matrix in this
(1+1)-dimensional theory allows us to find a quantum loop
gas in two space dimensions where the quasiparticles should
have these braid relations.

A natural place to look for models with non-Abelian sta-
tistics is in quantum loop gases. The reason is that if one
projects the world lines onto the (spatial) plane, one obtains
loops: strands cannot end. It is also natural from the point of
view of field theory: in pure Chern-Simons theory, the only
gauge-invariant degrees of freedom are loops. In a
(2+1)-dimensional picture, this means it is a good idea to
look for a system where the low-energy degrees of freedom
are loops in the plane, a quantum loop gas. In a number of
cases, it has been argued that quantum loop gases turn into
gauge theories with Chern-Simons theories in the
continuum.®731:3¢ The excitations can be non-Abelian in a
topological phase, where the ground state contains a super-
position of Wilson loops (loops in the spatial plane). The
excited states are Polyakov loops, loops which extend in the
time direction. The quasiparticles have non-Abelian statistics
when the gauge group is non-Abelian with level k> 1.

To understand these loop gases, it is best to first focus on
the properties of the ground state. The types of ground states
we are interested in are liquid states, where all local order
parameters have vanishing expectation values. Such a
ground state is a superposition of different loop configura-
tions. Each basis state |s) of the Hilbert space can be de-
scribed by some configuration of loops in two dimensions. In
these models, the wave function W of this ground state can
be written in the form

e—S(x)
(s|¥) =

7 (3.1)

where S(s) turns out to be the action of the classical two-
dimensional loop model for the configuration corresponding
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to s. Z is the usual two-dimensional partition function with
weight [(s| W)|?, which is the functional integral over all con-
figurations s with weight e=S0=5'), However, just because
the loops can be nonlocal does not mean the action needs to
have long-range interactions. Recall, for example, that one
can describe all the configurations in the classical two-
dimensional Ising model in terms of closed loops of arbitrary
length, the domain walls. Nevertheless, the interactions are
still local.

Since we are identifying the loops with the quasiparticle
world lines, we need to find a quantum loop gas whose
ground-state wave function satisfies the appropriate braiding
properties. To make this notion precise, let us examine the
classical loop gas [i.e., the one with action S(s)] correspond-
ing to the ground state. Now view this two-dimensional loop
gas as a (1+1)-dimensional quantum system. The loops then
can be thought of as world lines of particles in this
(1+1)-dimensional system. This identification is heuristic at
best, but is consistent with the exact expressions for the §
matrices of the particles.**40

To summarize the arguments so far, we project the world
lines of the particles in 2+1 dimensions down onto the
plane, so that they form loops. A two-dimensional quantum
system possessing such particles is a loop gas, where the
degrees of freedom are loops in the plane. The ground-state
wave function of the quantum system is expressed in terms
of the action S(s) of the corresponding classical two-
dimensional loop gas. Finally, we then identify these loops as
the world lines of particles in the corresponding
(1+1)-dimensional problem. The upshot is that by restricting
ourselves to the study of the ground state, we have reduced a
(2+1)-dimensional problem to a (1+1)-dimensional one.
Theories for which this construction holds are inherently %o-
lographic in that the degrees of freedom can be naturally
projected to a boundary.

The wave function of the (1+1)-dimensional theory is
then a vector in the space V®V, just like before. In the
(1+1)-dimensional theory, when two particle world lines
cross, the S matrix plays the role of the braid matrix. The
braid generators act in the same way as well. In other words,
they describe what happened to the wave function of two
particles far apart from each other as a result of their paths
having crossed. Consider the wave function describing two
particles of momentum and position p;, x; and p;,q, X1, re-
spectively. The S matrix is a matching condition on the wave
functions for x;<<x;,; and x;>x,,;. As before, the wave func-
tion is a vector in V®V, The two-particle S matrix for scat-
tering particle i from particle i+1 acts nontrivially in
Vi® Vi,

g <xp).

lﬂv,.@ Vl-+1(xi > Xjp1) = Si(Pi,Pi+1)¢v,.® Vil
Our theories are rotationally invariant in two-dimensional
space, so the corresponding (1+1)-dimensional theory is
Lorentz invariant. This means that the S matrix depends only
on the relative rapidity 6: defining p,=msinh 6; and
Piy1=m sinh 6;,;, we have 8= 0, — 6,. We note that the S ma-
trix here should not be confused with what is usually called
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the modular S matrix, which governs the braidings in Chern-
Simons theory and in conformal field theory.

This correspondence between the braid group and the S
matrix has long been known, in the context of knot theory.*’
Representations of the braid group (and the resulting knot
(invariants) can be found by taking a special limit of solu-
tions of the Yang-Baxter equation.*’ In physics, the Yang-
Baxter equation arises in integrable lattice models and field
theories. In integrable lattice models, the Boltzmann weights
must satisfy Yang-Baxter; in the former, the S matrices of the
particles do. Note, moreover, that the braid matrices and the
S matrices are acting in the same space V®V. So our argu-
ments indicate that the braid matrices of the
(2+1)-dimensional theory are a limit of the S matrices of the
corresponding (1+1)-dimensional theory.

It is not difficult to find in which limit this holds. The
Yang-Baxter equation for the S matrix arises from requiring
that the three-body S matrix factorizes into a product of two-
body ones. Since there are two different ways of factorizing,
for consistency one must have

Si(61 = 0,)S:,1(6) = 63)S,(6, — 63)
=8i41(0, = 63)8(0, = 05)S:,1(6, - 6,).  (3.2)
The connection to the braid group is now obvious: S(0) and
S() obey the braid group relation (2.1). In most known

cases (and in the cases of interest here), S(0)oc/ and
S(—60)S(6)=I. Thus we have

B=1lim S(6),

f—s0

B~'=lim S(- 6).

f—o0

(3.3)

The matrix S=e¥0ei®5ei% where &(6) is a function of the
rapidity 6, and A and B are diagonal #-independent matrices.
These factors arise in general to ensure that S has the correct
properties under crossing symmetry and unitarity. Obviously,
we need to remove the oscillating factors as §—  to have a

well-defined limit. Both S(6) and the modified matrix S(6)
satisfy the Yang-Baxter equation (3.2).

The limit #— o in Eq. (3.3) also makes sense at an intui-
tive level. In order for the S matrix to be that of a loop gas,
one should be in a limit where the mass m of the particles is
small: otherwise, the loops would be high in energy and not
dominate the partition function. When the particle mass is
small, one can create particles of any rapidity 6, and so the
rapidity difference 6=6,—-6,,, will typically be large.

To conclude this section, we note that there are two im-
portant additional steps to take in constructing a quantum
loop gas having quasiparticles with non-Abelian statistics.
The first is to find a Hamiltonian which has the ground-state
wave function of Eq. (3.1). This can usually be done by a
trick utilized by Rokhsar and Kivelson.'* This trick is useful
for any field theory with an explicit real action.’*’ For lat-
tice models, there can be complications, because one cannot
always construct a Hamiltonian which is ergodic in the Hil-
bert space. Nevertheless, in many cases of interest this pro-
cedure has been successful.
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The second additional step is to make sure that the excited
states have braid relations which are those of the loops in the
ground state. One way of doing this is to have a Hamiltonian
so that the excited states are defects in the configuration
space of loops. That is, a particle and an antiparticle over the
ground state are connected by a strand. Thus when they are
moved around each other, the nonlocality due to the strand
results in the braid relations described above. As is well
known, this construction works in the Abelian case.

IV. THE BRAID MATRICES

In this section, we give explicit expressions for the S ma-
trices and braid matrices associated with the Temperley-Lieb
and BMW algebras described in Sec. II. This will enable us
in the next section to identify the two-dimensional classical
field theories associated with these (1+ 1)-dimensional quan-
tum theories, so that we can construct quantum loop gases
with the desired braiding.

In the SU(2) case, the correspondence given in Eq. (3.3)
means that we need to look for an § matrix which at infinite
rapidities is of the form of Eq. (2.3). Such an § matrix has
been known for quite some time.*® It is straightforward to
check that

_ oM g0

S{0) =1~ 10— ge i
obeys the Yang-Baxter equation (3.2) for any value of the
parameter A, as long as e; satisfies the Temperley-Lieb alge-
bra, Eq. (2.2).

A number of related models have § matrices which can be
written in the form of Eq. (4.1). The most famous is the
sine-Gordon model. For general couplings, its spectrum con-
tains two different particles, the soliton (labeled +) and an-
tisoliton (labeled —), forming the spin-1/2 representation of
the U,(sl,) symmetry of the model. Their single-particle
space of states V; is two-dimensional, so that e; (which acts
on V;®V,,,) is a four-by-four matrix in this representation of
the Temperley-Lieb algebra. Labeling the rows and columns

(4.1)

in the order ++, +—, —+, —— gives
00 O O
0 1 0
et = 7 . (4.2)
01 q¢g" 0
00 O O

We have labeled this with a 6v because the Boltzmann
weights of the six-vertex model can also be expressed in
terms of these e;.

This particular representation €% of the Temperley-Lieb
algebra, however, does not result in the braid matrices of the
(2+1)-dimensional theory, as it does not respect the Jones-
Wenzl projector. Namely, consider k+2 strands in a row, i.e.,
the space V,®V,® - ®V,,»,. Any k+1 strands in a row
must obey the Jones-Wenzl projector: we must restrict the
space of states so that P(l[k+1]/2)=73(2[k+1]/2)=0 (the former acts
nontrivially on the first k+1 strands, the latter on the strands
2-++-k+2). Now braid the (k+2)th particle with the (k+1)st;
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the resulting configuration need no longer satisfy P(l[k+l]/2)
=0. For example, consider three strands in the k=1 case,
where configuration (—+—) in V,® V,® V; is part of the
projected Hilbert space. If we braid the last two particles, the
off-diagonal terms in ¢® result in a nonzero amplitude for
the final state (——+). The latter state is projected out of the
Hilbert space, since two S,=—1/2 states in a row are neces-
sarily in a spin-1 representation. Thus the braiding does not
commute with the projection: imposing the Jones-Wenzl pro-
jector violates unitarity. Obviously, we cannot have this, so
the only alternative is to conclude that e?v from Eq. (4.2)
cannot be used to build a braid matrix.

Luckily, this issue is well-understood from a number of
points of view. When k is an integer, there is another repre-
sentation of the Temperley-Lieb algebra which preserves the
projection. In the language of two-dimensional classical sta-
tistical mechanical lattice models, this representation is
called the restricted solid-on-solid (RSOS)
representation.*>>> In the S matrix language, this representa-
tion describes the scattering of kinks in potential with k+1
degenerate minima, as we discuss in Appendix A. In the
quantum-group picture, the RSOS representation is obtained
by “truncating” the states, so that all are in irreducible and
indecomposable representations of U, (sl,).

The presence of the Jones-Wenzl projector means that we
do not need to define the braid matrix on the full tensor
product V&V, but only on the restriction/truncation/projection
of the space V" to the states obeying P](.[k”]/z)V@N =0 for all
Jj. This restricted Hilbert space is our true space of states
V(N). The states in V(N) are conveniently labeled in terms of
a series of variables we call “dual spins.” (These variables
are often called heights; we avoid this here to avoid confu-
sion with the heights we discuss in the next section.) The
dual spins take on integer values ranging from 1 to k+ 1, and
live between the strands. Each strand is labeled by the two
dual spins to the left and right of it, which must differ by +1.
The key effect of the restriction is the fact that dual spins
only range from 1 to k+1. This is a consequence of not
allowing k+1 consecutive strands to have spin (k+1)/2.

A useful way of understanding the dual spins comes from
treating each strand as being a spin-1/2 representation of
U,(sly), and a dual spin r as being a spin-(r—1)/2 represen-
tation. Fix the first dual spin r| to be the value r;=1, so it
signifies the identity representation of U,(sl,). Our rules for
dual spins mean that a strand next to r| separates this from a
region of r,=2; the region of dual spin 2 can be next to a
region of dual spin r;=1 or r3=3, and so on. These are
precisely the rules for taking tensor products in s/,: we have
0®1/2=1/2,1/2®1/2=0@® 1, etc. In other words, crossing
a strand next to the dual spin r is like tensoring the
spin-(r—1)/2 representation (the dual spin) with the spin-1/2
representation (the strand). Thus we define the value (r;
—1)/2 to be the total spin of the first i—1 strands. Now
imposing the Jones-Wenzl projector is easy. Forbidding the
representation of spin (k+1)/2 is equivalent to forbidding
the dual spin r=k+2. Note that our earlier representation e
can be described in terms of dual spins as well: the + par-
ticle increases the dual spin by 1 (moving left to right, say),
while the — particle decreases it by 1. That the braiding from
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Eq. (4.2) can violate the Jones-Wenzl projection is obvious
in the dual spin description: after braiding, the value of the
dual spin can reach k+2 even if all the initial dual spins are
below k+2.

To give the explicit RSOS representation of e; for k inte-
ger, it is most convenient to label it by four dual spins r, s, ¢,

u, each ranging between 1 and k+1, with |[r—s|=[s—t
=|t—u|=|r—u|=1. The matrix elements of e; are then**-°
¢ [rlqltlq
e=s X u =6y T
T g (4.3)

where [],=(¢"-q7")/(9—q7"). The lines represent the
strands; this picture represents what happens when the (sr)
strand braids with the (ru) strand. After the intersection, the
final state consists of the (s¢) and (fu) strands. Since the S
matrix (and the corresponding braid matrix) is nondiagonal,
the final state can be different, namely one can have r#1 if
s=u. A very important thing to note is that if s, , and u are
between 1 and k+1, then the matrix elements for t=0 and
t=k+2 vanish because ¢“*>=—1. Thus if an initial configu-
ration satisfies the Jones-Wenzl projection, the final one does
as well.

Using the matrix of Eq. (4.3) in Eq. (4.1) gives the S
matrix of an integrable (1+1)-dimensional field theory; we
identify this theory in the next section. Using the matrix of
Eq. (4.3) in Eq. (2.3) (i.e., taking the §— oo limit of the S
matrix) gives the braid matrix of particles associated with
SU(2), Chern-Simons theory. This is also the braiding of the
quasiholes in the Read-Rezayi states in the fractional quan-
tum Hall effect.?%#33! It is important to note that this repre-
sentation, Eq. (4.3), is only useful for k an integer; otherwise,
the Jones-Wenzl projection cannot be satisfied (indeed, it
does not exist).

The space V&V for the (wrong) braid matrix (4.2) has
dimension 2V. Since the actual Hilbert space V(N) is a sub-
space of V®N its dimension must be smaller. Finding its size
is a straightforward exercise done in many places; see, e.g.,
Appendix A or Ref. 43. One finds for N large that the num-
ber of states grows as d". Thus the weighting per loop is
indeed d, as the Temperley-Lieb algebra implies it should be.

The results for SO(3) braiding and the BMW braiding can
be derived from the Temperley-Lieb representation, Eq.
(4.3). There are two solutions to the Yang-Baxter equation
whose S matrices turn into Eq. (2.7) in the infinite rapidity
limit #— 0. In the classification of Ref. 52, one solution is
associated with the fundamental representation of the
Uq(A(zz)) (A(zz) is a twisted Kac-Moody algebra), while the
other solution is associated with the spin-1 representation of
U,(sl,). We will discuss in the next section how both solu-
tions have been identified as S matrices for two (related) field
theories. The first solution is the most important for us. Writ-
ten in terms of the generators X and E, it is

2 4 -1 ,-\6

s 2N — g2 geM g le
j RS g

E+X,. (44
+q eI (4.4)
Taking the #— o limit yields the braiding matrix BS°® in
Eq. (2.7).
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We can build a representation of the E; and X; from the
e; of a Temperley-Lieb representation by using the
relations of Eq. (2.5). If the latter obeys the Jones-Wenzl
projection, the resulting SO(3) BMW representation does
as well. In fact, we must use the representation of Eq. (4.3),
because it turns out that this yields the only unitary S matrix
of the form of Eq. (4.4). The representation of the states
in terms of dual spins therefore applies to the SO(3)
case as well. However, here the rules for adjacent dual
spins are different, since the strand is in the spin-1 represen-
tation of U,(sl,). For dual spins 1---k—1, the rules are
the same familiar ones from ordinary sl, spin-1 representa-
tions: e.g., (h—1)/2® 1=(h=3)/2® (h—1)/2® (h+1)/2 for
3<h=k-1. For dual spins k and k+1 we have, respectively,
(k=1)/2®1=(k-3)/2® (k—1)/2 and k/2® 1=(k—-2)/2; in
the latter, the representation of spin k/2 does not appear on
the right-hand-side. Note that the states split into two sub-
sectors, since even dual spins must always be adjacent to
even dual spins, and odd are adjacent to odd.

If one uses the rules given in Appendix A to count the
number of states for N spin-1 strands, one finds it grows as
(@*~1)N at large N. Thus we can indeed interpret d>—1 as the
weight of an isolated loop, as the SO(3) BMW algebra im-
plies.

V. THE (1+1)-DIMENSIONAL FIELD THEORIES

In order to build our quantum loop gas, we need one more
ingredient. This is to identify the underlying two-
dimensional classical field theory, so that the wave function
of the (2+1)-dimensional theory is given by Eq. (3.1). We
argued in Sec. III that the (1 + 1)-dimensional version of this
underlying theory will have an S matrix whose §— 0 limit
gives the braid matrix. In this section, we identify the field
theories whose S matrices are those in the last section.

To construct the quantum loop gas directly from the field
theory, one needs to know the action of the two-dimensional
classical field theory. As we will discuss in more detail be-
low, for most of the theories of interest, the explicit action is
fairly difficult to deal with. However, as discussed in Appen-
dix A, there are nice Landau-Ginzburg descriptions. Thus
one can define a quantum Hamiltonian in this language, us-
ing the procedure discussed in Refs. 47 and 31.

A. The SU(2) case

We start with the SU(2) case, arriving at the results of
Refs. 6, 7, and 32 from a slightly different point of view. The
S matrix, Eq. (4.1), with ¢; in the representation of Eq. (4.3),
describes a field theory which can be defined in several dif-
ferent ways, which we describe here.

One definition is as the continuum limit of an RSOS lat-
tice model.*” The degrees of freedom of an RSOS lattice
model are on the sites of a square lattice. The variables are
called “heights,” and are integers ranging from 1 to k+2.
Heights on nearest-neighbor sites must differ by +1. The
Boltzmann weights for this model are those of regime III in
Ref. 49. This phase is ordered.’® Each ordered state has only
two heights present: one sublattice has all heights 4 while the

024412-8



REALIZING NON-ABELIAN STATISTICS IN TIME-...

other has all 2+ 1. The excitations are the k different kinds of
domain walls between the k+1 different ordered states; each
wall can be labeled by the two heights i, h+1 it separates.

It is quite simple to see qualitatively how the § matrix
(4.1) applies to this RSOS height model. The dual spins in
the representation (4.1) are identified with the ground states
of the height model (there are k+ 1 of each, with the rule that
adjacent ones must differ by =1). The strands are identified
with the excitations of the lattice model, the domain walls. In
the absence of defects, the domain walls form nonintersect-
ing loops, just like the particle world lines we have described
in detail above. The domain walls are indeed the objects
whose scattering is described by the S matrix. In the
(1+1)-dimensional picture, the excitations can be thought of
as kinks, as discussed in Appendix A.

Of course there are multiple lattice models with the same
continuum § matrix. The RSOS height model has the advan-
tage that it is integrable, and that the connection of the §
matrix to the lattice variables is quite intuitive. However,
there is another lattice model in almost the same universality
class. We say “almost” because some modifications are re-
quired if the space is a torus. This caveat does not affect the
S matrix, and in any case we will not worry about the torus.
The model with the same S matrix is called the lattice O(n)
loop model, because at n integer it is O(n) invariant. How-
ever, we are interested in the case n=d=q+q"
=2 cos[ 7/ (k+2)], so that |n|<2. This model can be defined
for all n as a gas of self- and mutually avoiding loops on the
honeycomb lattice with a weight n per loop, in addition to a
weight per length of loop. By writing the S matrix for the
(1+41)-dimensional version of the O(n) model in terms of
generators obeying algebraic relations, one in fact can make
at least formal sense of it for all values of n=<2, not just k
integer.*® These algebraic relations are equivalent to the
Temperley-Lieb algebra.>* The loops are interpreted heuris-
tically as the world lines of the particles. In these works, no
explicit representation of the Temperley-Lieb algebra is nec-
essary, but the Jones-Wenzl projection is required to obtain
the correct answer for physical quantities on the cylinder.%
Thus when k is an integer, one can use the RSOS represen-
tation in the O(n) model as well, although the physical inter-
pretation of this in the lattice model is not very clear.

[As a side remark, we note that the earlier representation
of Eq. (4.2) does have a nice heuristic interpretation in the
context of the O(n) lattice model. One can formulate this
model as a model of oriented loops, where clockwise loops
get a weight ¢ and counterclockwise loops get a weight ¢.
Despite the complex Boltzmann weights, the partition func-
tion remains real after summing over all orientations. The
formulation in terms of oriented loops is useful because this
can be mapped onto a model with local interactions, the six-
vertex model with staggered Boltzmann weights.?” The pro-
jection mentioned is necessary to get the correct weighting
for loops which wrap around the cylinder. In this formula-
tion, the + and — particles mentioned at the beginning of
Sec. IV then correspond to the two orientations of the loop.]

The description in terms of the O(n) lattice model is pre-
cisely that found in Refs. 6, 7, and 32. The
2(+1)-dimensional lattice model discussed there has a
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ground-state wave function of the form of Eq. (3.1), where
the action S is precisely that of the O(n) loop model with
n=d=g+q". It was convincingly argued that this model in-
deed has fractional statistics, with a braid matrix given by
Eq. (2.3). Thus by our S matrix line of argument, we have
arrived at the same conclusion. This is therefore strong evi-
dence in favor of our conjecture in Sec. III that the braid
matrix of the (2+1)-dimensional theory is related to the S
matrix of the corresponding (1+ 1)-dimensional theory.

The theories with the SU(2) RSOS S matrix can be for-
mulated directly in the continuum, without need for the lat-
tice descriptions given above. For general k, however, there
is no simple field-theory action for these theories, although a
heuristic but useful Landau-Ginzburg description is given in
Appendix A. They can also be defined in terms of con-
strained fermion models>® which realize the Goddard-Kent-
Olive current algebra construction.”’ It is difficult to obtain
much information from this formulation, however. For our
purposes, it is most convenient to define the field theories of
interest as perturbations of a conformal field theory. One can
define and indeed solve conformal field theories without a
Lagrangian: the Hamiltonian and states are defined in terms
of representations of the Virasoro algebra. A massive field
theory is defined by perturbing the conformal field theory by
a relevant operator. As shown in Ref. 58, the S matrix of Eq.
(4.1) with e; given by Eq. (4.3) is that of a perturbation of the
conformal minimal model with central charge,

6
plp+1)’

The desired S matrix describes the perturbation of the con-
formal field theory with p=k+2 by its least relevant primary
field (known usually as @ ;), which has scaling dimension
2(p—1)/(p+1) (see Appendix A for details).

Before moving on to the SO(3) case, we wish to note
another complication in the above picture. The first is that,
strictly speaking, the S matrix of Eq. (4.1) applies to the O(n)
model in its dilute phase, where the energy per unit length is
larger than the entropy, so that the loops cover a small part of
the lattice. In order to get a purely topological field theory,
the weight per unit length of loop must be 1, so that no
length scale is set for the loops.3?> Such an O(n) model on the
honeycomb lattice for n<<2 is in its dense phase, where en-
tropy wins and the loops cover a set of measure 1 of the
lattice. However, the braid matrix is not related to the §
matrix in the dense phase, but rather that of the dilute phase.
(The S matrix in the dense phase has been studied, but due to
the nonunitarity of the model, understanding it precisely is a
complicated and somewhat gruesome story.) The dense and
dilute phases are not dual to each other; the former has alge-
braically decaying correlators, while the latter’s decay expo-
nentially. The same statements can be made in the context of
the height models describing the perturbed minimal models.

The way of understanding this complication is to remem-
ber that in the dilute phase, the arguments of Sec. III suggest
that the S matrix really is describing the scattering of the
excitations themselves, i.e., what happens when two world
lines braid. The braiding we are interested in is of the bare

(5.1)

c=1
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loops, not the renormalized excitations, and this is given by
the S matrix in the dilute phase. The S matrix in the dense
phase is describing the excitations over the sea of dense
loops, which is important in the (1+ 1)-dimensional case, but
not of interest for the (2+ 1)-dimensional braiding. The les-
son is that the braiding should indeed be interpreted as that in
the dilute phase, even though the topological point is in the
dense phase where loops proliferate. In other words, the par-
tition functions of interest have to be regarded as the analytic
continuation of the partition function of dilute loop models
past their radius of convergence.

B. The SO(3) theory

Several field theories with the S matrix of Eq. (4.4) were
identified and discussed by Smirnov.”® The case we will fo-
cus on here corresponds to a perturbation of minimal confor-
mal field theories with central charge of Eq. (5.1). However,
for a given k, both the minimal model and the perturbation
are different from the SU(2) case. This time, we have
p=k+1, and the perturbation is by the ®,,; operator.

It is convenient to use the much-better-known interpreta-
tion of this field theory as the continuum description of the
Q-state Potts model, where Q is given by37:%0

el =g+ V=4 2(i>
0 (g+q7) cos’\

The Potts model can be defined for all Q in terms of its
high-temperature expansion, where Q becomes a parameter.
This definition does not have local Boltzmann weights for
arbitrary Q, but for our special values with k integer, there is
a lattice model with the same high-temperature expansion.
This is found by using the original Temperley-Lieb result of
writing the Potts transfer matrix in terms of generators obey-
ing the algebra of Eq. (2.2), and then using the RSOS repre-
sentation, Eq. (4.3), of these generators. At a particular cou-
pling where the weights are isotropic, the lattice models are
identical to the RSOS lattice models*-" at their critical
point. Thus the Potts critical point is also described by the
conformal field theory with p=k+1. Off the critical point,
the S matrix of the Potts model with & integer is indeed of the
form of Eq. (4.4).4%61.62 However, when Q is an integer
(k=2,4,00), this S matrix is diagonal, so the braiding which
follows from it is Abelian. For non-Abelian statistics, we
need to use the Potts model for Q not an integer. We discuss
this quantum loop gas in detail in Sec. VL

As opposed to the O(n) model for n# 1, the Potts model
has a duality relating high to low temperature. On the lattice,
this is a generalization of the Kramers-Wannier duality of the
Ising model.®*%* In the conformal field theory picture, there
is a Z, symmetry relating the perturbing operator ®,; to
—®, . All the operators appearing in the operator product
expansion of @, with itself are irrelevant, so perturbing by
®, ; and —®, ; must be equivalent. The two signs of pertur-
bation correspond to the low- and high-temperature phases,
with the critical point being the self-dual point.

This duality is a crucial ingredient in interpreting states in
the (2+1)-dimensional quantum model. We have stressed
above how excitations with non-Abelian statistics can arise
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in quantum loop gases, where the ground state is a liquid
state, i.e., a superposition of many states which does not
break any symmetries. The key to understanding how to do
this here is to view what we referred to as the high-
“temperature” phase in the classical statistical-mechanical
picture as a quantum-disordered ground state. We picture this
disordered state as a superposition of the excitations of the
dual ordered phase, i.e., the excitations of the classical low-
“temperature” phase. Recall that in the (2+1)-dimensional
picture, the weights measure the amplitude of a particular
configuration in a wave function. This terminology contains
somewhat of an abuse of language in that the quantum sys-
tem is not at high temperature, but rather the weights of the
ground state are those of the classical model at high tempera-
ture. We are discussing the properties of the quantum system
only at zero (physical) temperature.

In the Abelian case, this can be seen quite clearly in Ki-
taev’s model.> Here the underlying classical lattice model is
the Ising model. This is therefore equivalent to both the
SU(2), model [based on the O(1) loop gas] and our SO(3),
model (the Q=2-state Potts model). The loops are simply the
domain walls between the Ising spins, which get a weight
1=(\s’§)2— 1. The corresponding (2+ 1)-dimensional model is
topological when the action S in the wave function of Eq.
(3.1) is of the Ising model at infinite temperature, where the
Ising domain walls have zero energy per unit length and have
proliferated. In the ordered phase, the order operators have
expectation values, and the excitations are created by the
disorder operators.>! In the disordered phase, the disorder
operators get expectation values, and the excitations are cre-
ated by the order operators. The lesson is that when there is
a duality, the operator which creates excitations in one phase
is the one which gets the expectation value in the dual
phase.6>66

To conclude this section, we recall that there is another
model which has an S matrix of the form of Eq. (4.4). This is
the tricritical Potts model, which in conformal field theory
language corresponds to the minimal model with p=k+2
perturbed by the @, , operator. One could presumably build
quantum loop gases based on the tricritical models as well.
Since in two dimensions the tricritical point is unstable to
perturbations toward the ordinary critical point, this would
presumably hold as well in the (2+1)-dimensional version.
Thus such a quantum loop gas would be near a multicritical
point as well.

We also noted above that there is a second S matrix which
reduces to BS°®) in the §— oo limit. This S matrix is associ-
ated with a certain perturbation of the SU(2),/U(1) “parafer-
mion” conformal field theory.®’” (The perturbation is the

W, W, operator, where W, is the fundamental parafermion.)
The physics is different for the two signs of this perturbation.
For one sign, one obtains a massive phase, with this § ma-
trix. For the other sign, one flows to the minimal model with
the central charge given in Eq. (5.1) with p=k+1. This is
precisely the critical point of the Potts models. Moreover,
both critical points appear in the same RSOS lattice model
(in the nomenclature of Ref. 49, the parafermion critical
point separates regimes I and II, and the minimal model
separates regimes III and IV). Thus our interpretation is that
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this second S matrix is describing the same quantum loop gas
in a region near another multicritical point.

VI. LATTICE MODELS

We can combine all these ingredients to build quantum
loop gases on suitable lattices whose excitations should have
non-Abelian statistics. As discussed in Sec. III, the strategy
is to build a model whose ground state is given by a loop gas
where the loops have the correct properties [e.g., a weight of
d per loop in the SU(2) case, and a weight of d>~1=0-1
per isolated loop in the SO(3) case]. Such a lattice model for
the SU(2) case was introduced by Freedman, Nayak, and
Shtengel.?> We repeat some of these arguments here, and
then use the S matrix picture to define an analogous model
for the SO(3) case.

In all the examples to be discussed, the Hamiltonians are
local, i.e., they are the sum of operators which act on a finite
number of local degrees of freedom. The ground states that
we construct have the Rokhsar-Kivelson property'# that the
square of the amplitude of a given configuration is the Bolt-
zmann weight of an equivalent problem in two-dimensional
classical statistical mechanics which are either in a disor-
dered phase or at a critical point. Consequently the equal-
time correlators of the quantum problem have the same be-
havior of some (suitably identified) observables of the
equivalent classical problem. Since the quantum Hamilto-
nians are local, we expect that exponentially decaying corre-
lation functions in space translate into a finite gap in the
spectrum of the quantum problem. Likewise, power-law cor-
relations in real space imply quantum criticality of the two-
dimensional system; since our Hamiltonian is of Rokhsar-
Kivelson type, we expect that such a critical point will have
dynamical critical exponent z=2.

A. Criteria for the lattice models

In all of the lattice models discussed here, the Hamil-
tonian is of the Rokhsar-Kivelson form, meaning it can be
written in terms of a sum of projection operators,

H=> \H,. (6.1)

The projection operators H,:Hi2 are local but not necessarily
commuting. The off-diagonal terms in A must be ergodic, in
the sense that any configuration can be mapped to any other
(with the same values of any globally conserved charges) by
repeated applications of H. To obtain a desired ground state
|W), one must find a set of operators H; so that

H|P)=0

for all i. This means that the state |¥) is an eigenstate of H
with energy 0. As long as all the coupling constants \; are
strictly positive, \;>0, this state |¥) is a ground state. We
study models where the solution of this equation can be writ-
ten in the form of Eq. (3.1): the basis elements of the Hilbert
space can be thought of as a configuration in a classical
two-dimensional lattice model, and the weight of this con-
figuration can be expressed in terms of a local action. A key
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requirement that we will impose is that of locality, i.e., that
all the operators H; act on a finite set of contiguous degrees
of freedom.

The degrees of freedom of the models in this section con-
sist of a quantum two-state variable on each link of some
two-dimensional lattice. We call these two states occupied
and unoccupied. An occupied link corresponds to the pres-
ence of the strand, which one can think of as being in the
spin 1/2 representation of U,(sl,) in the SU(2) case, and spin
1 in the SO(3) case. An empty site corresponds to the iden-
tity representation. What this means is that at each vertex,
configurations appearing in the ground state must obey the
corresponding fusion rules of U,(sl,). 34870 For example,
three links, in states corresponding to representations r, s,
and ¢ of U,(sl,), touch each vertex of the honeycomb lattice.
Configurations in the ground state must have the identity
representation in the tensor product r®s®¢. Thus in the
SU(2) case, each vertex must be touched by zero or two
occupied links. In the SO(3) case, each vertex must be
touched by zero, two, or three occupied links.

1. The SU(2) lattice loop models

For the SU(2) case, one needs a set of H; which annihi-
lates states with the weighting rules of the O(n) model. In
other words, the ground state must consist of a superposition
of configurations where the strands form self- and mutually
avoiding loops which are not fully packed. (Fully packed
quantum loop models do not always have topological
phases.) Moreover, each loop should have a weight d, and to
be a purely topological ground state, there should be no
weight per unit length. Precisely, the criteria imposed on the
configurations in the ground state at the purely topological
SU(2) point are as follows.??

(i) The strands form closed nonintersecting loops: i.e.,
each vertex has either zero or two links with occupied links
touching it.

(ii) If two configurations are related by moving strands
around, without cutting the strands or crossing any other
strands, then these two configurations must have the same
weight. In other words, two topologically identical configu-
rations have the same weight.

(iii) If two configurations are identical except for one hav-
ing a closed loop around a single plaquette (e.g., a loop of
length 6 on the honeycomb lattice and length 4 on the
square), then the weight of the configuration without the
single-plaquette loop is d times that of the one with it.

The latter two properties are known as d-isotopy.” Note
that arbitrarily sized loops are not directly required to have
weight d. Rather, this property follows indirectly by combin-
ing the two latter properties: one can use criterion (ii) to
shrink a loop to its minimal size, and then use criterion (iii)
to remove it altogether while giving a relative weight d to the
ground-state wave function.

It is now straightforward to find the H; annihilating a state
with these properties by using locally defined projection op-
erators. An explicit expression for the H; in the SU(2) case
on the honeycomb lattice can be found in Ref. 32. Since we
will not need the explicit Hamiltonian, we will not give it
here—it is rather ugly, but it does the job. In these models so
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FIG. 8. (Color online) A typical configuration in the spin-1 loop
model.

far, d is a parameter that can take on any value, as the Jones-
Wenzl projector is not imposed. To impose this projector on
the ground state, one can add an energy penalty for configu-
rations which violate the projection. This requires a fine-
tuned interaction involving a number of terms involving
k+1 spins (or strands) for level k.

2. The lattice SO(3) models

To study the SO(3) theories for arbitrary k, we need to
work harder. The appropriate lattice models are found by
imposing criteria analogous to those of the SU(2) case, but
adapted to the spin-1 loops.

A typical loop configuration in the SO(3) model should
look like that in Fig. 8. The lines in this figure represent
“spin-1" particles, so that they correspond to the projected
double lines in the earlier Figs. 6 and 7. We thus dub this the
spin-1 loop model. We still require that the strands form
closed loops. However, as opposed to the SU(2) case, we
must now allow for trivalent vertices, i.e., the loops are now
allowed to branch and merge. Thus the spin-1 loop model
has branching loops. This space of configuration is the same
as the spin-1 case of the exactly solvable string-net models
of Ref. 36, and should describe the same physics in the con-
tinuum limit.

In the language of the quantum-group algebra U (sl,), the
reason for the trivalent vertices is that spin 1 appears in the
tensor product of two spin-1 representations. Equivalently,
one can form an invariant from three spin-1 representations.
Pictorially, this follows from the presence of the SO(3)
BMW generator X in Fig. 7. This generator does not occur in
the SU(2) case. In the quantum-group language, there are
three generators here because the three representations of
spin 0,1, and 2 appear in the tensor product of two spin-1
representations. Precisely, the projection of two spin-1
strands onto a spin-zero strand is E/(Q-1), and onto a
spin-1 strand is (X-E)/(Q-2).

e

\

/—

FIG. 9. (Color online) Two trivalent vertices in the SO(3) BMW
algebra.

/
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= (0-2)

FIG. 10. (Color online) Removing one loop in the spin-1 loop
model.

In the spin-1/2 loop model for the lattice O(n) model,*

the Temperley-Lieb relation e%:dei implies that each loop
receives a weight d. We can understand the somewhat more
intricate analogous properties of the spin-1 loop model by
using the SO(3) BMW algebra. The relation Ejz:(Q—l)Ej
implies that isolated loops in the spin-1 model receive a
weight of Q—1=d?-1. Because trivalent vertices occur here,
however, all loops need not be isolated. The projector onto
spin-1 is proportional to X—FE, so we associate this with two
neighboring trivalent vertices, as indicated in Fig. 9. Several
properties of the loop gas follow from this. The relation
(XJ-—Ej)2=(Q—2)(Xj—Ej) means that a configuration with a
loop with just two lines emanating from it has a weight
Q-2 times the configuration with the loop removed. This is
illustrated in Fig. 10. Moreover, because (X;-E;)E;=0, no
graph can contain any loop with just one external line at-
tached to it. We call such a forbidden loop a “tadpole.”

We must work harder to find the weight of more compli-
cated configurations in the loop model. To make the answer
precise, we use a two-dimensional classical lattice model
which has a loop expansion with the desired properties. As
we discussed in Sec. V, for the spin-1 loop model this should
be the Q-state Potts model, since its S matrix gives the de-
sired braid matrix. The desired loop expansion is the low-
temperature expansion of the Potts model.

Let us first describe the low-temperature loop expansion
for Q integer, where the Potts models are defined by placing
a “spin” oy taking values 1---Q at the sites i of a lattice. As
is well known, the interaction for a Potts model depends only
on whether nearest-neighbor spins are the same or different,
so that the Boltzmann weight for a link with spins ; and o;
at its ends is

K1)

The low-temperature expansion is given by first expressing
each configuration of Potts spins in terms of domain walls
residing on the links of the dual lattice. The domain walls
divide regions on the direct lattice of spins of different val-
ues. Each link crossing a domain wall has weight eX, while

FIG. 11. (Color online) A trivalent vertex in the three-state Potts
model.
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FIG. 12. (Color online) The recursion relation for the chromatic
polynomial.

*----9

each link without the wall has weight 1. The Boltzmann
weight of a given spin configuration depends only on the
length L of its domain walls: L is the number of links on the
dual lattice with walls on them. The Boltzmann weight of a
configuration is then e X, A weight of 1 per unit length
corresponds to infinite temperature in this classical lattice
model.

By definition, the domain walls must form loops sur-
rounding groups of like Potts spins. These loops can inter-
sect, but no tadpoles can occur. For example, the trivalent
vertex given in Fig. 11 occurs for Q>2.

Different configurations of spins can have the same
domain-wall configuration: e.g., there are Q configurations
with no domain walls, and Q(Q—1) configurations with a
loop of length 4 surrounding a given site. In general, the
number of spin configurations which have the same loop
configuration £ is called the number of Q colorings x,(L)
(see, e.g., Ref. 71). Imagine each region of like spins to be
shaded some color. The number x,, is then the number of
ways this shading can be done with Q colors so that no two
adjacent regions have the same color (regions which meet
only at a point are not considered to be adjacent).

The partition function of the Potts model can therefore be
written as

z=2 e xo(L), 6.2)
L

where the sum is over all distinct loop configurations: the
multiple spin configurations with the same loop configura-
tion are accounted for by the factor y,(L£). A typical loop
configuration £ looks like that in Fig. 8. Because (L)
vanishes for any configuration with a tadpole, or a strand
with a dangling end, we need not include such configurations
in the sum. This expansion is a useful description of the
ferromagnetic (K>0) Potts model at low temperature. It is
important to note that this is not the only loop expansion of
the Potts model: another expansion is in terms of the (self-
and mutually avoiding) loops surrounding the clusters in the
high-temperature expansion.3”-”172

The low-temperature expansion of the partition function
of the Potts model, Eq. (6.2), applies to any Q when x,(£) is
the chromatic polynomial of the graph dual to £.°' The graph
dual to £ is defined with a node corresponding to each loop,
and a line between two nodes when the corresponding loops
share a boundary. In terms of the Potts spins, each node in
this graph corresponds to a region of like spins, and a line
between two nodes means that corresponding regions are ad-
jacent. The chromatic polynomial reduces to the number of
colorings of the graph when Q is an integer, but can be
defined for all Q by a recursion relation. Consider two nodes
connected by a line [ (i.e., two loops sharing a boundary in
the original picture). Then define D,L to be the graph with
the line deleted, and C,L to be the graph with the two nodes
joined into one. Then we have
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XQ(E) = XQ(Dlﬁ) - XQ(CI‘C)-

We represent this pictorially in Fig. 12, where a node repre-
sents each loop, a solid line between two nodes indicates that
the corresponding two loops are adjacent, and a dashed line
indicates that two formerly independent loops are now
merged (i.e., the occupied links separating them are re-
moved). This is fairly obvious in the coloring description:
Xo(D,L) includes all graphs in x,(L), but also has graphs
where the two nodes connected by line / have the same color.
There are x,(C,£) of the latter so we need to subtract these
off to get the recursion relation. For any loop configuration
L, one can apply Eq. (6.3) repeatedly until one reaches
graphs with all isolated nodes. A graph with N isolated nodes
has XQ=QN. We will give explicit examples of how this
works in Sec. VI B.

The criteria for the Potts loop model to describe the
ground state of the SO(3) loop gas on the lattice are therefore
as follows.

(i"). The strands form closed loops, but now we allow
trivalent vertices.

(ii"). If two configurations are related by moving strands
around without cutting the strands or crossing any other
strands, then these two configurations must have the same
weight. In other words, two topologically identical configu-
rations have the same weight.

(iii"). Each loop configuration £ receives a weight y,(L).
For example, if two configurations are identical except for
one having a closed loop around a single plaquette (a loop of
length 6 on the honeycomb lattice and length 4 on the
square), then the weight of the configuration without the
single-plaquette loop is Q—1 times that of the one with it.

Criterion (ii’) is the same as criterion (ii) in the SU(2)
case; this is the requirement of topological invariance. Crite-
rion (i’) is the generalization of criterion (i), allowing for
trivalent vertices in the SO(3) case. Criteria (iii") is the ap-
propriate generalization of criterion (iii). However, imple-
menting this using a local Hamiltonian requires a little work,
which we will now describe.

(6.3)

B. A Hamiltonian yielding SO(3) statistics

In the previous subsection, we set out the criteria which
the ground-state wave function for the SU(2) and SO(3)
models must obey. Here we describe a Hamiltonian of the
form of Eq. (6.1) for the SO(3) case, which has a ground
state with the weights of the (low-temperature) Potts loop
gas. This is tantamount to finding a set of projection opera-
tors H; which annihilate the desired ground state, and which
result in an ergodic Hamiltonian.

There are two types of H; operators in our Hamiltonian.
The simplest type have purely potential terms, diagonal
terms where H;=1 on some basis elements of the Hilbert
space and zero on the remaining elements. Such terms thus
allow us to satisfy criterion (i’): we give a positive potential
to any vertex which has only one occupied link touching it.
Since the ground state has energy zero by construction, any
state on which these H; are nonzero cannot be part of the
ground state, as long as there are no off-diagonal terms
which mix this state with an allowed one.
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FIG. 13. (Color online) Plaquettes with two external occupied
links.

The second type of term contains off-diagonal elements,
which are needed to ensure that different basis elements have
the desired relative weighting in the ground state. A state of
the form |£)+a|L’) is annihilated by

a -1
H[= 1
-1 «

so that, e.g., H]|L)=a|L)—|L"). Since we know each state £
in the ground state receives a weight xo(L£), we need «
=Xo(L")/ Xg(L).

However, if we include an element H; in the Hamiltonian
for any pair of states £, £', the Hamiltonian will be nonlocal
for several reasons. An obvious one is that if we include an
H; for any pair of configurations, the off-diagonal terms are
clearly nonlocal. We can easily solve this problem by setting
\;=0 for any H, involving an £ and an £’ whose differences
are nonlocal. In other words, we only allow off-diagonal
terms in H which map a given £ to an £’ which differs from
L only in some small neighborhood (say the links on a given
plaquette). While this is a necessary condition for a local
Hamiltonian, it is not sufficient for this model. The reason is
that evaluating x(£) for a given £ is a nonlocal operation:
it requires knowing the entire cluster of occupied links.
However, even though the overall y,(L£) needs to be deter-
mined globally, the ratio x,(£)/xo(L') in some cases de-
pends only on a local difference between £ and L', not their
global form. Since the Hamiltonian only depends on this
ratio, we can find a local Hamiltonian if we can find such
pairs £ and L.

FIG. 14. (Color online) Plaquettes with three external occupied
links.

(6.4)
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FIG. 15. (Color online) Plaquettes with four external occupied
links.

Let us first describe how to implement criterion (ii’),
which says that if two configurations £ and L’ are topologi-
cally identical, then they have the same weight in the ground
state. By definition, if £ is topologically identical to L', we
have xo(£)=x(L"). Thus including H; of the form of Eq.
(6.4) with a=1 will insure the proper weighting. These terms
will be local if we require £ and £’ to not only be topologi-
cally identical, but completely identical except on the links
around one plaquette.

To make these terms in the Hamiltonian more specific, let
us work henceforth on the honeycomb lattice, so that we do
not have to worry about loops which touch at only a point.
Consider a single plaquette, where some but not all of its six
links are occupied. The simplest possibility allowed by cri-
terion (i”) is then for two of the six outside links touching the
plaquette to be occupied, as in all the configurations in Fig.
13. For each configuration of the two outside occupied links
(15 possibilities in all), there are two topologically identical
configurations on each plaquette. We thus include in H the
a=1 projectors which include flips between the two topo-
logically identical configurations; two of the flips are illus-
trated in Fig. 13. These are H; are local, involving only states
on 12 links: the six on the plaquette and the six touching it.

This idea can readily be generalized to plaquettes with
more of the outside links occupied. If there are three outside
links occupied, then there are three topological identical con-
figurations on each plaquette, as illustrated in one case in
Fig. 14. We thus include a=1 projectors which flip between
any pair of topologically identical configurations. For four
outside lines, there are two possibilities. The first type of
configuration show in Fig. 15 has no topologically identical
partner, while the second type has one. We thus include
a=1 projectors for all configurations of the latter type. For
five or six outside lines, we include no projectors. By repeat-
edly applying the H; described in Figs. 13—15, we implement
criterion (ii’).

As if this Hamiltonian were not already complicated
enough, we now need to implement criterion (iii"). The H;
described in Figs. 13—15 all map between topologically iden-
tical configurations. To map between topologically distinct
configurations, we need still more H; operators. These are
still of the form of Eq. (6.4), but to ensure different configu-

<—__> e Q=D
FIG. 16. (Color online) Removing or adding an isolated
loop.
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rations have the correct relative weight, the « are not neces-
sarily equal to 1. Again, we focus on a single plaquette, but
here we consider only plaquettes with all six links occupied.
The H; depend of course on which of the outside links are
occupied. The cases with 0, 1, 2, and 3 occupied outside
links and all internal links occupied are easy to implement.
We have the following.

0. When there are no outside links occupied, then a
plaquette with all six links occupied forms an isolated loop.
If we remove this loop, the resulting configuration has
weight O—1 relative to the configuration with the loop. This
can be implemented with an H; with a=Q-1, where L is the
configuration with the isolated loop and L’ is the configura-
tion without it. This is illustrated in Fig. 16.

1. If there is just one occupied link, this is a tadpole, and
is forbidden in the Potts loop expansion and hence the
ground state. Thus we add a potential-only term (i.e., H;=1
on a tadpole). Tadpoles comprised of loops larger than a
plaquette end up being forbidden by using the isotopy: ap-
plying the Hamiltonian enough will shrink a given loop to a
single plaquette, and the potential here will then exclude it
from the ground state.

2. If there are two occupied outside links connected to
loop, the configuration with the loop removed has relative
weight OQ—2, as illustrated earlier in Fig. 10. This is imple-
mented by H; with a=Q-2, where L is the configuration
with the loop and £’ is a configuration with the same exter-
nal lines but without the complete loop. As illustrated in Fig.
13, for a given pair of occupied outside links, there are two
allowed configurations on the plaquette with no loop. We can
include an H; (a=Q-2) for either or both of these two al-
lowed configurations.

3. If there are three occupied outside links connected to
loop, the configuration with the loop removed has relative
weight Q—3. We therefore use an H; with a=0Q-3. Here £’
can be any one of the three configurations illustrated in Fig.
14.

A Hamiltonian comprised of the H; we have constructed
so far has ground states with the correct relative weightings.
However, it is not ergodic: there are multiple distinct ground
states which are not related by any of the above off-diagonal
terms. For example, the loop around plaquette A in Fig. 17 is
annihilated by all the H; we have discussed so far. Thus we
need more terms in H so that this state alone is not a ground
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FIG. 18. (Color online) Removing one loop of a four-hexagon
cluster.

state. Removing one of these loops (all of which have at least
four occupied outside links) is not as simple as with three or
fewer occupied links. We need to use the recursion relation
Eq. (6.3) for the chromatic polynomial to find H; which re-
move these loops.

To find these terms, it is convenient to use the graphical
representation of a loop configuration, as defined above.
Knowing the graph of £ is sufficient to find its chromatic
polynomial x,(£). In terms of these graphs, the recursion
relation Eq. (6.3) can be represented as in Fig. 12 above. We
can use this relation to easily rederive the H; acting on
plaquettes with 0, 2, and 3 occupied outside links. For ex-
ample, the graph for an isolated node is precisely that on the
left-hand side of Fig. 12. Applying Eq. (6.3) once, and then
using the fact that an isolated node gives a factor Q to the
chromatic polynomial, gives the desired relative weighting
Q—1. The equalities are meant as between the corresponding
chromatic polynomials.

Finding H; which remove a loop with four external lines
is trickier. One can apply the recursion relation, but one can
get graphs which do not correspond to any configuration on
the honeycomb lattice given by changing links on the
plaquette from occupied to unoccupied. Consider the first
graphical representation of four adjacent hexagons in Fig.
17. In this graph, we allow the nodes B, C, D, and E to be
attached to other nodes, but node A touches only the four in
the picture. We apply the recursion relation once to remove
one of the lines attached to node A. This gives a perfectly
valid relation for the corresponding chromatic polynomials,
but there is no loop configuration corresponding to the graph
with one line removed. For example, say we remove the line
from A to D: no loop configuration corresponding to this
graph can be drawn on the honeycomb lattice.

To define a Hamiltonian, we need a relation between valid
loop configurations, not just different chromatic polynomials.
We can relate the two loop configurations in Fig. 17. In the
first graph, we use the recursion relation to remove the line
from A to D and then the line from A to E. Now node A has
lines only to nodes B and C, and corresponds to the situation
of Fig. 10. We can now remove node A altogether, multiply-
ing the result (the square involving B, C, D, and E) by
Q-2. This square defines a chromatic polynomial, but there
is no corresponding loop configuration. We can, however,
relate it to the second configuration in Fig. 17; the same
square graph arises from using the recursion relation to re-
move the link from C to E. Combining the two, we obtain
the relation in Fig. 18 with a=0—2 and b=-1. Note that the
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first and last configurations are topologically identical, so
we can choose any value of a if we set b=Q—-3—-a. Thus
a more symmetric Hamiltonian will result if we choose
a=b=(0Q-3)/2. As a check on this relation, we can look at
the special case where none of the nodes A, C, D, E are
connected to any others (i.e., the four hexagons A, C, D, E
are surrounded by region B). One can then easily verify that
both sides are equal to (Q—1)(Q-2)(Q-3)>

We can then include an H; with £’ the sum of loop con-
figurations on the right-hand side of Fig. 18. One can define
analogous relations to define new H; which further reduce
the number of loops on the right-hand side of Fig. 18. Al-
though we have not proven so, we believe that by proceeding
in this fashion one can define local H; which result in an
ergodic Hamiltonian. This should also be possible on other
lattices, but would presumably be even more complicated,
since one must worry about loops which touch at only a
point. Obviously, there is no conceivable way such finely
tuned Hamiltonians could be realized in nature. However, the
fact that they are local makes it at least possible that there
exists a more natural Hamiltonian in the same universality
class.

VII. THE PHASE TRANSITION

In the previous section, we constructed a set of local
Hamiltonians whose ground states represent either topologi-
cal phases or quantum critical states. With some minor work,
it is also possible to construct ordered states as well (as was
done for the Abelian states in Ref. 31). By analogy with the
Abelian case, we thus expect that the quantum critical behav-
ior described by these models will have dynamic critical ex-
ponent z=2 and hence that the associated field theory is a
non-Abelian generalization of the quantum Lifshitz model.
As is well known,?!737# the Abelian quantum Lifshitz model
is a quantum multi-critical point which, as such, requires the
tuning of two parameters (instead of just one as in a conven-
tional critical point, quantum or classical). Whether it is pos-
sible to describe these phase transitions of Abelian models in
terms of a simpler critical point is an interesting but open
question which has been the focus of recent work.”> Very
little is known about the phase transitions involving the non-
Abelian states we are discussing here.

Since we have identified the classical field theories which
describe the ground state of the quantum loop gas, we can
determine the phase structure of the latter. There is a major
subtlety in doing so. So far, we have been discussing prop-
erties of the wave function . However, in determining
equal-time correlation functions of the quantum system, the
functional integral is weighted by |#/2. In terms of the action
of the corresponding classical model, we have from Eq. (3.1)

| l//(S)|2 — e—S(s)—S*(x)

for a configuration s in the classical model. Thus when we
are computing, for example, correlators in the quantum
model, we need to square the Boltzmann weights of the clas-
sical model. In a model where the loops themselves are the
degrees of freedom (such as those discussed in Sec. VI, the
ones without the Jones-Wenzl projector imposed), this means
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the weight per loop must be squared. In particular, this
means loops in the SU(2) model get weight d?, while isolated
loops in the SO(3) model have weight (d*~1)2.

The phase structure depends on the weight per length of
the loops. Let us first review what happens in a quantum
eight-vertex model.>3! There the degrees of freedom in the
ground state are arrows on the links of the square lattice
obeying the eight-vertex condition (an even number of ar-
rows pointing at each vertex). The loops are given by follow-
ing (say the up and right-pointing) arrows around the lattice;
the eight-vertex condition ensures the loops are closed. One
can rewrite these degrees of freedom as Ising spins at the
center of each plaquette, and the loops then form domain
walls around the spins. The purely topological (Kitaev)
point,’ corresponding to our SU(2); and O(3), models, has
equal amplitude for all configurations. This is indeed infinite
temperature for the Ising spins. By including a weight per
length of the loop, one can move away from the Kitaev
point. As detailed in Ref. 31, there is eventually a phase
transition to an ordered phase.

The interesting question to answer is if this is a critical
point or a first-order phase transition. In the quantum eight-
vertex model of Ref. 31, the transition is second order. In the
analogous transition in the SU(2) case,®’ each loop will get a
weight d’, so we can view this as a loop model with 7.4
=d*. The O(n.;) model has a critical point only when 7
=4 cos’[ 7/ (k+2)]<2, so this occurs only for k=1 and k
=2. Only the latter is non-Abelian.

The analogous result in the classical Potts model is that
the phase transition at the self-dual point is second order if
Q =4, first order for O >4. This result, however, cannot in-
stantly be applied to the (2+ 1)-dimensional case, because of
the weighting by |#/?: the phase structure is that of the clas-
sical loop gas where each configuration is weighted by
[XQ(E)]Z. This loop gas does not seem to have been studied
before, so we do not know the answer. However, we can
make a simple conjecture. The configurations of this squared
loop gas are of course the same as those of the Potts loop
gas; only the weight per loop has been squared. One might
therefore hope that the phase transition of the squared loop
gas is in the same universality class as the Potts loop gas at
some Q. The simplest possibility is to assume that Q.
gives isolated loops in the squared loop gas the correct
weight (Q—1)2. This amounts to a Q. of

Qur—1=(Q-1)>=(d*-1)%. (7.1)
The weight per unit length is also changed, but this only
changes the location of the critical point, not its type. Thus
we conjecture that there will be a critical point in the quan-
tum loop gas if Q.p=<4, and a first-order transition other-
wise.

If this conjecture is true, critical points occur for k=2,3 in
the SO(3) model (as noted above, k=1 is a trivial theory
here). The k=3 model has non-Abelian statistics. As noted at
the end of Sec. II C, this “Lee-Yang” model is the simplest
model of non-Abelian statistics, since it has only one kind of
strand. The conjecture therefore implies that in quantum loop
gas, which realizes particles with these statistics, there exists
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a critical point separating the topological phase from an or-
dered one. Moving across this phase transition requires tun-
ing parameters such as the energy per unit length or per
trivalent vertex for the loop gas.

However, there is a catch. The Jones-Wenzl projector
needs to be imposed separately to the loop models discussed
in Sec. VI, at least when space is an annulus or a torus. This
presumably amounts to a relevant operator at the critical
point.’? Thus in the non-Abelian case even at k=3, reaching
the critical point from the topological phase requires tuning
another parameter away.

This is in harmony with some of our early observations.
At the end of Sec. II B, we noted that for the SO(3) model
with k=3, one can use the Jones-Wenzl projector to remove
the X vertex, leaving only self-avoiding loops. The SO(3);
model with the projection is therefore equivalent (at least
locally) to the SU(2); model. The latter does not have a
critical point, even without the Jones-Wenzl projector, be-
cause k=3 in the SU(2) case corresponds to an O(n.g) loop
model with n.;>2. This is a strong indication that imposing
the Jones-Wenzl projector results in a relevant perturbation
of the critical theory.
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APPENDIX A: THE LANDAU-GINZBURG DESCRIPTION
OF THE (1+1)-DIMENSIONAL THEORIES

In this appendix, we explain how the field theories dis-
cussed in Sec. V, and their S matrices discussed in Sec. 1V,
have a nice description in terms of a Landau-Ginzburg effec-
tive field theory.

As shown in Ref. 76, a simple Landau-Ginzburg descrip-
tion of the minimal model of conformal field theory with
central charge of Eq. (5.1) is in terms of a single scalar field
¢ with potential ¢*?~"). The critical point of the Ising model
is the p=3 case, the tricritical point is the p=4 case, and the
corresponding ¢* and ¢° potentials have long been known.
The critical point of the SU(2), case [the continuum limit of
the O(n) or restricted height models] has p=k+2. The criti-
cal point of the SO(3), case (the continuum limit of the Potts
or dilute A;,; models) has p=k+1.
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The primary fields of the conformal field theory also can
be described in terms of ¢, so the massive field theories of
interest have a Landau-Ginzburg description as well. For the
SU(2), case, the effective description of the ®, 3 operator is
¢*P=2)_ For the Ising model, this is indeed the usual ¢* mass
term. As is well known, this field theory has a single quasi-
particle with S=—1. In this case, e; must act on a one-
dimensional space, and it is just a number; for p=3, ¢;=1.
This also follows from imposing the Jones-Wenzl projector:
for k=1, one imposes Pgl)(d= 1)=I-¢;=0, which indeed
gives e;=1. Thus the statistics for SU(2), is Abelian.®’

For higher values of p, perturbing a ¢*?~!) potential by
¢*7=2) seems to induce a flow to the minimal model with p
decreased by 1. This flow is indeed known to occur for per-
turbations of one sign of @ 3, see Ref. 77. In the O(n) lan-
guage, this perturbation corresponds to flowing into the
dense phase. In the models of Ref. 49, this is called regime
IV. This is not what we want; this is a massless field theory
with the problematic S matrix. Instead, we want to perturb by
the same operator ®; ; but with the opposite sign; the per-
turbations are not the same because there is no symmetry in
the conformal field theory (except in the Ising case) which
sends @, 5 to —P, ;. With this sign of the perturbation, the
potential must renormalize to include extra terms. Since we
know from the exact results*>> that the lattice models have
p—1 ground states, we must fine-tune the potential to achieve
this. This is very familiar from the tricritical Ising model p
=4. One sign of the perturbation moves the system along its
first-order transition line, while the other sign causes a flow
to the ordinary Ising critical point. The Landau-Ginzburg po-
tential along the first-order line indeed consists of a ¢° po-
tential tuned to have three degenerate minima.

Let us focus on the p=4 case in more detail. The Landau-
Ginzburg potential for the tricritical Ising model along its
first-order transition line is ¢°+a¢*+b¢?, with b=—6a" so
that there are three degenerate minima at ¢=0, +\2a. With
such a potential, the low-energy configurations in the two-
dimensional classical model consist of regions of these three
vacua. The loops are domain walls between different vacua.
When there are restrictions on which vacua can be adjacent
to each other, the allowed domain walls are restricted as
well. What happens here is that the vacuum +\2a is not
allowed to be next to the vacuum —y2a. Hence, there must
be a region of vacuum O in between. In the
(1+1)-dimensional description in terms of quasiparticles, the
particles are kinks interpolating between adjacent vacua, and
the domain walls are their world lines.

One can now count the “number” of particles. Say the left
end of the system is in the vacuum 0. Then the space of
states for one particle V(1) is two-dimensional; it consists of
a kink going from 0 to +\2a, and one going from 0 to —2a.
However, the space V(2) is also two-dirrinsionalz the reason
is this restriction that the two vacua £12a cannot be next to
each other. Thus, if we have a kink going from 0 to ++2a, the
next kink can only go back to 0 again. The dimension of the
allowed Hilbert space for N “particles,” V(N) (with the
boundary condition of vacuum O at one end), is therefore
2lV+172] \where [x] is the integer part of x. This reduction of
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the Hilbert space, with respect to the standard free-particle
Fock space, is the hallmark of non-Abelian statistics. Using
the standard definition of the “number of particles” as
In{dim[ V(N)1}/N, here we find y2. This is indeed the correct
value of d for k=2, and gives a precise meaning to the state-
ment that d, the weight per loop, can be interpreted as count-
ing the “number of particles going around a given loop”
(albeit this “number” is y2).

Thus we see how these restricted kinks in 1+1 dimen-
sions go hand-in-hand with non-Abelian statistics in 2+1
dimensions. In the Moore-Read theory of the v=5/2 frac-
tional quantum Hall effect,* the quasiparticles have non-
Abelian statistics, and the number of states obeys the same
formula 2[%2], where N here is the number of quasiholes
(“non-Abelions”).>!

For general SU(2), theories, we consider a ¢***!) poten-
tial with k+ 1 minima. (The explicit potential can be written
out in terms of Chebyshev polynomials if desired.) The kinks
interpolate between adjacent vacua, so that their world lines
are domain walls in the two-dimensional picture. To count
the “number” of such kink configurations for large N, one

PHYSICAL REVIEW B 72, 024412 (2005)

applies the same procedure as above, and obtains
(2 cos[7/(k+2)])". In the Read-Rezayi generalizations of
the Moore-Read theory of the fractional quantum Hall
effect,2 the statistics and the number of states is the same.*

For the O(3), case, the perturbation of the conformal
minimal model is different. The ®,, operator is ¢”~!, but the
resulting Landau-Ginzburg description is not as useful. How-
ever, in Sec. II we showed how to describe representations of
the SO(3) BMW algebra by fusing together representations
of the Temperley-Lieb algebra, and the analog is possible
here. We can describe the kinks in the Potts models as bound
states of the kinks of the O(n) model, although we believe
that in the S matrix context this is a formal device without
physical significance. Anyway, we consider the same poten-
tial with k+1 degenerate minima, but the O(3), kinks are
comprised of two of the SU(2), kinks. More precisely, we
consider all configurations made up of two SU(2), kinks
bound together, and then subtract off the identity. This pro-
cedure yields the correct fusion rules for spin-1 particles, and
the correct “number” of kinks d*>-1.
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