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We have studied numerically the fluctuations of the conductance, g, and the applicability of single parameter
scaling in two-dimensional disordered noninteracting systems. We have checked that the variance of ln g varies
with the lateral sample size as L2/3. In agreement with this, we have introduced a parameter to establish the
applicability of the single-parameter scaling �SPS� hypothesis. We have found that SPS is satisfied in two-
dimensional systems, except for the fluctuation states in the band tails, where a second parameter is needed.
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I. INTRODUCTION

The hypothesis of single-parameter scaling �SPS�, moti-
vated by the work of Thouless1 and introduced by Abrahams
et al.,2 constitutes the main foundation of our understanding
of localization in disordered systems. According to the SPS
hypothesis the full conductance distribution function is gov-
erned by a single parameter, the ratio of the system size L to
the localization length �. The localization length � is ob-
tained from the decay of the average of the logarithm of the
conductance, ln g, as a function of the lateral system size L

1

�
= − lim

L→�

1

2L
�ln g� . �1�

The conductance of a finite size sample depends on the prop-
erties of the system and also on the leads used to measure it,
which must be taken into account in any finite size analysis
based on it.

The validity of the SPS hypothesis has been thoroughly
checked in one-dimensional �1D� systems. In this case, it has
been shown that, all the cumulants of ln g scale linearly with
system size.3 Thus, the distribution function of ln g ap-
proaches a Gaussian form for asymptotically long systems.
In this limit, it is fully characterized by two parameters, the
mean �ln g� and the variance of ln g

�2 = �ln2g� − �ln g�2. �2�

Both parameters are related to each other through a universal
law

�2L

�
= 1, �3�

where � is the average Lyapunov exponent, which in 1D
systems is also the inverse of the localization length. Equa-
tion �3� was first derived in Ref. 4 within the so-called ran-
dom phase hypothesis, which assumes that there exists a mi-
croscopic length scale over which phases of complex
transmission and reflection coefficients become completely
randomized. With this relation we reduce the two parameters
of the distribution to only one and provides, therefore, a
justification and interpretation for SPS in 1D systems.

Equation �3� has been proven to hold for many models
under most situations. However, it has been shown5–7 that in
the tails of the spectrum, where states are much further apart

from each other than the localization length, 1D systems do
not obey SPS, as a consequence of the existence of a char-
acteristic length related to the distance between states. For
energies with a very small integrated density of states N�E�
we can define this new length as l=1/N�E�. In the region of
fluctuation states, when the integrated density of states is
very small, N�E��1, and so the distance between states is
much larger than the localization length, l��, the SPS hy-
pothesis is not valid. For similar reasons, the SPS hypothesis
does not apply just at the center of the band.8

The situation in two-dimensional �2D� and three-
dimensional systems is not as clear as in 1D systems. In
those dimensions is far more difficult to do analytical calcu-
lations and numerical simulations have been limited until
recently to small sample sizes. Most numerical simulations
in 2D systems have produced results in agreement with
SPS,9,10 although some recent disagreements have also been
reported.11,12 In the strong localization regime, ln g was
claimed to be normally distributed,13,14 but attempts to verify
a relation between the average conductance and its variance,
similar to the one in 1D systems, Eq. �3�, have failed so far.

Recently, Slevin, Asada, and Deych15 have studied nu-
merically the behavior of the Liapunov exponent for 2D
L�L systems. In the strongly localized regime, ln g is deter-
mined by this exponent, but in general it also depends on
other transfer matrices exponents.16 These authors found that
� is normally distributed, unlike ln g for these systems. Al-
though the mean and the variance of the Liapunov exponent
in 2D systems do not obey an equation similar to Eq. �3�,
their relation still can be characterized by a single parameter,
namely the ratio of the system size to the localization length.
So they concluded that the SPS hypothesis is verified in 2D
systems.

Nguyen et al.17 proposed a model to account for quantum
interference effects in the localized regime, where the differ-
ent possible paths between two points decay exponentially
with distance. The overall tunneling amplitude between two
sites is then dominated by the shortest or forward-scattering
paths. Medina and Kardar18,19 studied in detail the model.
They computed numerically the probability distribution for
tunneling and found that is approximately log normal, with
its variance increasing with distance as r2/3 for 2D systems.
This is in contrast with the 1D case, where the variance
grows linearly with distance, and with the implicit assump-
tions of some works on 2D systems.
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Following the work of Medina and Kardar,18,19 we expect
the variance of ln g in 2D systems to vary with system size
as L2/3, at least in the strongly localized regime. If this is so,
a proper checking of SPS in this dimensionality should take
this into account.

Our first goal consists in checking numerically that in 2D
systems the size dependence of the variance of ln g is similar
to the separation dependence of the variance of the tunneling
amplitude between two sites.17–19 Once this is established,
we will check the validity of SPS hypothesis taking into
account the implications of the previous size dependence, as
we will explain later on.

A second aim of our work is to see if, in analogy with 1D
systems, the SPS hypothesis is violated in the tails of the
spectrum of 2D systems, where a characteristic length related
to the separation between states exists. We will show that this
is indeed the case.

II. MODEL

We consider 2D squares samples of size L�L described
by the standard Anderson Hamiltonian

H = �
i

	iai
†ai + t�

i,j
aj

†ai + h . c., �4�

where the operator ai
†�ai� creates �destroys� an electron at

site i of a regular lattice and 	i is the energy of this site
chosen randomly between �−W /2 ,W /2� with uniform prob-
ability. The double sum runs over nearest neighbors. The
hopping matrix element t is taken equal to −1, which set the
energy scale, and the lattice constant equal to 1, setting the
length scale. In this model, the energies are measured with
respect to the center of the band. In 2D systems the band
extends from −4t−W /2 to 4t+W /2.

We have calculated the zero temperature resistance and
the density of states of the systems from the Green functions.
The resistance R�0� is inversely proportional to the transmis-
sion coefficient T between two semi-infinite leads attached at
opposite edges of the sample

R�0�−1 = 2
e2

h
T , �5�

where the factor of 2 comes from spin. From now on, we
will measure the resistance in units of h / �2e2�. The transmis-
sion coefficient can be obtained from the Green function
G�E� through the expression21

T = Tr��i
vx�Im G�E��i
vx�Im G�E�� . �6�

vx is the velocity operator in the x direction, where the leads
are. The Green function can be calculated propagating strip
by strip.20,21 This drastically reduced the computational ef-
fort. Instead of inverting an L2�L2 matrix, we just have to
invert L times L�L matrices. The leads serve to obtain the
conductivity from the transmission formula in a way well
controlled theoretically and close to the experimental situa-
tion. The iterative method is also useful for the calculation of
the densities of states. This magnitude is obtained for several
sample sizes L and then extrapolated to macroscopic sizes by

plotting it as a function of 1/L. With the iterative method we
can easily solve square samples with lateral dimension up to
L=400. We have considered ranges of disorder W from 4 to
12. The number of samples employed depends on the prop-
erty calculated and will be specified later on.

The geometry of the leads is known to affect the scaling
behavior in the diffusive regime, and is not clear to what
extent it affects the behavior in the localized regime. For this
reason, we have used two types of leads: wide leads with the
same width as the lateral dimension of the samples and nar-
row �one-dimensional� leads. These are attached to the
sample at the centers of opposite edges, as shown in Fig.
1�a�. The scheme of the wide leads is shown in Fig. 1�b�. In
both cases the leads are represented by the same Hamiltonian
as the system, Eq. �4�, without diagonal disorder. As we want
to study the conductance in the tails of the density of states
of the system, we have chosen the hopping matrix elements
of the leads equal to 10 to ensure a broad energy band in the
leads. We have checked that the results do not depend
strongly on this choice. The narrow leads can be viewed as a
simplified model of a point contact, while the wide leads
should roughly correspond to electrodes in contact with the
whole edge of the sample. We use cyclic periodic boundary
conditions in the direction perpendicular to the leads.

In the model considered by Nguyen et al.17 and Medina
and Kardar,18,19 the random potential could take only two
values and the spectrum could be divided into three regions
with qualitatively different spectral and transport properties.8

In our model, with diagonal disorder uniformly distributed,
the situation is more complex, but we still can divide the

FIG. 1. Schematic picture of the sample and leads considered:
�a� narrow leads and �b� wide leads. The open circles represent sites
in the system and the solid dots sites in the leads. The lines repre-
sent the hopping between sites which are different in the system
�thin lines� and in the leads �thick lines�. The dashed lines are just a
guide to the eye.
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whole spectrum in a band corresponding to energies
�E��2dt+W, where d is the dimensionality of the system,
and two tails outside this region. In the band the SPS hypoth-
esis is satisfied, while in the tails we expect that this is not
satisfied, in analogy with 1D systems. In the tails, the density
of states is very low, so an additional relevant length is
present and we may need more than one parameter to de-
scribe the behavior of the system.

III. ZERO TEMPERATURE CONDUCTANCE
FLUCTUATIONS

In 1D systems the variance of the logarithm of the zero
temperature conductance is proportional to the length of the
system. In 2D systems, the situation is more complicated.
Scaling theory tell us that the variance of ln R�0� should only
depend on the same parameter as �ln R�0��. We have checked
that, in the localized regime, the average of ln R�0� follows,
to a good approximation, a law of the form

�ln R�0�� =
2L

�
+ c , �7�

where L is the lateral size of the samples, � is the localization
length, and c is a small constant that only depends on the
type of leads, but not on the disorder or the Fermi energy as
long as we are not in the tails of the spectra. According to
SPS, the ratio L /� fully determines �ln R�0�� and the other
moments of the distribution, in particular the variance. Simi-
larly, the variance is a universal function of the average.
We expect the variance of ln R�0� to be proportional to a
power law of L /� with a dimensionality dependent
exponent,18 not necessarily equal to unity. The aim of this
section is to determine numerically this exponent and com-
pare it with previous predictions. At the same time, it will
provide us with a useful tool to properly check the validity of
SPS in 2D systems.

Medina and Kardar18 checked that the variance of the
tunneling amplitude between two points separated a distance
r goes as r2/3 in the strongly localized regime of a model
with random diagonal energies that can only take two values.
We want to check if their results can be extended in a double
way: to the more standard model with a random uniform
distribution of diagonal energies and to the conductance of
the system, measured through the transmission between two
leads attach to the sample. First of all, we consider 1D semi-
infinite leads, since the transmission between their points of
contact should be similar to the tunneling amplitude between
them. For this case, we have calculated the variance �2 of
ln R�0� for square samples as a function of the lateral size L
of the samples and the range of the disorder W. In Fig. 2 we
show the variance of ln R�0� as a function of �ln R�0��2/3 for
different values of the disorder and the Fermi energy. We
have used as independent variable in this figure �ln R�0��2/3,
instead of �L /��2/3, because in this way the results are more
easily verified experimentally. In any case, both procedures
give very similar results. Inside the figure, we specify for
each set of points the value of the disorder W and of the
Fermi energy E. Each point of the graph represents an aver-

age over at least 2000 samples. The data that lie on the same
line are from the bulk of the spectra, while the few data that
do not overlap with the rest correspond to energies on the
tails of the spectra. The line fitting the complete set of over-
lapping points in Fig. 2 is �2= �6.18±0.04��ln R�0��2/3

−13.8±0.5.
As regards the data from the bulk, we can extract the

following conclusions from Fig. 2. Since the data are fitted
very well by a straight line, the variance of ln R�0� scale with
sample size with an exponent of 2 /3, as predicted by Medina
and Kardar18,19 for the fluctuations of the tunneling ampli-
tude as a function of distance. The good overlap of the data
points also indicates the validity of the SPS hypothesis, since
the variance �2 only depends on the same parameter as the
mean of ln R�0�. In disagreement with assumptions of previ-
ous works, SPS does not imply a linear dependence of the
variance with the scaling parameter, L /�. This implication is
only true in 1D systems.

We now turn our attention to the points coming from the
tails. We see in Fig. 2 that the last three sets in the legend are
fitted fairly well by straight lines, when plotted versus
�ln R�0��2/3, but their slopes and their constant terms depend
now on the specific values of the disorder and the Fermi
energy. To determine the variance in the tails, we need at
least one more parameter to specify the corresponding slope.
This slope provides us with an excellent tool to check the
applicability of SPS hypothesis in 2D systems, what we will
do in the next section.

Since in many cases the resistance is studied with wide
leads attached to the samples, it is interesting to know
whether the previous results also apply to this very different
geometry. Thus, in Fig. 3 we have plotted the variance of
ln R�0� as a function of �ln R�0��2/3 for the case of wide
leads. The different values of the disorder and the Fermi
energy employed are specified inside the figure. The data that
lie on the same line are from the bulk of the spectra, while
the few data that do not overlap with the rest correspond to
energies on the tails of the spectra. Again, the data are fitted

FIG. 2. �Color online� �2 obtained with 1D leads as a function
of �ln R�0��2/3 for the values of the disorder and the Fermi energy
shown in the graph.
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well by straight lines proving that the predictions of Medina
and Kardar18,19 have a very general applicability to the con-
ductance of 2D systems, and do not restrict to the model and
to the magnitude considered by these authors. The results do
not restrict to the strongly localized regime, being valid even
when we approach the diffusive regime, which corresponds
to small values of Figs. 2 and 3 and is better appreciated in a
logarithmic scale �not shown�. Of course, this behavior must
eventually change at small values of �ln R�0��, since the vari-
ance must be positive. In fact, we know that the variance of
ln R�0� should tend to zero in the limit of large conductances
as a consequence of the universal conductance fluctuations.
The mean and the variance of the Liapunov exponent do
appreciably change behavior much before we enter the dif-
fusive regime, while �ln R�0�� and �2 do not present any
significant variation when we approach this regime. The
�L /��2/3 �or alternatively �ln R�0��2/3� behavior of the vari-
ance of ln R�0� has not been recognized by many authors,
what has complicated their analysis of the data.8,11,12 In some
cases, even it has been assumed that SPS requires a linear
dependence of �2 with distance.11,12 The results coming from
the bulk of the spectra overlap in a single curve, while those
from the tails present different slopes. The line fitting the set
of all overlapping points in Fig. 3 is �2= �3.66±0.02�
��ln R�0��2/3−4.40±0.12. The slope of the overlapping
points depends on the type of leads used. In the inset of Fig.
3 we show the same data as in the main part as a function of
�ln R�0�� to clearly prove that the variance of ln R�0� is not
proportional to distance in 2D systems.

If the data in Figs. 2 and 3 were plotted on a double
logarithmic scale, we would see a straight line with a small
curvature due to the constant term present in these two fig-
ures. We note that care must be taken when extracting the
power law behavior in this way due to the presence of this
constant term.

IV. VIOLATION OF SINGLE-PARAMETER SCALING IN
THE TAILS OF THE SPECTRUM

From Figs. 2 and 3, we expect SPS to be valid for the data
that overlap into a single curve and not to apply to the data
that fall away from this main curve. In order to check this
quantitatively, we have to characterize the variance of
ln R�0� trough one �or a few� parameter that we can later
relate to the characteristic lengths of the problem. For each
range of the disorder and Fermi energy, we fit �2 as a func-
tion of �L /��2/3 to a straight line

�2 = A	L

�

2/3

+ B . �8�

This behavior is satisfied pretty well in all cases, even for the
energies in the tail of the spectra whose data do not overlap
with the rest, as we have already mentioned. The slope A of
the fitted line for each disorder and each Fermi energy is the
most convenient parameter to characterize the behavior of
the variance. For the cases where A is constant, the SPS
hypothesis is valid, while if A varies this is not the case
anymore and we have to try to relate A to other relevant
parameters of the problem. A plays here the same role as the
parameter �=�2L /� plays in 1D systems.

Similarly to the situation in 1D systems, we can try to
relate our slope A to the length associated with the distance
between states in the tails. This characteristic length is ob-
tained from the density of states in the following way. At the
same time as we calculate the transmission amplitude from
the Green functions, we obtain the local density of states and
sum it over the sites of the sample. We do this for different
sample sizes and extrapolate the results to macroscopic sizes.
We then get the integrated density of states N�E� and from it
the characteristic distance between states, which in two di-
mensions is defined as

l2 = �
N�E��−1/2. �9�

In Fig. 4 we represent the characteristic length l2 �thick

FIG. 3. �Color online� �2 obtained with wide leads as a function
of �ln R�0�� to the power of 2 /3 for the values of the disorder and
the Fermi energy shown in the graph. The inset shows the same data
as the main part as a function of �ln R�0��.

FIG. 4. Characteristic distance between states l2 �thick line� and
localization length �dashed line� as a function of Fermi energy for a
disorder W=8.
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line� and the localization length � �dashed line�, extrapolated
to macroscopic sizes, as a function of energy for a disorder
W=8. Far in the tails �small energies� the length l2 becomes
very large and is much larger than the localization length for
the values of the disorder considered.

In the tails, where SPS hypothesis fails, the next thing to
try is a two parameter scaling and the natural candidate for
our second parameter is � / l2, the ratio of the localization
length to the characteristic distance between states. In Fig. 5
we plot the slope A as a function of � / l2 for different values
of the disorder and the Fermi energy. The values of the dis-
order are specified in the graph and for each of them we
consider several values of the Fermi energy. Each point cor-
responds to an average over 100,000 samples. We see that
the data overlap fairly well into a universal curve in agree-
ment with a two-parameter scaling hypothesis. For large val-
ues of � / l2, the curve tends to a constant as we enter the
region where SPS is valid. The data in Fig. 5 correspond to
wide leads, but similar results are obtained for 1D leads. The
limiting value of the data for large values of � / l2 depends on
the leads, and corresponds to the slope of the overlapping
points in Figs. 2 and 3 for 1D and wide leads, respectively,
when represented as a function of �L /��2/3. This slope is
equal to 9.07±0.05 for 1D leads and to 5.43±0.03 for wide
leads.

The parameter B in Eq. �8� should also be constant for the
SPS hypothesis to apply or a function of � / l2 for a two pa-
rameter scaling to hold. In Fig. 6 we show the dependence of
the constant term B with our second characteristic parameter
� / l2 for the values of the disorder specify in the graph. For
each disorder we have considered several values of the Fermi
energy. The data collapse again into a universal curve, sup-
porting the applicability of two parameter scaling in the tails
of the spectra, that leads to SPS in the bands where the
localization length becomes much larger than the separation
between states. We note that the decreasing behavior of B for
small values of � / l2 may be a finite size effect due to the fact

that the sample sizes employed are larger than the length l2.
In any case this does not affect any of our conclusions. Fig-
ure 6 corresponds to results for 1D leads. Similar ones are
also obtained for wide leads, although the relative errors in-
volved are larger because the value of B is much smaller in
this case.

V. DISCUSSION AND CONCLUSIONS

Our results can be tested experimentally, in particular
Figs. 2 and 3. The information required may be obtained
from raw data of conductance as a function of gate voltage as
measured in many experiments �see for example Refs. 22
and 23�. Averaging over a small range of gate voltages one
can obtain both �ln�g�� and Var�ln�g��. As our results are for
T=0, it would be necessary to verify that the temperature is
low enough to be below the variable-range hopping regime.
This is easy to achieve close to the crossover region, far from
the strongly localized regime. It is worth mentioning that in
Ref. 23 the authors claim that for T�0.1 K the conductance
is already temperature independent, while they are able to
measure good conductance fluctuations for different samples
at T=10 mK. So it seems that an experimental verification of
Figs. 2 or 3 is certainly possible. We note that we expect that
for different sample geometries the slope of the curve of
Var�ln�g�� as a function of �ln�g��2/3 may change, but the
results should fit a straight line in all cases for two-
dimensional samples. Our results might also be tested in an
indirect way in the variable-range hopping regime, but this is
outside the scope of this work.

We have shown that, in 2D disordered noninteracting sys-
tems, the variance of ln R�0� grows with system size propor-
tionally to �L /��2/3. This behavior is independent of the leads
attached to the sample and is similar to that of the tunneling
amplitude between two sites as a function of distance. It is
valid all the way from the strongly localized to the diffusive
regime. The slope of the line of �2 vs �L /��2/3 constitutes an

FIG. 5. �Color online� Slope A of the variance �2 vs �L /��2/3 as
a function of the second characteristic parameter � / l2. The values of
the disorder are specified in the graph and for each of them we
consider several values of the Fermi energy.

FIG. 6. �Color online� Constant term B of the variance �2 vs
�L /��2/3 as a function of � / l2 for the values of the disorder shown in
the graph and several Fermi energies for each of them.
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excellent parameter to verify the applicability of the SPS
hypothesis. We have checked that this hypothesis is valid for
energies in the band, while a second parameter is needed for
energies in the tail of the spectra. A good choice for this
second parameter is the ratio between the localization length
and the distance between the fluctuation states in these tails.

The distribution function of ln R�0� is not Gaussian and
the values of the third moment can be measured reliably. So
any scaling hypothesis has to be tested with this parameter
also. Preliminary results indicate that the skewness only de-

pends on L /� for energies in the band, corroborating the SPS
hypothesis, while its behavior for energies in the tails of the
spectra can be characterized by the same two parameters as
the variance.
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