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I. INTRODUCTION

Chalcogenide glasses exhibit unique electrical and optical
properties applicable to a wide range of fields, including
electrical and optical switching and the transmission of in-
frared radiation. However, these glasses must meet require-
ments for thermal and mechanical properties, such as glass
transition temperature, strength, and toughness in order to be
suitable for many applications. Experiments have shown the
promising but often puzzling behavior of chalcogenide glass
properties as a function of average coordination number,1 but
there is yet to be a satisfactory theoretical explanation based
on first principles. An accurate description of the interatomic
potentials in chalcogenide glasses is a necessary first step in
order to build such theoretical understanding. In this study,
we use ab initio molecular modeling to derive interaction
potentials for selenium and tellurium, two common constitu-
ents of chalcogenide glasses.

Previous modeling of selenium has been largely based on
the semiempirical model of Oligschleger et al.,2 who devel-
oped potentials for selenium following an approach similar
to Stillinger, Weber, and LaViolette3 in their model of sulfur.
Combining experimental data with density functional calcu-
lations, Oligschleger developed effective two- and three-
body interaction potentials that reproduce known structures
and energies of selenium clusters �Se2–Se8�. The Olig-
schleger model of selenium has been used to determine se-
lenium glass structure,4 vibrational properties,5 and quench
behavior.6–8

Quantum mechanical techniques such as molecular orbital
theory and density functional theory9 may be used to develop
models with a greater range of applicability. Shimojo et
al.10–12 investigated the structure and electrical properties of
fluid selenium using density functional theory; Zhang and
Drabold13,14 utilized additional localization techniques15 to
study the impact of photon absorption on the structure of
amorphous selenium. In addition, Shimizu et al.16 and Naka-
mura and Ikawa17 performed molecular orbital calculations
on amorphous selenium and found good agreement between
their calculated structures and those determined by infrared
or Raman spectrometry. However, none of this work at the

quantum mechanical level has attempted to derive inter-
atomic potentials and bridge the gap to larger scale classical
simulations.

There has been very little work in the modeling of el-
emental tellurium, and none of it has been particularly suc-
cessful. Attempts at modeling tellurium with density func-
tional theory have produced highly incorrect results,18 such
as predicting a coordination number of six for liquid tellu-
rium instead of the correct value of two.

In this study, we use ab initio molecular modeling and a
cluster expansion technique to derive effective interaction
potentials for both elemental selenium and tellurium. We also
develop ab initio potentials for the heterogeneous Se-Te sys-
tem. Finally, we use these potentials in classical Monte Carlo
simulations to investigate the structure of glasses in the
SexTe1−x system.

II. SIMULATION DETAILS

In our simulations, we employ second- and fourth-order
Møller-Plesset perturbation theory19 to calculate the energy
of clusters of selenium and tellurium atoms. For our model-
ing of elemental selenium we use the aug-cc-pVQZ basis set
of Dunning and co-workers,20 where the acronym stands
for “augmented correlation-consistent polarized valence
quadruple-�.” The aug-cc-pVQZ basis set allows for explicit
representation of all 34 electrons in each selenium atom us-
ing 93 basis functions composed of 343 primitive Gaussians.
This explicit representation of electrons does not scale well
to very large atoms such as tellurium, which has 52 electrons
per atom. In this case, we employ a small-core relativistic
pseudopotential21 in which the inner shell electrons are com-
bined with the nucleus as an effective core. For tellurium, the
n=1,2,3 shells are incorporated into the effective core, and
the 4s2p6d105s2p4 outer electrons are modeled explicitly. The
corresponding basis set is denoted aug-cc-pVQZ-pp and con-
tains 27 basis functions with 87 primitive Gaussians.

Unfortunately, we found that a combination of the aug-cc-
pVQZ basis set for selenium with the aug-cc-pVQZ-pp basis
set for tellurium in heterogeneous systems does not lead to
well-converged energy values due to excessive mixing of
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frozen core and valence orbitals between atoms. In order to
address this problem we used the aug-cc-pVQZ-pp basis set
for both tellurium and selenium in all heterogeneous simula-
tions. The aug-cc-pVQZ-pp basis set for selenium incorpo-
rates the n=1,2 shells into an effective core and models ex-
plicitly the 3s2p6d104s2p4 outer electrons. We use the
GAUSSIAN 03 software22 for all ab initio simulations.

In order to isolate the two- and three-body interaction
potentials from the total system energy, we adopt the tech-
nique of cluster expansion23 where the total potential of a
system is the sum of the monomer energies and all combi-
nations of higher-order interactions. Mathematically, we may
write the total potential as

V = �
i=1

N

V1 + �
i=1

N

�
j�i

N

V2�rij� + �
i=1

N

�
j�i

N

�
k�i,j

N

V3�rij,rjk,�ijk� + ¯ ,

�1�

where Vn refers to the nth-order interaction potential. In
theory, the series of interactions terminates only with the VN
term, where N is the total number of atoms in the system.
However, since the magnitudes of the interactions typically
decrease with increasing n �and due to computational effi-
ciency considerations�, it is common to truncate the series
after the second- or third-order terms.

III. INTERACTION POTENTIALS

In order to be used in higher-level classical simulations
�e.g., molecular dynamics and Monte Carlo�, the ab initio
potentials are fit to continuous functions that accurately re-
produce the quantum data. While it is preferable to use fitting
functions drawn from physical intuition, they do not neces-
sarily provide the best fit for our particular systems. Here we
favor forms that accurately reproduce the ab initio results
over those that are simply more physically intuitive.

A. Two-body interaction potentials

We compute the potential energy of a two-body cluster as
a function of interatomic separation distance, rij, using the
MP4 level of theory. Following cluster expansion theory, the
two-body interaction potential is calculated by subtracting
the potentials of the isolated monomers from the total dimer
potential:

2V2,ij�rij� = V�rij� − �
i=1

2

V1,i. �2�

The two-body interaction potential for the Se-Se dimer,
V2,Se-Se�rij�, is plotted in Fig. 1�a�. As discussed elsewhere,24

our ab initio model provides a significant improvement over
the semiempirical Oligschleger model2 for selenium.

We fit the ab initio data using a Morse potential25 of the
form

V2�rij� = D0e−2��rij−r0� − 2D0e−��rij−r0� �3�

=D0��1 − e−��rij−r0��2 − 1� , �4�

where D0 is the potential well depth, r0 is the equili-
brium separation distance, and � is the shape parameter.
Using a least-squares fitting routine, we determine D0
=1.517 5496 eV, r0=2.173 4892 Å, and �=1.790 2500 Å−1

for the Se-Se interaction.
Please note that the total two-body interaction potential

for a given dimer is

FIG. 1. Two-body �a� Se-Se, �b� Te-Te, and �c� Se-Te interaction
potentials.
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V2�rij� + V2�rji� = 2V2�rij� . �5�

Thus the total cohesive energy of the Se-Se dimer is 2D0
=3.0351 eV. Given a system of N atoms, the total two-body
interaction potential for the ensemble is

V2,tot = 2�
i=1

N

�
j�i

N

V2,ij�rij� . �6�

The two-body interaction potential for the Te-Te dimer is
shown in Fig. 1�b�. We fit the ab initio data using a Morse
potential and obtain the parameters: D0=1.070 008 6 eV,r0
=2.667 650 2 Å, and �=1.852 508 5 Å−1. The fit is not quite
as good at small values of rij due to the use of pseudopoten-
tials, which for our systems tended to underestimate the re-
pulsive energy at short separation distances where there is an
increased overlap of atomic orbitals. Please note that the use
of pseudopotentials has been shown to give highly accurate
predictions for equilibrium separation distances and binding
energies.21,26

Finally, the two-body interaction potential for the het-
eropolar Se-Te dimer is given in Fig. 1�c�. Here, the opti-
mized Morse parameters are D0=1.135 962 3 eV,r0
=2.449 646 5 Å, and �=1.981 215 Å−1. A summary of all

the Morse parameters is provided in Table I. Since the Se-Te
bonding energy is less than the average of the Se-Se and
Te-Te bonding energies, there should be a preference for ho-
mopolar bonding in the heterogeneous Se-Te system.

B. Three-body interaction potentials

In order to calculate the three-body interaction potentials
for the Se-Te system, we compute the total potential energies
of the Se-Se-Se, Te-Te-Te, Se-Te-Se, Se-Se-Te, Te-Se-Te,
and Se-Te-Te trimers using the MP2 level of theory. The
three-body interaction is isolated by subtracting the one- and
two-body contributions:

V3,ijk�rij,rjk,�ijk� = V�rij,rjk,�ijk� − �
i=1

3

V1,i − 2�
i=1

3

�
j�i

3

V2,ij�rij� ,

�7�

where rij is the separation distance between atoms i and
j , rjk is the separation between atoms j and k, and �ijk is the
bond angle. Following the examples of Stillinger3 and
Oligschleger,2 we fit the three-body interaction potentials us-
ing a separable function,

TABLE I. Parameters for the two-body interaction potentials.

Se-Se Te-Te Se-Te

D0 �eV� 1.517 5496 1.0700086 1.1359623

r0 �Å� 2.1734892 2.6676502 2.4496465

� �Å−1� 1.7902500 1.8525085 1.981215

TABLE II. Two-body radial parameters used in the three-body
interaction potentials.

Se-Se Te-Te Se-Te

b �eV1/2� 7.9074605 6.1277354 19.076068

c �Å−1� 1.4510428 1.3972349 2.140 6499

TABLE III. Fourier coefficients for the three-body angular potentials.

Se-Se-Se Te-Te-Te Se-Te-Se Se-Se-Te Te-Se-Te Se-Te-Te

a0 1.473 7009 6.381 5150 19.26 4535 9.161 9754 22.22 3224 7.297 9673

a1 −0.748 8205 −7.293 8000 −17.273 420 −10.112 3940 −13.46 2698 −10.259 955

a2 −0.3235095 −0.8722934 −2.4874198 −2.6299683 5.2217488 −5.0139178

a3 −0.8336347 −5.3866029 −11.597780 −5.2549641 0.520 2633 −8.6622940

a4 0.366 1849 −1.1660934 1.338 1763 0.745 1214 4.720 5673 −0.2471748

a5 0.055 9816 −1.4283849 −0.0107653 0.000 9848 −5.6671392 0.223 3760

a6 0.050 6636 −0.2498004 −0.0344267 0.050 9585 −2.3424787 0.558 9294

a7 −0.0042692 0.215 2772 −1.7371929 0.265 5886 2.786 5778 0.205 8917

a8 −0.0116419 0.606 1612 0.321 2924 0.774 1911 2.973 9254 −0.0053356

a9 −0.0636407 −0.0489911 2.0171 056 −0.1361319 −0.5264682 −1.6691366

a10 −0.3031730 −1.0056510 1.261 2500 −1.1315190 −1.7323615 −3.3067562

a11 −0.2478697 −1.2943361 −1.2352494 −1.1231347 0.092 1489 −3.3001658

a12 −0.2017648 −0.6955193 −2.3823570 −0.3718989 1.935 3049 −1.2803732

a13 0.018 6467 −0.0892812 −1.2790921 0.075 7642 1.747 6688 0.948 9806

a14 −0.0517747 0.078 8748 −0.1052132 0.003 3640 0.541 9944 1.648 5507

a15 0.033 7409 0.048 1918 −0.4400456 −0.0269044 0.082 8253 0.896 2156

a16 −0.0149274 0.169 9672 −1.9463542 0.125 7210 0.022 4998 0.007 5327

a17 0.053 7881 0.238 7772 −2.2185852 0.218 1182 −0.0360265 −0.2410890

a18 −0.0063938 0.178 8512 −1.4913421 0.046 3594 −0.2454533 −0.0602311
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V3,ijk�rij,rjk,�ijk� = Rij�rij�Rjk�rjk��ijk��ijk� . �8�

For the radial components, Rij�rij� and Rjk�rjk�, we adopt
the form

R�r� = b sech�cr� , �9�

where b and c are constants. Note that for an elemental clus-
ter such as Se-Se-Se, R�r�=Rij�r�=Rjk�r�; in a heterogeneous

FIG. 2. Total two- and three-body interaction potentials for the �a� Se-Se-Se, �b� Te-Te-Te, �c� Se-Te-Se, �d� Se-Se-Te, �e� Te-Se-Te, and
�f� Se-Te-Te trimers.
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cluster the radial functions are defined separately for each
pairwise combination of elements.

Due to symmetry reasons the angular component,
�ijk��ijk�, of the three-body potential must be an even func-
tion, so we assume a Fourier cosine solution,

���� =
1

2
a0 + �

m=1

M

am cos�m�� . �10�

We determine the constants in the above equations by fitting
the ab initio data using a least-square error routine. The op-
timized parameters for the radial and angular components are
shown in Tables II and III, respectively. We truncate the Fou-
rier series in Eq. �10� with M =18 in order to provide a good
fit of important features in the ab initio data.

Please note that in our formulation the total three-body
interaction potential for any three atoms, i , j, and k, is the
sum of all permutations:

V3,tot = Rij�rij�Rjk�rjk��ijk��ijk� + Rji�rji�Rik�rik�� jik�� jik�

+ Rik�rik�Rkj�rkj��ikj��ikj� + Rki�rki�Rij�rij��kij��kij�

+ Rjk�rjk�Rki�rki�� jki�� jki� + Rkj�rkj�Rji�rji��kji��kji� .

�11�

Taking into account symmetry considerations, the expression
simplifies to

V3,tot = 2Rij�rij�Rjk�rjk����ijk� + 2Rij�rij�Rik�rik����kij�

+ 2Rik�rik�Rjk�rjk���� jki� . �12�

Thus the total three-body interaction potential for the entire
system is

V3,tot = 2�
i=1

N

�
,j�i

N

�
k�j

N

V3,ijk�rij,rjk,�ijk� . �13�

The equilibrium structures for the various trimers may be
determined by summing the two- and three-body interaction
potentials. Figure 2 shows this total multibody interaction
potential as a function of bond angle for the Se-Se-Se, Te-
Te-Te, Se-Te-Se, Se-Se-Te, Te-Se-Te, and Se-Te-Te three-
body clusters assuming equilibrium bond lengths for rij and
rjk. Whereas the minimum energy configuration for the Se-
Se-Se trimer has a bond angle of 115°, the minimum energy
configuration for Te-Te-Te occurs with a bond angle of 65°.
The Te-Te-Te cluster has a second �relative� minimum
around 110°. This “dual minimum” behavior is in good
agreement with experimental cluster measurements for both
selenium2 and tellurium,27 which predict two distinct opti-
mized geometries: an open triangular structure and a closed,
equilateral triangle. The hetereogeneous trimers in Fig. 2 also
exhibit minima in both the closed and open configurations.

C. Effective four-body interaction potentials

For the case of a four-body cluster we have six general-
ized coordinates: three interatomic separation distances,
rij ,rjk, and rkl; two bond angles, �ijk and � jkl; and one torsion
angle, �ijkl. This six-dimensional phase space is much too
large to explore fully at the quantum mechanical level; more-
over, a full description of the four-body interaction would
lead to a computation time in the classical simulation that
scales as O�N4�, which is impractical for systems of hun-
dreds or thousands of atoms. Therefore, we model the four-
body interaction for the Se-Te system as an effective pair-
wise repulsion that depends only on the separation distance
between an atom and its third- and longer-distance neigh-
bors. Computation of this effective four-body interaction in a
classical simulation is on the order of O�N2�, which is small
compared to the O�N3� three-body calculation.

In order to determine this effective repulsion we introduce
a fourth atom to the three-body clusters discussed in the pre-

FIG. 3. Four-body interaction potentials for �a� selenium and �b� tellurium.
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vious section. We assume a bond angle of �ijk=60° and equi-
librium bond lengths for the trimers. The fourth atom is po-
sitioned equidistant to these three atoms, and the total four-
body potential is calculated as a function of this variable
separation distance, dl. The four-body interaction is isolated
from the two- and three-body contributions using the stan-
dard cluster expansion approach:

V4,ijkl = V�dl� − �
i=1

4

V1,i − 2�
i=1

4

�
j�i

4

V2,ij�rij�

− 2�
i=1

N

�
,j�i

N

�
k�j

N

V3,ijk�rij,rjk,�ijk� . �14�

As shown in Fig. 3 for the Se4 and Te4 clusters, the four-
body interaction is highly repulsive at short distances and
rapidly decays to zero. We fit the ab initio data with

1

4
V4�dl� = g sech�hdl� , �15�

where g and h are constants and the factor of 1
4 accounts for

the contribution of four different four-body interactions to

the total four-body potential. Values for g and h are given in
Table IV for both the Se4 and Te4 clusters.

The case of a heterogeneous four-body cluster could be-
come difficult given the number of different combinations of
elements in different positions. We may dramatically sim-
plify this case by assuming that the total four-body interac-
tion is the sum of the four-body contributions of the indi-
vidual elements in the cluster. For example, the four-body
interaction for a Se3Te cluster would be

V4 = 3gSe sech�hSedl� + gTe sech�hTedl� , �16�

and the four-body interaction for a SeTe3 cluster would be

FIG. 4. Calculated structural data for Se glass assuming a density of 4.3 g/cm3: �a� pair distribution function, �b� bond angle distribution,
�c� coordination number distribution, and �d� chain or ring-length distributions.

TABLE IV. Parameters for the effective four-body interaction
potential.

Selenium Tellurium

g �eV� 42 30

h �Å−1� 2.0 1.5
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V4 = gSe sech�hSedl� + 3gTe sech�hTedl� . �17�

We have previously demonstrated that this is a reasonable
assumption and fits well to ab initio data for heterogeneous
clusters of chalcogen elements.28

IV. MODELING OF GLASS STRUCTURE

In this section we use the recently developed interaction
potentials combined with the Metropolis Monte Carlo mo-
lecular simulation technique29,30 to model the structure of
glasses in the SexTe1−x system. The simulations begin by
placing 1000 atoms at random positions in a cubic, isochoric
simulation space with periodic boundary conditions. The
density of a SexTe1−x glass is assumed to be 5.9
−1.6x g/cm3, and we consider a constant temperature of T
=298 K. The trial displacements are made by assigning a
random move along each of the three global axes, x̂ , ŷ, and
ẑ, where the probability density function is Gaussian with
zero mean and a standard deviation of 	. We simulate a total
of 20 million trial displacements of single atoms with a target
acceptance rate of 40%. The magnitude of 	 is dynamically

adjusted during the simulation to achieve this acceptance
rate.

Since our cluster expansion approach to potential devel-
opment is based on energies computed for small isolated
clusters of atoms, it is desirable to test the validity of these
potentials in an extended, three-dimensional solid. While we
have accurately included interactions up to the fourth order,
higher order interactions, if significant, could change the
overall cohesive energy of a solid system. We have computed
a cohesive energy of 2.258 eV/atom for pure selenium glass
using our two-, three-, and effective four-body potentials.
This is in excellent agreement with experimental values,
which range from about 2.25 to 2.35 eV/atom, depending on
the defect concentration in the glass.31,32 Therefore, we may
gain confidence in our cluster expansion method and the
truncation of higher order interaction terms.

Figure 4 shows computed structural data for the case of a
pure Se glass �x=1�. As discussed previously,24 the structure
of Se glass is dominated by long, two-coordinated chains of
atoms. The pair distribution function in Fig. 4�a� agrees well
with previous experimental and modeling work.4,33–36 The
bond angle, coordination number, and chain or ring-length
distributions in Fig. 4�b�–4�d� assume a bond cutoff of 2.6 Å

FIG. 5. Calculated structural data for Te glass assuming a density of 5.9 g/cm3: �a� pair distribution function, �b� bond angle distribution,
�c� coordination number distribution, and �d� chain or ring-length distributions.
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and are in good qualitative agreement with other
experiments.24,37–40 We find that 92.5% of atoms are two-
coordinated, leading to chain lengths that approach the size
of our simulated system. We also find the presence of large
rings containing hundreds of atoms.

Similar structural data are shown in Fig. 5 for elemental
Te glass. The pair distribution function in Fig. 5�a� predicts
well-defined first and second neighbor distances and com-
plete amorphism after about 8 Å. These features are in very
good agreement with neutron scattering data41 for liquid tel-
lurium. The bond angle distribution in Fig. 5�b� consists of a
broad peak centered around 110°. This distribution is signifi-
cantly broader than for selenium. The coordination number
distribution for Te glass is plotted in Fig. 5�c�, assuming a
bond cutoff distance of 3.0 Å. We find that 91.4% of atoms
are two-coordinated, leading to long chains of atoms similar
to that found in Se glass, a result which is in good qualitative
agreement with neutron scattering studies.42 Comparing Fig.
5�d� with Fig. 4�d�, we note that the atomic chains in Te glass
are significantly shorter than those in Se glass; moreover,
ring structures are almost completely absent in Te glass.

Structural data for a Se0.5Te0.5 glass is provided in Fig. 6.

Whereas the homopolar pair distribution functions in Fig.
6�a� have strong first-neighbor peaks, the Se-Te pair distri-
bution is zero until after 3 Å and shows very little correlation
thereafter. This is a result of the glass’s strong preference for
homopolar bonding, shown in Fig. 6�c�. Here we see that
nearly 99% of all bonds are homopolar, indicating almost
perfect phase separation at the covalent chain level. As
shown in Fig. 6�d�, the Se and Te atoms are primarily two-
coordinated and there is a slightly higher number of misco-
ordinated atoms than in the elemental glasses, presumably
due to the phase-separated nature of the heterogeneous glass.
It follows that the chain lengths for Se0.5Te0.5 glass are
shorter than for both elemental glasses, as indicated by Fig.
6�e�. While there is not much experimental data on the
Se0.5Te0.5 system available in literature, our structural data is
in good qualitative agreement with the experimental predic-
tions that the glass should consist of two-coordinated chains
of atoms43 and is phase separated.44

Fig. 7�a� plots the average coordination number of Se and
Te atoms in SexTe1−x glass as a function of x. We find that the
average coordination number of Se drops with low Se con-
tent, as does the average coordination number of Te with low

FIG. 6. Calculated structural data for Se0.5Te0.5 glass assuming a density of 5.1 g/cm3: �a� pair distribution functions, �b� bond angle
distribution, �c� bond population, �d� coordination number distribution, and �e� chain or ring-length distributions.
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Te content. Interestingly, Fig. 7 shows that the fraction of
heteropolar bonds increases with decreasing Se content, in-
dicating that Se is more soluble in a high-Te glass than Te in
a high-Se glass. This can also be seen from the glass struc-
ture plots in Fig. 8. Combining these two findings, the aver-

age chain length should be a minimum for low Se-content
glasses. This result is confirmed by Fig. 7�c�, where we see
that the average chain length is a minimum at about x=0.2.
In addition, Fig. 7�b� shows that the fraction of Se-Te bonds
becomes exceedingly small for x�0.4, indicating a high de-
gree of phase separation in this regime.

FIG. 7. Calculated structural data for glasses in the SexTe1−x

system: �a� average coordination number, �b� fraction of heteropolar
bonds, and �c� average chain length.

FIG. 8. �Color online� Computed structure �20 Å
20 Å

20 Å subset� of �a� Se0.1Te0.9 and �b� Se0.9Te0.1 glasses. The
smaller �gray� atoms are Se, and the larger �blue� atoms are Te.
These plots show that Se is more soluble in a high-Te glass than Te
in a high-Se glass
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V. CONCLUSIONS

We have developed model interaction potentials for the
binary selenium-tellurium system based on Møller-Plesset
perturbation theory. The model potentials successfully repro-
duce the two-coordinated chainlike structure of glasses in the
SexTe1−x system. Heterogeneous SexTe1−x glasses are found

to be phase separated for x�0.4. The minimum average
chain length occurs around x=0.2.
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