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Electronic structure spin-polarized calculations with the discrete variational method in density functional
theory were performed for 79-atoms embedded clusters modeling the ferromagnetic �FM� ordered layered
compound FeNi �tetrataenite�, as well as disordered Fe-rich fcc Fe–Ni alloys containing �15% Ni in an
antiferromagnetic �AFM� configuration. These phases of Fe–Ni may be obtained by synthetic means, and are
also present in meteorites. Spin magnetic moments and spin density maps were obtained from the calculations.
The 57Fe Mössbauer hyperfine parameters isomer shift, quadrupole shift and magnetic hyperfine fields were
calculated with the self-consistent charge and spin densities obtained. It was found that for FM ordered FeNi
the electric-field gradient is positive; this result, together with the measured positive value of the quadrupole
shift, proves that the direction of magnetization is perpendicular to the Fe–Ni layers. For the Fe-rich disordered
Fe–Ni alloys with AFM configuration, it was found that the lower values of the isomer shift relative to
tetrataenite can only be explained by a lattice contraction.
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I. INTRODUCTION

Fe–Ni alloys have been the subject of great scientific in-
terest for many decades, due to their structural, mechanical,
and magnetic properties. The complex phase diagram shows
the existence of both � �fcc� and � �bcc� phases;1 the fcc
phase has complex magnetic behavior, and is known to exist
in different magnetic states,2 similar to pure fcc Fe.3–5 Fur-
thermore, at a certain Fe–Ni composition range
��30–40 at. % Ni� the fcc disordered alloys present vanish-
ing thermal expansion coefficients; this property is known as
INVAR and is important in metallurgical applications.2

The lower temperature portion �T�400 °C� of the Fe–Ni
phase diagram has a complex structure that includes a para-
magnetic low-Ni disordered fcc phase, as well as the ordered
compounds FeNi �tetrataenite� and Ni3Fe.1 However, due to
the fcc→bcc martensitic transformation, the Fe-rich para-
magnetic disordered phase ��30 at% Ni� can only be ob-
tained by less-conventional methods, in the form of fine
particles,6 thin films prepared with molecular-beam epitaxy,7

or by mechanical alloying.8–12

On the other hand, iron meteorites are composed of Fe–Ni
alloys with only small amounts of other elements.13 They
have played an important role in the study of the Fe–Ni
phase diagram at low temperatures, due to the fact that they
have cooled at a rate of about 1 °C for 106 years, and this
allowed thermodynamic equilibrium to take place. In the �
phase of meteoritical Fe–Ni, called taenite, may be found
disordered Fe�1−x�Nix alloys of various compositions.14 The
ordered phase FeNi 50–50 �tetrataenite�, which cannot be
obtained in the laboratory by simple annealing due to the
extremely low diffusion rate below the critical ordering tem-
perature T=320 °C, is an important component of iron
meteorites.14–17 Ordered FeNi can also be obtained by irra-
diation of the disordered 50-50 alloy with neutrons or
electrons,18,19 which accelerates diffusion.

Mössbauer spectroscopy of 57Fe has been an important
tool in identifying and investigating these Fe–Ni phases, in

meteorites,13,14,17,20–22 as well as in artificially prepared
samples.7–11,19 Information such as magnetic state, order-
disorder ratios, chemical environment, etc., may be extracted
from the spectra. The Mössbauer hyperfine parameters iso-
mer shift ���, quadrupole shift ���, and magnetic hyperfine
field �HF� give fundamental information on the different
phases and the local environment of Fe.

In this work we focus on two well-characterized meta-
stable forms of Fe–Ni which are present in meteorites, and
may also be obtained by laboratory means: the ordered 50-50
FeNi compound which has the AuCu layered structure �tet-
rataenite�, and the disordered paramagnetic � phase with low
Ni content. The latter has been identified as forming a fine
intergrowth with tetrataenite in meteorites,23 and it was pro-
posed as a new mineral. Since the single Mössbauer peak of
the paramagnetic fcc phase was shown to exhibit a broaden-
ing at low temperatures in the Santa Catharina meteorite,24

this phase was considered to be an antiferromagnetic �AFM�
Fe–Ni alloy with a paramagnetic→AFM transition tempera-
ture TN�25 K. The paramagnetic phase was accordingly
named antitaenite, and the intergrowth tetrataenite/antitaenite
has since been identified in other meteorites.25 The AFM
synthetic analogue of antitaenite has been recently identified
in mechanically alloyed Fe100−xNix �x=21, 24, 27 at %�,11

employing Mössbauer spectroscopy at low temperatures, and
estimating TN�40 K for x=24 at. %, which is somewhat
lower than TN�65 K of low-moment AFM fcc Fe.3

Fe–Ni disordered alloys have been the subject of numer-
ous experimental and theoretical investigations over the
years, specially those in the INVAR region of composition,
due to their technological importance. Electronic structure
calculations within density functional theory �DFT� and the
local spin-density approximation �LSDA� have been
reported.26–38 The coherent potential approximation �CPA�,
in which each atom is considered to be in the average poten-
tial of the disordered alloy, has been employed together with
the Korringa–Kohn–Rostocker �CPA-KKR� band-structure
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method26–31,38 as well as the linear muffin-tin orbitals band-
structure scheme.34,35 Although most of the work reported
has been for ferromagnetic �FM� alloys, a disordered local
moment model was applied to Fe–Ni alloys in the INVAR
concentration, to account for the possibility of antiparallel
spin alignment.31–33 Calculations allowing for noncollinear
spin alignments have also been reported.36,37 Magnetic hy-
perfine fields have been obtained with the CPA-KKR method
for FexNi�1−x� in the FM state.27,38

Here we adopted a different approach, and performed
first-principles real-space DFT electronic structure calcula-
tions within the LSD approximation for 79 atoms embedded
clusters representing the solids. The numerical self-
consistent spin-polarized discrete variational method
�DVM�39,40 was employed. This methodology is adequate to
describe localized properties of metals and alloys, such as
local magnetic moments and Mössbauer hyperfine param-
eters; at the same time, the size of the clusters is already
sufficient to assure that most of the long-range interactions
are properly included. The DVM method was applied suc-
cessfully to investigate the magnetic and hyperfine properties
of the related systems fcc Fe41 and fcc Fe particles in Cu.42

Other applications of DVM to metallic systems include tran-
sition metal impurities in metallic hosts,43–45 Co particles in
a Cu host46 and overlayers of fcc Fe on Cu.47

In this paper we report the results of embedded-cluster
calculations performed with the DV method for two compo-
nents of the Fe–Ni phase diagram: the ordered FM com-
pound FeNi formed by alternating layers of Fe and Ni, and a
disordered fcc Fe–Ni alloy with �15% Ni. For the former,
the electric-field gradient and Mössbauer quadrupole shift on
Fe were obtained; the spin magnetic moments on Fe and Ni
were calculated, as well as the contact and dipolar compo-
nents of the magnetic hyperfine field on Fe. Maps of elec-
tronic charge distribution were derived, to explain the origin
of the electric-field gradient. For the latter, an AFM configu-
ration was considered, and calculations were performed for
two different lattice parameters and two different local Fe–Ni
distributions, in order to assess the effect of Ni neighbors and
interatomic distances on the local properties of Fe in this
alloy. Spin magnetic moments, hyperfine fields, and Möss-
bauer isomer shifts on Fe were obtained. Calculations were
also performed for FM and AFM �-Fe for comparison.

This paper is organized as follows: in Sec. II we describe
concisely the theoretical method, in Sec. III we present the
results for ordered FeNi, in Sec. IV we present the results for
a disordered fcc FeNi alloy, and in Sec. IV we summarize
our conclusions.

II. THEORETICAL METHOD

First-principles spin-polarized electronic structure calcu-
lations were performed for 79-atoms clusters embedded in
the external potential of the solids, employing the numerical
discrete variational method �DVM� in density functional
theory and the local spin-density approximation. The DV
method has been described in the literature.39,40 The Kohn–
Sham equations of DFT are solved self-consistently for the
cluster in a three-dimensional grid of points, where the po-

tential is a functional of the electron charge density ���r� of
each spin �. In the spin-polarized scheme, the density per-
taining to each spin may be different, driven by the exchange
interaction. The total density ��r� is given by ��↑ �r�
+�↓ �r��, where the arrows stand for ms= + �−�1/2, and the
spin density �s�r� is defined as ��↑ �r�−�↓ �r��. In the em-
bedding scheme, the densities of both spins of �1000 atoms
neighbors to the cluster in the lattice sites of the external
solid were also included. These are obtained self-consistently
by DFT-LSDA numerical atomic calculations. The embed-
ding provides a realistic external potential that stabilizes the
cluster, and it is optimized by considering at the external
atomic sites atomic densities obtained for atoms with the
same configuration �electronic occupation of the orbitals� as
in the cluster, as defined by a Mulliken population analysis40

after an initial set of iterations.
The size of the cluster is such as to guarantee that local

properties, such as local spin magnetic moments and hyper-
fine parameters, when obtained at the central atom of the
cluster, are within �5% of convergence. Previous cluster
calculations for various types of solids41–49 showed that the
values of local properties at the central atom in general are
acceptably converged with 3–4 shells of neighbors.

The density of each spin is obtained by a sum over the
one-particle functions 	�

i of the cluster

���r� = �
i

n�
i �	�

i �r��2 �1�

where n�
i is the occupation number. Each 	�

i is defined as a
linear expansion over numerical atomic orbitals �linear com-
bination of atomic orbitals�, whose coefficients are deter-
mined by solving the secular equations of the DV method in
a three-dimensional grid of points. Group theory is invoked
to obtain symmetry orbitals, in order to break down the secu-
lar matrix and render the calculations tractable. The atomic
orbitals of the basis were obtained self-consistently with nu-
merical DFT-LSDA calculations for the atoms. Since the or-
bitals are central field solutions, they depend only on one
variable r; this numerical problem is relatively simple, and
one may say that the numerical solutions for the orbitals are
obtained exactly, since they are completely converged in the
number of points of the one-dimensional grid. The basis ob-
tained in this way is thus more compact and better than any
analytical basis �such as a set of Gaussians�, since the latter
are constructed to reproduce the former, and this will never
be completely accomplished in practice. Furthermore, in the
DV method the basis is optimized in the following manner:
after an initial set of iterations for the cluster, a Mulliken
population analysis is performed to obtain the occupations of
the atomic orbitals in the atoms of the cluster. These occu-
pations are then used to define atomic configurations in the
atomic calculations performed to generate an improved ba-
sis. This procedure may be repeated a few times to obtain a
basis adapted to the cluster.

The local exchange-correlation potential employed was
that of Vosko, Wilk, and Nusair.50 A model density is em-
ployed to construct the cluster potential, which is an overlap-
ping expansion in multipoles centered at the cluster nuclei.51

This expansion is fitted to the “real” density by least-squares
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minimization. We have used only terms with l=0, which is
adequate for compact structures of metals. In general, and
unless otherwise stated, the local properties are calculated for
the central atom of the cluster, since it is less affected by the
truncation of the cluster, and its environment best represents
that of the solid. The orbitals included in the variational
space were 3d, 4s, and 4p for Fe and Ni. The inner �core�
orbitals were considered “frozen” after the first iteration,
when they are explicitly orthogonalized to the orbitals of the
valence. Atomic charges and spin magnetic moments were
obtained by integrating the electronic charge density ��r�
and spin density �s�r�, respectively, inside the Wigner–Seitz
volume of the atom.

Once the self-consistent density is obtained, the hyperfine
parameters may be calculated. The Mössbauer isomer shift �
is given by52

� = ���A�0� − �S�0�� , �2�

where � includes nuclear terms and a correction for relativ-
istic effects, and the term in brackets is the difference in the
electronic density at the nucleus of absorber A and source S.
In a nonrelativistic theory, only s electrons penetrate the
nucleus. Since the core was frozen in the calculations, only
the valence spin density was obtained from the cluster cal-
culations. The core contribution �1s, 2s, and 3s� to ��0� was
obtained separately by atomic numerical DFT-LSDA calcu-
lations for free Fe with the configuration �occupation number
of the atomic orbitals� that it had in the cluster, as defined by
a Mulliken population analysis.40 In practice, only the Fe 3s
contribution to ��0� shows any difference from one environ-
ment to another, the 1s and 2s being too contracted to expe-
rience chemical effects. Here we have used the value
�=−0.23 for 57Fe.53

In magnetic solids, the quadrupole shift � of the magneti-
cally split nuclear levels of the I=3/2 excited state of the
14.4 keV Mössbauer transition of 57Fe is defined as54

� = 1/4 eVzzQ�3 cos2 
 − 1�/2, �3�

where 
 is the angle between the direction of the magnetiza-
tion and the principal axis of the field gradient Vzz, e is the
charge of the proton �e=1 in atomic units� and Q is the
quadrupole moment of the nucleus in the excited state. The
principal component of the electric field gradient in axial
field is calculated as

Vzz = − e� ��r��3z2 − r2�/r5dr + �qZq
eff�3zq

2 − rq
2�/rq

5, �4�

where the first term is the electronic contribution of the
cluster and the second term is the contribution of the nuclei
of the cluster atoms around the Fe site of atomic number
Z, with effective charges Zq

eff=Z−nc�nc� number of core
electrons�.

The magnetic hyperfine interactions may be decomposed
in three contributions:55

HF = Hc + HD + HL. �5�

The first term is the contact or Fermi contribution Hc given
by

Hc = 8
/3 �B�s�0� , �6�

where �B is the Bohr magneton and �s�0� is the spin density
at the nucleus. In a nonrelativistic approach, only s electrons
contribute to �s�0�. As for the isomer shifts, since the core
was frozen in the calculations, only the valence spin density
was obtained from the cluster calculations. The core contri-
bution �1s, 2s, and 3s� to �s�0� was obtained separately by
atomic numerical DFT-LSDA calculations for free Fe with
the configuration �occupation number of the atomic orbitals�
that it had in the cluster, as defined by a Mulliken population
analysis.40

The dipolar contribution HD arises from an anisotropy of
the spin density around the nucleus; the principal component
of the dipolar tensor HD in axial symmetry is given by

HD
zz = �B� �s�r��3z2 − r2�/r5dr �7�

The dipolar tensor is traceless, and thus by symmetry we
have

HD
xx = HD

yy = − 1/2 HD
zz. �8�

Within a nonrelativistic or scalar relativistic approach the
orbital angular momentum is completely quenched in a solid,
and thus the orbital field HL=0. The quenching of the orbital
angular momentum is incomplete if spin-orbit coupling is
taken into account, as in a relativistic treatment, giving rise
to a nonvanishing HL. A relativistic calculation for FeNi al-
loys gave values of HL for Fe of the order of 20 kG.27

III. ORDERED FeNi (TETRATAENITE)

In Fig. 1 is depicted the 79-atoms cluster representing
tetrataenite. This intermetallic compound is ferromagnetic
�FM� and has an AuCu layered structure, with alternating
layers of Fe and Ni. The lattice is a slightly distorted fcc,
with a small elongation along the c axis �c /a=1.0036� which
confers it tetragonal symmetry.15 Our cluster is centered on

FIG. 1. Representation of the 79 atoms cluster modeling the
intermetallic layered compound FeNi �tetrataenite�. The lines are
drawn to show the underlying fcc structure, which is slightly dis-
torted �c�a ,b�.
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an Fe atom, where the Fe local properties are calculated. In
this structure each Fe atom is surrounded by four Fe and
eight Ni nearest neighbors. For comparison, we have also
done calculations for an analogous cluster of FM fcc Fe, with
the same lattice parameters as FeNi.

Integration of the electronic charge inside the Wigner–
Seitz cell of each atom shows a small accumulation of nega-
tive charge on the Ni sites, in accordance with the slightly
higher electronegativity of the latter with respect to Fe. This
is more clearly seen on a map of the difference density D�r�,
defined as

D�r� = ���r��FeNi� − ��r��Fe�� �9�

which may be viewed in Fig. 2 It may be seen from this
figure that, as compared to a lattice of pure Fe with atoms at
exactly the same lattice sites as FeNi, the Ni sites show a
considerable accumulation of electronic charge �D�r��0�,
consistent with the surplus of two electrons in this atom rela-
tive to Fe; however, the depletion of electronic charge clearly
visible at the Fe sites in FeNi �D�r��0� is evidence of the
Fe→Ni charge transfer.

Integration of the spin density �s�r� inside the Wigner–
Seitz cell of the central Fe atom of the cluster representing
FeNi gives a spin magnetic moment of 2.6�B; the same in-

tegration on a Ni nearest neighbor gives 0.6�B. For the clus-
ter representing fcc Fe, a ferromagnetic solution was also
obtained with a moment on the Fe of 2.2�B. The fact that Fe
in FeNi has a larger moment than in fcc Fe at the same lattice
constants may be explained by a smaller Fe–Ni hybridization
in tetrataenite, due to the more contracted 3d orbitals of Ni.
A larger hybridization tends to decrease the magnetic mo-
ment on an atom by filling the minority spin 3d orbitals,
which are more extended.

The tetragonal layered structure creates an anisotropic
charge distribution around each Fe atom, and thus an
electric-field gradient is produced. The latter is reflected in
the quadrupole shift � given by Eq. �3�, measured by Möss-
bauer spectroscopy. Although the sign of � was measured,19

the angle 
 between the principal axis of the field gradient
Vzz and the direction of magnetization �see Eq. �3�� was not
determined experimentally, and thus the sign of Vzz could not
be obtained from the Mössbauer experiments.

The value of Vzz, calculated according to Eq. �4�, is
+0.443 a0

−3. It is seen that the sign is positive; this result,
coupled with the measured positive sign of �, indicates un-
ambiguosly that 
=0, that is, the axis of Vzz, which coincides
with the tetragonal symmetry axis, is parallel to the internal
magnetic field. This result confirms an earlier prediction,
from a calculation done for a considerably smaller cluster
�19 atoms�,56 that the direction of magnetization is perpen-
dicular to the lamellae.

In Table I is given the calculated value of �, together with
the experimental value obtained for synthetic ordered FeNi,
as well as for samples from meteorites. The higher values of
� measured for the synthetic samples, obtained by irradiation
of the disordered alloy with neutrons or electrons,19 must be
considered as pertaining to pure tetrataenite. The fact that
lower values of � are found in some meteorites is assumed to
be evidence of some disorder produced by reheating or
shock, that occurred some time during the meteorite’s
history.13

The origin of the electric-field gradient may be inferred
from the calculations as being the electronic charge aniso-
tropy, with accumulation of electron charge in the Ni layers
and depletion of the Fe layers, as seen in Fig. 2. The small
tetragonal distortion of the lattice only contributes with a
small fraction of the total �. This was confirmed by a calcu-
lation for the cluster representing FM fcc Fe, with the same
lattice parameters of tetragonal ordered FeNi: the value of �
obtained was only +0.05 mm/s.

Our calculated value of � is still somewhat higher than the
highest values measured. This could be ascribed to the ne-

FIG. 2. Map of the electronic charge difference D�r�
= ���r��FeNi�−��r��Fe�� on a plane perpendicular to the Fe and Ni
layers of tetrataenite, and containing the nuclei of Fe and Ni atoms.
Contours are from 0.001 to 0.1 a0

−3, and from −0.001 to −0.1 a0
−3,

with intervals of 0.00825 a0
−3. Solid lines are positive values, dotted

lines are negative values.

TABLE I. Hyperfine parameters of Fe in tetrataenite.

Lattice constantsa �Å� �b�mm/s� ��exp. ��mm/s� Hc�kOe� HD�kOe� HF�kOe� HF�exp. �d�kOe�

a=3.576 +0.35 +0.13 to +0.24c −255 HD
zz= +14 −241��� −288���

c=3.589 +0.23d HD
xx=−7 −262�	� −327�	�

HD
yy =−7

aFrom Ref. 15.
bValue of Q in Eq. �3� taken as 0.16 b �from Ref. 58�.
cFrom Ref. 20 �in samples from different meteorites�.
dFrom Ref. 19 �in monocrystals of ordered FeNi obtained by neutron irradiation�.
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glect of the contribution from the core orbitals polarization,
especially the 3p, although this contribution was found to be
almost negligible in band-structure calculations for hcp
metals.57 Another factor leading to this discrepancy could be
uncertainties in the value Q=0.16 b58 employed here.

In Table I are also given the calculated values of the con-
tact hyperfine field Hc, the components of the electronic di-
polar field HD and the total hyperfine field HF. The values of
the experimental hyperfine field perpendicular ��� and par-
allel �	� to the layers are also given in Table I. The contact
field is large and negative, indicating the dominance of the
core contribution. It is seen that the components of the dipo-
lar field are far from negligible, and account for most of the
difference between parallel and perpendicular total fields
measured in monocrystals of tetrataenite.19 This result is
somewhat analogous to the case of multilayers of Fe in Cu,
which may be considered a somewhat similar system to the
present layered compound.59 Inclusion of the orbital hyper-
fine field could increase this anisotropy further.59 The mag-
nitudes of the calculated HF are smaller than the experimen-
tal values; this is due to a well-known effect of the local
density approximation, which systematically underestimates
the core spin polarization, and thus gives Hc values for Fe of
smaller magnitudes. A satisfactory solution to this limitation
of the LSDA has not yet been reached.

The dipolar field originates from the anisotropy of the
spin density around an Fe atom between the �001� plane
perpendicular to the lamellae and the horizontal Fe plane, as
may be seen in Figs. 3�a� and 3�b�. In these figures may also
be visualized the spin polarization of the conduction elec-
trons in the interstitial region, with AFM coupling relative to
the more contracted 3d spin densities.

It is interesting to notice that, although the calculation for
FM Fe at the same lattice constants gives a smaller value for
the magnetic moment in Fe than in ordered FeNi �2.2 �B, as
compared to 2.6 �B�, Hc has a larger magnitude in pure Fe
�−271 kOe, as compared to −255 kOe in FeNi�. This is due
to the different signs of the valence contribution, which is
negative in pure Fe and thus adds to the negative core con-
tribution, and positive in FeNi, which added to the negative
core contribution gives a net value of Hc of smaller magni-
tude. Earlier calculations for FM fcc Fe at different lattice
constants have consistently found negative values for the va-
lence contribution to Hc.

41

IV. Fe–Ni DISORDERED fcc ALLOY „È15% Ni…

As discussed in the Introduction, a paramagnetic disor-
dered fcc Fe100−xNix phase with low Ni content has been
detected in artificially prepared samples, as well as in mete-
orites. Recent Mössbauer spectroscopy measurements at low
temperatures on mechanically obtained alloys11 have identi-
fied the magnetic state of this phase as low-moment AFM,
with a Néel temperature of �40 K for x=24. This phase was
also detected in many meteorites, where it was named anti-
taenite and proposed as a new mineral; in the case of the
Santa Catharina meteorite, it is believed to have �15% Ni
content.23,60 The AFM transition of the paramagnetic phase
at low temperatures has also been observed in the Santa Ca-
tharina meteorite.61

To study the magnetic and hyperfine properties of
this alloy, we constructed two different clusters to model a
disordered fcc Fe–Ni alloy with �15% Ni; these are shown
in Figs. 4�a� and 4�b�. The clusters were chosen as to reflect
two different environments for the central Fe atom, one in
which it has no Ni nearest neighbors �configuration A, Fig.
4�a�� and another in which it has four Ni nearest neighbors
in skewed positions �configuration B, Fig. 4�b��. The
positions of all 12 Ni atoms in the clusters were chosen as to
be as evenly distributed as possible, while at the same time
maintaining some point symmetry �D2d�, without which
the calculations would not be viable. Since no statistical
method was employed to estimate the probability of occur-
rence of such configurations, they were considered solely to
assess local electronic and magnetic effects on Fe in such
environments.

At this range of low Ni concentration, it is reasonable to
expect the AFM alloy to have similar properties to AFM
�-Fe. It is known by theory62,63 and experiment3–5 that fcc Fe
has a high-moment FM state at larger lattice constants, and
an AFM low-moment state at smaller lattice constants. The
lattice constant found at the energy minimum for AFM �-Fe
by band structure calculations with the linear augmented
plane wave method was 6.38 a.u. �3.38 Å�;62 however, this
number may be somewhat small due to the local density
approximation employed. Calculations performed later for
AFM �-Fe with the modified augmented plane wave method
with gradient corrections to the LSDA predicted a lattice

FIG. 3. �a� Map of the spin density �s�r�= ��↑ �r�−�↓ �r�� on a
plane perpendicular to the Fe and Ni layers of tetrataenite, and
containing the nuclei of Fe and Ni atoms. Contours are from 0.0001
to 0.01 a0

−3, and from −0.0001 to −0.01 a0
−3, with intervals of

0.000 825 a0
−3. Solid lines are positive values, dotted lines are nega-

tive values. �b� Map of the spin density �s�r�= ��↑ �r�−�↓ �r�� of
tetrataenite on the Fe plane containing the nucleus of the central Fe
of the cluster. Contour specifications as in Fig. 3�a�. Solid lines are
positive values, dotted lines are negative values.
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constant for the AFM state equal to 3.54 Å.63 Therefore, we
chose to perform our calculations for the 15% disordered
AFM Fe–Ni models at two different lattice constants for
each configuration A and B: 3.39 and 3.48 Å, both smaller
than the lattice parameters of tetrataenite �seen in Table I�.
Since we did not perform total energy calculations to obtain
structural parameters for the Fe–Ni alloy, we will be looking
at trends of the magnetic and hyperfine properties with lattice
constant variation.

The AFM configuration initially considered to start the
self-consistent field �SCF� iterations was constituted of alter-
nating planes of spin-up and spin-down moments along the
�001� axis. However, during the self-consistent procedure,
the initial layered AFM structure is preserved only for the Fe
atoms; the Ni atoms tend to flip their spins in order to attain
a maximum of FM-coupling bonds with their Fe nearest
neighbors. This occurs in all cases, for lattice parameters
3.39 and 3.48 Å, as well as for both configurations A and B.
The final converged spin density maps of configuration A at
lattice parameters 3.39 and 3.48 Å may be seen in Figs. 5�a�
and 5�b�, respectively; and of configuration B at 3.39 and

3.48 Å, in Figs. 6�a� and 6�b�, respectively. In these maps it
may be observed that the Ni atoms have changed the sign of
the spin that they had initially in a layer, in order to maxi-
mize the number of FM bonds with their Fe nearest neigh-
bors. This is an indication that the Fe–Ni FM exchange cou-
pling is energetically more favorable than AFM in these
alloys. Thus one may expect that no simple AFM spin con-
figuration is present in these alloys, as is stable in fcc Fe.62

However, where Fe atoms exist with no Ni atoms as first
neighbors, as is the case of the central Fe atom in configu-
ration A �Figs. 5�a� and 5�b��, a local AFM alignment is
stable. One must also keep in mind the possibility of a spiral
spin structure in these fcc Fe-rich Fe–Ni alloys, as is known
to be stable in pure fcc Fe.63

In Table II are given the calculated local properties spin
magnetic moment, hyperfine field HF and isomer shift � of
Fe in fcc Fe�1−x�Nix�x
15% �. For comparison, we have also
performed calculations for an analogous cluster of AFM fcc
Fe, at lattice constant 3.39 Å. This cluster was also con-
structed with alternating layers of spin-up and spin-down Fe
moments; however, in this case, as had been seen earlier,41,42

this alternating spin configuration is preserved during con-
vergence of the SCF iterations.

In Table II it is seen that the Fe spin magnetic moments
are smaller at the smaller lattice constant; this is expected

FIG. 4. �a�. Representation of the 79 atoms cluster modeling
configuration A of the Fe–Ni disordered alloy with �15% Ni.
Lines are drawn to show the fcc structure. In configuration A the
central Fe atom has no Ni nearest neighbors. �b� Representation of
the 79 atoms cluster modeling configuration B of the Fe–Ni disor-
dered alloy with �15% Ni. Lines are drawn to show the fcc struc-
ture. In configuration B the central Fe atom has four Ni nearest
neighbors.

FIG. 5. �a� Map of the spin density �s�r�= ��↑ �r�−�↓ �r�� of
configuration A of the Fe–Ni alloy with �15% Ni, for lattice con-
stant 3.39 Å, on a plane containing the �001� axis and containing the
nuclei of Fe and Ni atoms. Contour specifications as in Fig. 3�a�.
Atoms not specified in the figure are Fe atoms. Solid lines are
positive values, dotted lines are negative values. �b� Same caption
as Fig. 5�a�, but for lattice constant 3.48 Å.
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since lattice compression tends to fill preferably the
minority-spin 3d orbitals, which are more extended. Compar-
ing with the calculation for pure �-Fe at 3.39 Å, it is seen
that the presence of Ni in the alloy enhances the magnetic
moments on Fe, and more so for configuration B, where the
central Fe atom on which we focus has four Ni nearest
neighbors. This is due to the Fe→Ni charge transfer, which
depletes preferably the more extended 3d�↓� orbital of Fe.
The values of the hyperfine field HF are of small magnitudes,
as expected from the small magnetic moments.

The last column of Table II gives the theoretical values of
the isomer shifts � for the Fe–Ni disordered alloys, calcu-

lated according to Eq. �2�. The values of � given are relative
to the calculated value for the FeNi ordered compound �tet-
rataenite�, i.e., the value for the latter has been shifted to
�=0. It may be seen that all the calculated values of � of the
disordered alloys are lower than the value of tetrataenite;
since � in Eq. �2� is negative, this means that the electron
density at the Fe nucleus ��0� is higher in the 15% fcc Fe–Ni
alloys than in tetrataenite. This trend is in accordance with
the experimental measurements of � in low-Ni content
Fe�1−x�Nix in synthetic samples8,11 as well as in the “paramag-
netic phase” of meteoritic samples.20,21,64 The measured val-
ues of ���paramagnetic phase�−��tetrataenite�� in non-
shocked meteorites vary from −0.9 to −0.13 mm/s.20,21,64 In
fact, the values of � of the low-moment low-Ni disordered
fcc Fe–Ni alloys not only are lower than � of the ordered
FeNi �tetrataenite�, but also of high-moment high-Ni disor-
dered fcc Fe–Ni alloys. A compilation of values of � for all
these cases, after correction for the second-order Doppler
shift, evidenced that the lower values of � are a unique fea-
ture of the low-Ni disordered AFM fcc Fe–Ni alloys, and this
fact was taken as proof of their distinct electronic structure.60

Observation of Table II shows that our calculated values
are within the range of the experimental � values, for lattice
constant 3.48 Å. It may be seen also that the smaller lattice
constant gives lower values of � for both configurations A
and B. The effect of Ni nearest neighbors is to increase the
values of �, as may be noticed by comparing configuration B
with configuration A at the same lattice constant. However,
the effect of Ni neighbors is secondary to the effect of lattice
compression; this may be confirmed further by comparing
with the calculated � of �-Fe at lattice constant 3.39 Å,
which is similar to � of the alloy in configurations A and B,
at this same lattice constant. Therefore, the present results for
the isomer shift suggest that the main reason for the lower
values of � in the low-Ni AFM fcc Fe–Ni alloys is a lattice
contraction relative to ordered FeNi or to the high-moment
FM high-Ni alloys. This lattice contraction would be analo-
gous to that of the low-moment AFM state of fcc Fe, relative
to the high-moment FM. A decrease of the lattice parameter
increases ��0� by contraction of the valence wave functions
towards the nucleus; this was seen in the noticeable effect of
pressure upon the isomer shift of �-Fe,65 which decreases
dramatically with increased pressure. In contrast, the isomer
shift of an 57Fe impurity in Ni, relative to �-Fe, is very small
�0.02 mm/s�,66 which is evidence that the chemical effects
of the host are small. The isomer shift of an Fe impurity in
Ni, when corrected for volume effects, has a similar value.67

FIG. 6. �a� Map of the spin density �s�r�= ��↑ �r�−�↓ �r�� of
configuration B of the Fe–Ni alloy with �15% Ni, for lattice con-
stant 3.39 Å, on a plane containing the �001� axis and containing the
nuclei of Fe and Ni atoms. Contour specifications as in Fig. 3�a�.
Atoms not specified in the figure are Fe atoms. Solid lines are
positive values, dotted lines are negative values. �b� Same caption
as Fig. 6�a�, but for lattice constant 3.48 Å.

TABLE II. Local properties of Fe in AFM fcc Fe�1−x�Nix �x
0.15� and AFM �-Fe.

Config. Lattice constant �Å� Magnetic moment ��B� HF
a�kOe� �b�mm/s�

Fe�1−x�Nix A 3.39 0.61 −30 −0.20

3.48 1.17 −56 −0.12

Fe�1−x�Nix B 3.39 1.04 −78 −0.16

3.48 1.58 −113 −0.08

�-Fe --- 3.39 0.24 −35 −0.22

aContact contribution only.
bRelative to ordered FeNi 50-50 �tetrataenite�, for which the isomer shift was shifted to �=0.
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V. CONCLUSIONS

Self-consistent spin-polarized electronic structure calcula-
tions with the DV method were performed for 79-atoms em-
bedded clusters modeling the ordered FM layered compound
FeNi �tetrataenite�, and the disordered AFM fcc alloy
Fe�1−x�Nix with x
0.15 in two different configurations of the
Ni neighbors, and two different lattice parameters. Calcula-
tions were also performed for clusters representing FM and
AFM �-Fe for comparison.

In tetrataenite the spin magnetic moments on Fe are larger
than in fcc Fe at the same lattice parameters �2.6 �B, as
compared to 2.2 �B�. Electron density maps show that there
is an electronic charge transfer from the layers containing Fe
atoms, to the layers containing Ni; this creates a charge an-
isotropy which originates the electric-field gradient on Fe.
The calculated electric-field gradient at the Fe nucleus is
positive; this result, together with the positive sign measured
for the quadrupole shift, confirms an earlier prediction that
the direction of magnetization is perpendicular to the lamel-
lae, and coincides with that of Vzz. The electronic dipolar
hyperfine field is noticeably large, due to the anisotropy of
the spin density around the Fe atoms, as seen from spin-
density maps, and explains largely the experimental aniso-
tropy of the total hyperfine field. The magnitudes of the total
hyperfine fields on Fe are approximately 20% smaller than
experiment, which may be ascribed to the insufficient core
polarization resulting from the LSDA.

The paramagnetic Fe-rich fcc Fe–Ni phase which may be
obtained synthetically and is also detected in meteorites, and
which is AFM at very low temperatures, was modeled by
two clusters with different configurations containing
�15% Ni: one in which the central Fe has no Ni nearest
neighbors, and another in which it has four Ni nearest neigh-
bors. Two lattice parameters were considered in each case,
both smaller than in ordered FeNi. An AFM spin configura-
tion was initially assumed, consisting of alternating spin-up

and spin-down layers; however, during the self-consistent it-
erations, the spin magnetic moments on the Ni atoms are
seen to change sign, in order to maximize the number of
FM-coupling bonds with its Fe nearest neighbors. The mag-
netic moments on Fe in the Fe–Ni alloy are enhanced rela-
tive to AFM �-Fe at the same lattice constant. It is interesting
to notice that, although our AFM model is restricted to alter-
nating spin-up and spin-down layers, calculations for an al-
loy of INVAR composition �Fe0.35Ni0.65� with the locally
self-consistent multiple scattering method, which allows for
noncollinearity of the moments, also predict local collinear
AFM alignment for Fe, when it is completely surrounded by
other Fe atoms.37 Therefore, our calculations for an alloy of
lower Ni content also reveal that Fe clusters are responsible
for the coexistence of antiferromagnetism with ferromag-
netism in Fe–Ni alloys, which has been observed experimen-
tally in FexNi�1−x� INVAR alloys at low temperatures.68,69

It is concluded from the calculations that only a contrac-
tion of the lattice, relative to tetrataenite and to Ni-rich FM
disordered fcc Fe–Ni alloys, can explain the significantly
lower values of the isomer shift in the AFM alloys, in anal-
ogy to the lattice contraction of low-moment AFM �-Fe rela-
tive to high-moment FM. In fact, the values of � relative to
bcc Fe in AFM �-Fe �−0.088 mm/s� are indeed lower than
in FM �-Fe �+0.11 mm/s–+0.15 mm/s�.4 However, the val-
ues of the equilibrium lattice constants in the Fe–Ni alloys
investigated here were not determined with the present
calculations.
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