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We investigated numerically the high-temperature–high-pressure phase diagram of xenon as modeled
through the exp-6 interaction potential, which is thought to provide a reliable description of the thermal
behavior of rare gases under extreme conditions. We performed a series of extensive NVT Monte Carlo
simulations which, in conjunction with exact computation of the solid free energy by the Frenkel-Ladd method,
allowed us to precisely locate the freezing and melting thresholds at each temperature. We find that, under
isothermal compression, the exp-6 fluid freezes directly into a fcc solid; however, above 4500 K, an interme-
diate bcc phase becomes stable in a narrow range of pressures. The chemical potential of the hcp phase never
significantly differs from that of the fcc solid of equal T and P, though the former is found to be slightly greater
than the latter. We discuss our results in the light of previous numerical studies of the same model system and
of the experimental data available for xenon.
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I. INTRODUCTION

In the last decade, there has been an increasing interest in
the high-temperature–high-pressure �HT-HP� properties of
many materials,1–3 as realized for instance in the deep core of
the planets of our solar system. Such peculiar conditions do
in fact provide an additional means for testing current
condensed-matter theories, since squeezing matter to plan-
etary pressure and heating it up to a few thousand degrees
can trigger various forms of structural reorganization both at
the macroscopic and at the molecular level �see, for instance,
the two paradigmatic cases of water and methane�, or even
cause modifications in the electronic transport properties �as
happens for, e.g., hydrogen�. Since down-the-earth experi-
ments are somewhat limited �pressure can hardly be pushed
over a certain threshold and, more important, any huge com-
pression is plagued by severe nonhydrostaticity problems�,
the only possible insights into the transformations undergone
by many substances at extreme conditions often come from
numerical simulation—provided, however, a theoretical
model of that substance is amenable to careful investigation
and numerical errors are kept under control.

Due to their closed electronic shells, �heavy� rare gases
are usually believed to be the simplest substances of all;
hence it may appear somewhat strange that their thermal be-
havior in the HT-HP regime �i.e., in the very dense fluid and
solid regions� is not yet well assessed.4 Despite the fact that
one can get rid of quantum-mechanical considerations almost
completely �at a temperature as high as 3500 K, it was
shown in Ref. 5 that electronic excitations do not play any
significant role up to pressures of order 50 GPa�, a classical
interaction potential that accurately reproduces the thermo-
dynamic properties of rare gases cannot be of the simple
Lennard-Jones form. In fact, while performing very well at
ambient conditions, the Lennard-Jones potential loses much
of its reliability when temperature and pressure take huge
values. For high system densities, three-body contributions
to the effective potential are likely to be as important as the
two-body term,6 with the effect that the atomic core is softer

than implied by the Lennard-Jones interaction. If one insists
in using a two-body effective potential, a more reliable form
for rare gases turns out to be the �modified� Buckingham or
exp-6 potential7 �see it defined in Eq. �2.1��, as parametrized
through high-density experimental data.8 As a matter of fact,
when HT-HP conditions hold, an exponential law is a more
adequate representation for the interatomic repulsion at short
distances than is a power law. In this respect, we can say that
the exp-6 potential takes into account the effects of the three-
body interaction in an isotropic fashion.

Recently, some controversy has arisen about the topology
of the HT-HP part of the phase diagram of Xe, whose behav-
ior should be representative also of Ar and Kr. Stimulated by
the findings of a recent laser-heated diamond-anvil-cell
�DAC� experiment on Xe,9 Belonoshko et al. have done
molecular-dynamics �MD� computer simulations of the
exp-6 potential in order to interpret those data.5,10 In the
DAC experiment, a Xe fluid sample is compressed at a given
pressure in the range between 10 and 40 GPa and subse-
quently heated with a laser until a bulk transition is detected.
The experiment is meant to provide information about the
freezing of fluid Xe in the HT-HP region and, ultimately, to
draw the fluid-solid coexistence line in the P-T diagram.
Surprisingly, the freezing line shows an unexpected cusp
near T=2700 K and P=15 GPa, which was originally im-
puted to the boundary between a fluid-solid and a fluid-glass
transition.9 The numerical simulations of the exp-6 model by
Belonoshko et al. have instead revealed a competition be-
tween two distinct, fcc and bcc solid phases, which happen
to exchange their relative thermodynamic stability right in
the region of the observed cusp. More precisely, for tempera-
tures above T�2700 K, a fluid-bcc-fcc sequence of phases
is reported upon isothermically increasing the pressure be-
yond 25 GPa. This interpretation has been criticized by
Kechin.11

The simulation method used in Refs. 5 and 10 was the
so-called two-phase or coexistence method,12,13 as imple-
mented in an isothermal-isobaric MD simulation.14 In point
of principle, this technique should be able to detect a coex-
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istence between two structurally distinct phases whenever it
occurs; in practice, this method has some limitations since it
requires large sizes and very long simulation times to reach
good equilibration in the region of the interface between the
coexisting phases.15 Moreover, it cannot be excluded that the
route to equilibrium of an unstable interface will pass
through �and long remain in� a phase which, though not be-
ing the preferred one under bulk conditions, is nonetheless
promoted by �small� spatial inhomogeneities of the system.
This would be especially so when the difference in Gibbs
free energy between two distinct solid phases is very small:
in that case, a system being prepared in a metastable solid
phase would take a very long time �possibly much longer
than is accessible to simulation� to relax to the truly stable
solid.

In order to gain further insight into the nature of Xe freez-
ing at the temperatures investigated by the DAC experiment,
we have carried out a Monte Carlo simulation in the canoni-
cal ensemble of the same exp-6 system of Refs. 5 and 10, but
now calculating the free energy of the relevant solid phases
by the method of Frenkel and Ladd,16 which would provide
the benchmark for solid-free-energy evaluations. When used
in conjunction with conventional thermodynamic integration,
this method would allow one to draw the “exact” phase dia-
gram of the given model system and the only source of error
would be associated with the finite size of the sample. In-
deed, if the chemical-potential gaps between different solid
structures are minute, also the statistical errors affecting the
relevant thermodynamic averages are to be made sufficiently
small �i.e., by carrying out long enough simulation runs�. As
a matter of fact, we neither confirm the findings of Be-
lonoshko et al.—for we predict that the bcc solid would be-
come stable in Xe only above 4500 K—nor find any good
agreement with the DAC data of Ref. 9 at the highest tem-
peratures, i.e., no clear bump is seen along the freezing line.
A similar outcome was also found by Frenkel for He,17

whose bcc-fcc transition would only occur in a region of the
phase diagram where the fluid is stable.

The outline of the paper is the following. In Sec. II, we
introduce the model system and describe our simulation
method. In Sec. III, we present our numerical results and
draw the ensuing phase diagram. Then, in Sec. IV, we make
a critical comparison of our outcome with those of previous
studies. Further comments and remarks are postponed to the
Conclusions.

II. MODEL AND METHOD

A. The exp-6 model

All textbooks in statistical mechanics report that rare-gas
thermal behavior is well accounted for by the simple
Lennard-Jones pair potential. However, it is less known that,
when rare gases are very dense, a different potential with a
softer repulsive shoulder is better suited. Such is the exp-6
potential, defined to be

v�r� = �+ � , r � � ,

�

� − 6
�6 exp��	1 −

r

rm

� − �	 rm

r

6� , r � � , 

�2.1�

where � controls the softness of the repulsion and ��0 is
the depth of the potential minimum located at rm. We select
the value of � in such a way that, for the given � and rm, the
function appearing in the second line of Eq. �2.1� reaches its
maximum right at �. Hence, as r moves down to �, v�r�
reaches a stationary value and then goes abruptly to infinity.
Ross and Mc Mahan have shown that, for a suitable choice
of the parameters �, �, and rm, v�r� gives a rather faithful
representation of many thermodynamic properties of Ar at
high densities. Moreover, a corresponding-state theory ap-
pears to hold, which permits us to derive the model param-
eters appropriate to Kr and Xe from those of Ar. For Xe, such
best parameters are �=13, � /kB=235 K, and rm=4.47 Å,8

where kB is the Boltzmann constant �for �=13, the value of
� is then 0.246 972…rm�. In the following, we work with
dimensionless variables, i.e., T*=kBT /�, P*= Prm

3 /�, and 	*

=	rm
3 �	�N /V is the particle-number density�. The accuracy

of the exp-6 modelization for xenon at low pressures was
tested by Belonoshko et al. against available experimental
results and, up to 0.7 GPa, was found to be good �see Fig. 7
of Ref. 5�.

Recently, the vapor-liquid equilibria of the exp-6 fluid
were studied numerically through a series of Monte Carlo
�MC� simulations in the Gibbs ensemble.18 As a result, the
critical point was located at 	*=0.303 and T*=1.316. From a
simulation study by Errington and Panagiotopoulos a slightly
different estimate of the critical-point coordinates is ex-
tracted, namely, 	*=0.318 and T*=1.318.19 Finally, the
freezing density of the exp-6 fluid was estimated for a num-
ber of temperatures by the Hansen-Verlet criterion.20,21

B. Details of the Monte Carlo simulation

The numerical-simulation method provides virtually exact
information on the statistical behavior of a given model sys-
tem. We have performed Monte Carlo simulations of the
exp-6 model in the canonical ensemble �i.e., at constant tem-
perature T, volume V, and number N of particles�, using the
standard Metropolis algorithm for sampling the equilibrium
distribution in configurational space. The only values of N
that we consider are those that fit a cubic simulation box with
an integer number of cells, i.e., N=4n3 for the fcc solid and
N=2n3 for the bcc solid, n being the number of cells along
any spatial direction. For a given particle number, the length
L of the box is adjusted to a chosen density value 	, i.e., L
= �N /	�1/3. If a is the distance between two nearest-neighbor
reference lattice sites, we have a= ��2/2��L /n� for a fcc
crystal and a= ��3/2��L /n� for a bcc crystal. Finally, peri-
odic conditions are applied to the box boundaries.

Our largest sample sizes were N=1372 �fcc� and N
=1458 �bcc� which, to all practical purposes, can be regarded
as nearly the same size. We point out that comparing the
statistical properties of similar �large� sizes is mandatory
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when we want to decide which solid phase is stable at given
T and P, since this produces comparable statistical errors for
the two phases. Otherwise, one can resort to some extrapo-
lation to the thermodynamic limit which is, however, com-
putationally far more demanding.

Some x-ray diffraction studies indicate that the fcc-hcp
transition could be a common behavior in all rare-gas
solids.22–24 At room temperature, the hcp solid would be
stable above 75 GPa, while metallization is not expected
before �130 GPa.25 We have thus carried out also a number
of simulations of a hcp crystal hosting 10
12
12=1440
particles �the simulation box is only approximately cubic in
this case and the z axis is now oriented along the �111�
direction—the three box sides have lengths of Lx=nxa, Ly
= ��3/2�nya, and Lz= ��6/3�nza, with nx=10, ny =nz=12, and
a= ��2/	�1/3�.

To locate the transition point at a given T, we have nu-
merically generated two isothermal quasistatic paths, starting
from the very dilute fluid on one side and from the highly
compressed solid on the other side. As a rule, in the solid
region, the last MC configuration produced at a given 	
serves, after suitable rescaling of particle coordinates, as the
starting configuration for the run at a slightly lower density.
Similarly, in the dense-fluid region, the simulations are car-
ried out in a chain, i.e., the run at a given density is started
from the last �rescaled� configuration produced at a lower 	
value. The fcc and bcc solid paths are followed until the fluid
spontaneously forms during the MC run, as evidenced by the
abrupt change in energy and pressure. Usually, we were able
to overheat the solid for a little beyond the fluid-solid phase
boundary, while undercooling of the fluid is much easier. For
each 	 and T, equilibration of the sample typically takes 2

103 MC sweeps, a sweep consisting of one attempt to se-
quentially change the position of all particles. The maximum
random displacement of a particle in a trial MC move is
adjusted once a sweep during the run so as to keep the ac-
ceptance ratio of the moves as close to 50% as possible, with
only small excursions around this value.

For given NVT conditions, the relevant thermodynamic
averages are computed over a trajectory whose length ranges
from 2
104 to 6
104 sweeps. The excess energy per par-
ticle uex, the pressure P, and �in the solid phase� the mean
square deviation �R2 of a particle from its reference lattice
position are especially monitored. Pressure comes from the
virial formula

P = 	kBT +
�V�
V

, V = −
1

3�
i�j

rijv��rij� �2.2�

�rij is the distance between particles i and j�. In practice, to
avoid double counting of interactions, the pair potential is
truncated above a certain cutoff distance rc, which is taken to
be only slightly smaller than L /2. Then, the appropriate
long-range corrections are applied to energy and pressure by
assuming g�r�=1 beyond rc, g�r� being the radial distribution
function �RDF�.

The RDF histogram is constructed with a spatial resolu-
tion of �r=rm /50 and updated every ten MC sweeps. The
RDF is computed up to a distance of L /2: at that distance,

the g�r� was never found to significantly differ from unity, at
least for the largest system sizes.

To evaluate the numerical errors affecting the main statis-
tical averages, we divide the MC trajectory into ten blocks
and estimate the length of the error bars as being twice the
empirical standard deviation of the block averages from the
mean �under the implicit assumption that the decorrelation
time of any relevant variable is less than the size of a block�.
Typically, the relative errors of energy and pressure are a few
tenths of a percent.

The difference in excess free energy between two equilib-
rium states of the system, say 1 and 2, lying within the same
phase is computed through the combined use of the formulas

fex�T2,	�
T2

=
fex�T1,	�

T1
− �

T1

T2

dT
uex�T,	�

T2 �2.3�

and

fex�T,	2� = fex�T,	1� + �
	1

	2

d	
1

	
�P�T,	�

	
− 1� ,

�2.4�

where fex is the excess Helmholtz free energy per particle
and = �kBT�−1. The integrals in Eqs. �2.3� and �2.4� are per-
formed numerically by applying the Simpson rule to a linear-
spline approximant of the simulation data for energy and
pressure.

The above formulas are, however, useless if one does not
have an independent estimate of the system free energy in a
reference state. Only in this case do Eqs. �2.3� and �2.4� help
in finding the free energy of any other state in the same
phase. The choice of such a reference state is different for the
fluid and solid phases. As a reference state for the fluid, we
can choose any equilibrium state that is characterized by a
very small 	 value and arbitrary T �say, a nearly ideal gas�,
since then the excess chemical potential of the system can be
accurately estimated by the Widom or particle-insertion
method,

�ex = − kBT ln�exp�− Eins�� , �2.5�

where Eins comprises all interaction terms between a ran-
domly inserted ghost particle and all the system particles.
The average in Eq. �2.5� is evaluated numerically during a
run of typically 5
104 equilibrium sweeps, with an inser-
tion attempted at the completion of every sweep. Once �ex is
given, the excess values of free energy and entropy will fol-
low from

fex = �ex −
P

	
+ 1 and

sex

kB
= �uex − fex� . �2.6�

It is useful to note that, from a strictly numerical point of
view, choosing a very dilute gas as a reference state for the
fluid is far better than starting the thermodynamic integration
in Eq. �2.4� from the ideal gas of equal temperature. In fact,
unless one has a lot of thermodynamic points in the very
dilute region of the phase diagram, a spline interpolant of
P /	 that is sufficiently accurate in this region is hard to
construct.
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C. The Frenkel-Ladd calculation of solid free energies

The Frenkel-Ladd �FL� method for calculating the free
energy of a solid system relies on a different kind of thermo-
dynamic integration.16,26 The idea is to continuously trans-
form the system of interest with potential energy V1 into a
reference solid system of known free energy �typically, an
Einstein crystal�. This is accomplished through a linear inter-
polation of the potential-energy functions V0 and V1 of the
two systems, i.e., V�=V0+��V1−V0� �with 0���1�. Then,
the difference in free energy between two homologous NVT
states of the systems is calculated via the exact Kirkwood
formula

F1 − F0 = �
0

1

d��V1 − V0��, �2.7�

where the average �¯�� is taken over the equilibrium distri-
bution of the hybrid system with V� potential and is evalu-
ated numerically by a Monte Carlo procedure.

Upon denoting by �Ri
�0� , i=1,… ,N� the reference lattice

positions, the Einstein model is described by an interaction
potential of

VEin�RN� =
1

2
c�

i=1

N

�Ri − Ri
�0��2, �2.8�

where c is the spring constant—the same for all oscillators. It
readily follows from Eq. �2.8� that the free energy and mean
square separation of a particle from its reference lattice site
are given by

FEin = −
3N

2
ln	 2�

c�2
 and �REin
2 =

3

c
, �2.9�

where � is the thermal wavelength. In deriving the first of
Eqs. �2.9�, no Gibbs factor of N! was included in the parti-
tion function since the Einstein oscillators are distinguishable
entities.

A nontrivial problem with this choice of reference system,
already pointed out in the original article,16 is the following:
while the Einstein particles can only perform limited excur-
sions around their reference positions, which implies a finite
value of �R2, there is no means to constrain particles inter-
acting through V1 to remain confined in the neighborhood of
their initial positions, even in the solid phase. In other words,
at variance with VEin, V1 is a translationally invariant poten-
tial, with the result that the integrand in Eq. �2.7� shows a
divergence, in the thermodynamic limit, at �=1. To over-
come this problem, Monte Carlo simulations of V� are usu-
ally performed under the constraint of a fixed center of mass.
We do not repeat here the entire analysis showing how to
deal with such a constraint in the equilibrium sampling, but
simply quote the final result �see Ref. 26 for details�:

fex � 
F − Fid

N
= − ln�	�c�−3/2� −

3

2
ln�2�� + 1 −

2 ln N

N

+
ln�2��

N
+

ln�	�c�−3/2�
N

+


N
�

0

1

d���V��
c.m.,

�2.10�

where the superscript c.m. denotes a constrained average and
�V=V1−V0. Polson et al. have conjectured that, on fairly
general grounds, fex�N�+ln N /N=fex���+O�N−1�.26 We
shall see later whether this is found in our case. Given the
value of fex, the excess chemical potential of the solid still
follows from the first of Eqs. �2.6�.

A few considerations on the numerical implementation of
the FL method are now in order. While in principle the value
of c can be chosen arbitrarily, just for numerical purposes it
is convenient to take it such that �R2 of the target solid is
close to 3/ �c�: in this case, the variations of the integrand
in Eq. �2.7� with � are likely to be small as well as the error
in performing the numerical quadrature.

A further caveat must be added for hard-core potentials
�as is the one we are interested in here�. If we write the
potential as the sum of a hard-sphere part plus a remainder,
V1=VHS+Vr, then it is mandatory to include a VHS term also
in V0, since otherwise there is no way to transform continu-
ously from V1 to V0. As a result,

V� = VHS + VEin + ��Vr − VEin� , �2.11�

implying �V=Vr−VEin in Eq. �2.10�. However, the free en-
ergy of a system of hard-core �that is, mutually interacting�
Einstein particles is not known; what we can say is only that
this interaction cannot have any consequence on the thermo-
dynamic quantities of an Einstein crystal in so far as c takes
sufficiently large values, since in this case particles are blind
to each other. Then, unless c is given a huge value, the FL
calculation is only viable for a very cold solid.

Whether a value of c is huge or not can be decided from
the comparison between �3/ �c� and �a−�� /2. Should the
former be much smaller than the latter, the error committed
in assuming the form �2.9� for the free energy of the inter-
acting Einstein crystal is presumably negligible. Frenkel and
Ladd have indicated a more rigorous method to ascertain the
importance of hard-core interactions for the free energy of an
Einstein solid, based on the estimate of the leading �virial�
correction to the free energy of the noninteracting Einstein
particles.16

III. RESULTS

A. Test calculations

We first checked our FL simulation code against the hard-
sphere calculation given in Ref. 26. We take a system of N
=256 hard spheres of diameter � at 	�3=1.0409 �this is
about the melting density of the fcc solid�, with c
=6000kBT /�2. We estimate numerically the average of �V
=−VEin over the canonical distribution relative to V� for a
number of � values in the range from 0 to 1. Precisely, we
take � to increase in steps of 0.05 from 0 to 0.9, with a
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smaller step of 0.01 in the range from 0.9 to 1. For each
value of �, as many as 2
104 MC sweeps are produced at
equilibrium. The MC moves are such that the position of the
system center of mass is fixed; for the same purpose, if a
particle happens to move �slightly� out of the simulation box,
no attempt is made to put it back into the box.27 In addition
to the value of ��V��, we also estimate the statistical error
affecting this quantity by partitioning the MC trajectory into
large blocks. Finally, the integral over � in Eq. �2.10� is
calculated using the Simpson rule. For the chosen c value,
the virial correction to the free energy of the Einstein crystal
due to hard-core interaction between particles is negligible
��fex�10−8�. We thus find fex+ ln N /N=5.891�5� for the
fcc solid, which is fully consistent with the result obtained by
Polson et al. �see Fig. 2 of Ref. 26�.

As a further check of our numerical code, we have con-
sidered a model system of soft spheres interacting through
the repulsive potential v�r�=��� /r�12. We take a system of
N=256 particles with kBT /�=1, 	�3=1.1964, and c
=500 � /�2. We estimate numerically the average of �V
=V1− �V1

�0�+VEin� over the canonical distribution relative to
V� for a number of � values in the range from 0 to 1 �V1

�0� is
the total potential energy as calculated for particles located in
the respective perfect-lattice positions�. For such �V, the
quantity V1

�0� /N must be added to the right-hand side of Eq.
�2.10� to obtain fex. For each value of �, as many as 5

104 MC sweeps are produced at equilibrium. In the end,
we find fex+ ln N /N=9.208�2� for the fcc solid, which
again perfectly agrees with Fig. 1 of Ref. 26.

B. The exp-6 simulation

Moving to the exp-6 model, we have calculated the excess
free energy of both the fcc and the bcc solids for a number of
�	* ,T*� pairs, using for the integral in Eq. �2.10� the same
specifications as given above for the test calculation on hard
spheres. Though one single free-energy calculation by the FL
method would be sufficient for estimating the free energy of
the solid in any other state, we have often found it more
practical to repeat the FL calculation rather than generating a
long thermodynamic path to a very distant point in the phase
diagram. In Table I, we collect the calculated values of the
excess free energy per particle in a few state points, for three
different solid phases of the exp-6 model �and for just the

largest sizes�. The numerical precision reported for each fex
is the Simpson integral of the errors that are associated with
the values of ��V��

c.m. /N, as calculated for the selected �

points.28 In the same table, we indicate the value of c*

=crm
2 /� that is considered for each single state. In every case,

this c is such that 3 / �c���R2 of the exp-6 solid. Since all
of the tabulated state points lie sufficiently far from the melt-
ing line, the average square excursion of an exp-6 particle
from its reference lattice site turns out to be quite small.
Hence, all of the c*’s are much larger than 1 and the virial
correction to the Einstein-crystal free energy is absolutely
negligible.

We get an indirect check of the free-energy values in
Table I by calculating, via ordinary thermodynamic integra-
tion based on Eqs. �2.3� and �2.4�, the difference in excess
free energy between various pairs of bcc and fcc states in the
table. We have always found a perfect agreement with the
tabulated values, to within the reported numerical precision,
for both types of solids. For each �	* ,T*� pair in Table I, we
have finally verified that the linear scaling of fex�N�
+ln N /N as a function of N−1 holds well, as demonstrated in
Fig. 1 in one case only.

In order to see whether a stable bcc phase exists above
T*�11 �which is where the authors of Ref. 5 would locate
the fluid-bcc-fcc triple point�, we have carried out extensive
MC simulations of the exp-6 model for a number of T* val-
ues �4.25, 8.15, 12.77, 16, 20, and 25�. For all such values,
we construct the fluid path and two solid, fcc and bcc paths
�for T*=4.25, only the fcc equation of state is generated�. For
T*=16, 20, and 25, we have also constructed the equation of
state for N=1440 particles in a hcp arrangement. With the
only exception of T*=4.25, where N=864, the other iso-
therms are plotted for N=1372 �fluid and fcc� and N=1458
�bcc� particles. Once the free energy of the system is known
along an isothermal path, the chemical potential � along the
same path readily follows from the first of Eqs. �2.6� as a
function either of 	 or, equivalently, of P. For given T and P
values, the thermodynamically stable phase is the one with
lower �: hence, the phase transition from fluid to, e.g., fcc at
constant temperature is located at the pressure where the
chemical potential of the fluid takes over the � of the fcc
solid.

Surprisingly, we find that, at variance with the conclu-
sions of Ref. 5 and 10, the bcc phase of the exp-6 model is

TABLE I. Excess free energy per particle in units of kBT for a number of exp-6 solid states. For each state
and solid type, also shown within square brackets is the value of c*=crm

2 /� that is used in the Frenkel-Ladd
calculation: for the chosen c*, �REin

2 approximately matches the average square deviation of an exp-6 particle
from its position in the perfect crystal.

fex fcc �N=1372� hcp �N=1440� bcc �N=1458�

	*=4, T*=4.25 38.879�1� �8500� 39.446�2� �5100�
	*=3.5, T*=8.15 16.258�1� �5400� 16.408�2� �3000�
	*=4, T*=12.77 17.216�1� �7700� 17.316�2� �5300�

	*=5, T*=16 25.654�1� �15000� 25.659�1� �14500� 25.784�2� �9100�
	*=5.5, T*=20 27.289�1� �19600� 27.295�1� �19400� 27.397�2� �13600�
	*=5, T*=25 18.489�1� �13800� 18.494�1� �14300� 18.532�2� �10100�
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only stable at very high temperatures, i.e., above T*�20, and
in a narrow pressure interval. For all reduced temperatures
up to 16, the scenario is similar �see it represented in Figs. 2
and 3 for T*=16�: as pressure grows, the chemical potential
of the fluid eventually overcomes that of the fcc solid; at the
crossing point PFS, the latter is already lower than the bcc
chemical potential. The bcc solid would be more stable than
the fcc solid only for pressures lower than PSS��PFS�, that
is, in a region where the fluid is the stable phase �however, at
T*=4.25, a pressure PSS simply does not exist, i.e., the bcc
solid is never preferred to the fcc solid�. Values of PSS, PFS,
and of ����FCC−�BCC �as calculated at the fluid-solid
transition pressure PFS� are reported in Table II for the vari-
ous temperatures. In the same table, the values of the freez-
ing and the melting densities are also indicated. All the tabu-
lated quantities are reported with three decimal digits, with
no indication of the estimated statistical errors. The general
question of the numerical reliability of our results is post-
poned to the next section, but we can anticipate that the
results are fully trustworthy.

Figure 2 shows the chemical potential excess ���P� of
the fcc phase relatively to bcc, for T*=16. This quantity is
larger than zero �i.e., the stable solid is of bcc structure� only
inside the fluid region of the phase diagram. Hence, the fluid
directly transforms into the fcc solid, while the bcc phase is
metastable. In the same picture, we also plot the difference in
chemical potential between fcc and hcp phases, a quantity
that is nearly constant and close to −0.004 at all pressures.

This means that the hcp solid is never stable, albeit it is about
to be so at all pressures.

Considering the small � gaps between the various solids,
one may wonder whether the above conclusions are influ-

FIG. 1. Frenkel-Ladd calculation of solid free energies: fcc solid
at 	*=3.5 and T*=8.15. Top: the integrand of Eq. �2.10� is plotted
in the panel above for N=1372 �the continuous line is a spline
interpolant of the data points and the error bars, which are also
shown, are much smaller than the symbol size�. In the panel below,
the finite-size effect is demonstrated for ��V�� /N through the dif-
ference between N=500 and 1372 ��� and between N=864 and
1372 ���. Bottom: the values of fex�N�+ln N /N �for N
=500,864, and 1372� scale linearly with N−1 for large N, as con-
jectured in Ref. 26. We have verified that the same type of scaling
holds for all of the solid-state points in Table I.

FIG. 2. Reduced chemical potential of the fcc solid relative to
bcc and to hcp for T*=16. Upon plotting the difference in �
between fcc and bcc phases �N=1372 vs 1458, continuous line; N
=864 vs 1024, dashed line�, we find that, as pressure grows, the bcc
phase loses stability to the advantage of fcc. All the plotted lines are
linear-spline interpolants of the data points. The dotted line is the
quantity ��fcc−�hcp� �N=1372 for the fcc solid; N=1440 for the
hcp solid�. The two couples of vertical lines mark, from left to right,
the position of the “virtual” transition between bcc and fcc and the
fluid-fcc phase transition.

FIG. 3. Mechanical equation of state for T*=16. The fluid
branch �� and continuous line� and the fcc branch �� and dotted
line� are plotted for N=1372 particles, while the bcc branch �� and
dashed line� is for a system of 1458 particles. In the inset, we zoom
into the transition region: the freezing and melting densities �sig-
naled by vertical lines� are located where the horizontal line at PFS

crosses the fluid and fcc equations of state.
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enced by the finite size of the simulated samples. To this
purpose, we have taken T*=16 and plotted in Fig. 2 the same
quantity ���P� as before, but now calculated for a smaller
fcc solid of 864 particles and for a bcc solid of 1024 par-
ticles. The new curve differs from the old one just for a small
rigid shift toward low pressures, and crosses zero at PSS
=67.686rm

−3 �to be contrasted with the previous value of
69.130rm

−3�. A bit smaller is the variation of PFS as N
changes from 1372 to 864 �it moves from 71.877rm

−3 to
71.051rm

−3�. We expect that similar results would be obtained
at the other temperatures. Considering the large N values
involved, it is very unlikely that our conclusions for the larg-
est sizes can be reversed in the thermodynamic limit.

In Fig. 3, the various branches of the equation of state
P vs 	 are plotted for T*=16. This curve shows a straight-
line cut at P= PFS, which allows one to identify the values of
	f and 	m for the given T. Correspondingly, the Helmholtz
free energy shows, as a function of the specific volume v
=1/	, a straight-line behavior in the interval between 	m

−1 and
	f

−1. This line is the common tangent of the fluid and the fcc
free-energy curves �its equation is f =�FS−PFSv�. Fi-
nally, a look at the RDFs in the coexistence region indicates
that the typical values of the nearest-neighbor distance in all
phases fall well within the repulsive shoulder of the pair
potential, as expected for any highly compressed system.

An inspection of Table II shows that, as temperature
grows, the difference PFS− PSS gradually reduces until it
would cross zero at T*�19, as suggested by a power-law
extrapolation beyond T*=16 of PSS�T� and PFS�T�. Origi-
nally, it was just this evidence that led us to include in our
calculations two other isotherms at T*=20 and 25, in order to
see whether a bcc-fcc phase transition eventually shows up at

very high temperatures. Indeed, when T* is as high as 20, we
find that, on increasing pressure, the sequence of stable
phases of the exp-6 model is fluid-bcc-fcc, with transitions at
PFS=83.517rm

−3 �fluid-to-bcc transition� and at PSS
=83.575rm

−3 �bcc-to-fcc transition�. Actually, at this tempera-
ture the bcc window is so narrow that the fluid-bcc-fcc triple
temperature should be very close to T*=20. At T*=25, the
interval of stability of the bcc phase is much wider
��6 GPa�. Table III reports thermodynamic data for T*=20
and 25, whereas the difference in chemical potential between
the various phases is shown in Fig. 4 for T*=25 as a function
of pressure. Hence, the bcc phase becomes eventually stable,
but at much higher temperatures than estimated in Ref. 5.

In the end, the P-T phase diagram of the exp-6 model
would appear as in Fig. 5, where temperature and pressure
are reported in Xe units. In this picture, our fluid-solid coex-
istence data are contrasted with the coexistence loci of Be-
lonoshko et al. and with the Simon-Glatzel equation of state
for Xe, as deduced from that of Ne by the simple rescaling of
pressure and temperature values proposed by Vos et al.29

Compared to the findings of Ref. 5, freezing of the exp-6
system occurs for slightly lower pressures in our simulation;
more important, our fluid-fcc-bcc triple point lies very far
from the location indicated by Belonoshko et al.

To better understand the nature of the differences between
our results and those of Belonoshko et al., we have plotted in
Fig. 6 the exp-6 phase diagram on the T-V plane. It can be
appreciated from this picture that small differences in the
volumes of the coexisting fluid and fcc solid are found at all
temperatures. On the contrary, isobaric paths are pretty much
the same �see Fig. 11 of Ref. 5 for a comparison�, indicating
that where we deviate from Belonoshko et al. is essentially

TABLE II. Phase-transition data for T*=4.25,8.15,12.77, and 16. With the exception of T*=4.25, simu-
lation data refer to N=1372 �fluid and fcc� and N=1458 �bcc�. For T*=4.25, N=864 for fluid and fcc; no bcc
phase was considered. From left to right, values of PSS �bcc-to-fcc “virtual” transition, falling inside the
fluid region of the phase diagram�, PFS �fluid-to-fcc transition�, �FS �common value of � for the coex-
isting fluid and fcc solid�, ��FS �reduced chemical potential of fcc relative to bcc at P= PFS�, 	f �freezing
density�, and 	m �fcc melting density� are shown. These quantities were arbitrarily rounded off at the third
decimal digit �the fourth digit only for ��FS�. However, the error accompanying them would usually be
larger, originating from the limited precision of both the Monte Carlo data and the free-energy values in Table
I.

T* PSS�rm
−3� PFS�rm

−3� �FS ��FS 	f�rm
−3� 	m�rm

−3�

4.25 28.897 18.774 1.980 2.055

8.15 40.979 46.883 25.565 −0.0124 2.496 2.571

12.77 57.445 62.238 29.519 −0.0060 2.946 3.022

16 69.130 71.877 31.552 −0.0029 3.219 3.295

TABLE III. Phase-transition data for T*=20 and 25. From left to right, values of PFS �fluid-to-bcc
transition�, PSS �bcc-to-fcc transition�, 	f �freezing density�, 	m �bcc melting density�, 	bcc �bcc density at
the bcc-fcc transition�, and 	fcc �fcc density at the bcc-fcc transition� are shown.

T* PFS�rm
−3� PSS�rm

−3� 	f�rm
−3� 	m�rm

−3� 	bcc�rm
−3� 	fcc�rm

−3�

20 83.517 83.575 3.533 3.601 3.602 3.611

25 96.901 103.84 3.888 3.958 4.039 4.048
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in the definition of the phase-coexistence condition, not in
the calculation of basic statistical averages.

Where we radically contrast with Belonoshko et al. is
really in the position of the bcc-fcc transition line, with ours
running much higher in temperature and pressure. To assess
how distant is our prediction from these authors, we note
that, for, e.g., T*=16, they report a reduced pressure of about
70 GPa �P* /T*�120� at the bcc-fcc transition while, at the
same pressure, our �� is about −0.040 �see Fig. 2�, i.e.,

appreciably larger, in absolute terms, than the size of statis-
tical errors.

IV. DISCUSSION

Having devoted the last section to a plain presentation of
our results, we now reconsider more critically their implica-
tions, especially in relation to the numerical precision of the
simulation data.

The crucial quantity to look at is, obviously, the chemical
potential. One source of error in its calculation follows from
the finite size of the simulated system, a problem further
complicated by the impossibility of comparing fcc and bcc
solids with equal numbers of particles. In point of principle,
this would force us to some sort of extrapolation to N=�
which, however, is computationally demanding. Instead, we
have decided to simulate fluid, fcc, bcc, and hcp samples of
similar size, which are also sufficiently large that no signifi-
cant finite-size error would be made in tracing the coexist-
ence lines. Indeed, we have already demonstrated in the pre-
vious section—see the comment on Fig. 2—that this kind of
error is not very important.

Further errors in estimating the relative stability of two
distinct solid phases are imputable to the limited precision
with which we compute the excess free energy of the refer-
ence solid states in Table I as well as the pressure values
along an isothermal path. Looking at Table I, the overall
error on the free-energy difference between bcc and fcc
phases in units of kBT is about three units on the third deci-
mal place, and comparable is the statistical error accompa-
nying the values of P /	 for each phase. The error associ-

FIG. 4. Reduced chemical potential of the fcc �N=1372� phase
relative to bcc �N=1458, continuous line� and hcp �N=1440, dotted
line�, and of the fluid phase �N=1372� relative to bcc �N=1458,
dashed line�, for T*=25. Upon increasing pressure, we observe a
fluid-bcc-fcc sequence of phases.

FIG. 5. HT-HP phase diagram of the exp-6 model �temperature
and pressure are rescaled using Ross parameters for Xe�. Besides
our data �full and open dots�, we plot the coexistence loci for the
exp-6 model as calculated by Belonoshko et al. �dotted lines�, and
the Xe freezing line as derived—after suitable rescaling of tempera-
ture and pressure values—from the Simon-Glatzel fit of Ne data by
Vos et al. �dashed line�.

FIG. 6. Volume-temperature phase diagram of Xe as drawn from
our numerical simulation of the exp-6 model. Present data for the
melting and the freezing volumes �� and continuous lines� and for
the bcc-fcc coexistence volumes �� and straight lines� are com-
pared with the estimates by Belonoshko et al. �
 and dotted lines,
as obtained from Fig. 11 of Ref. 5�. Following Fig. 11 of the cited
reference, we have also plotted as circles some isobars �open
circles, fluid; full dots, fcc solid�.
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ated with the � gap between the fluid and a solid phase is
again about �4–5�
10−3, but the rate at which this quantity
varies as a function of pressure is much larger �this implies
that the location of the fluid-solid transition is much better
defined numerically than is the solid-solid transition point�.
Summing up, we expect that the typical statistical error af-
fecting the bcc-fcc �� is about 10−2. If this is true, it is
evident from the tabulated values of �� that we cannot
definitely rule out the possibility that the bcc solid becomes
stable at temperatures lower than T*=20, and even as small
as 11. Only if we turn to much longer Monte Carlo runs than
hereby considered can we hope to reduce drastically the
width of the error bars. Anyway, even in the worst case, we
can safely infer from our data that the bcc phase may only be
stable in a narrow slice of a few gigapascals adjacent to the
fluid-bcc coexistence locus, a pressure interval much nar-
rower than predicted by Belonoshko et al.

The caution expressed above is probably overstated: it is a
fact that all the curves plotted in Figs. 2 and 4 are very
smooth, which suggests that the statistical noise underlying
the profile of �� is considerably smaller than the maximum
estimated above. In this case, the conclusions drawn in the
previous section just on the basis of the average behavior of
�� are substantially correct, and the bcc phase will really be
metastable below T*�20. If we believe this, a stable bcc
phase would first appear in Xe at so high a temperature
��4500 K� that one can even wonder whether the bcc-fcc
transition in Xe is preempted by quantum effects.

As a matter of fact, our simulation results do not match
the experimental data of Boehler et al. at the highest tem-
peratures. Even assuming that the exp-6 system is a very
good representation of Xe in the HT-HP regime, the problem
could be in fact with the experiment, which might be far
from realizing hydrostatic conditions. In fact, it is generally
believed that, in a laser-heated DAC experiment, the stress
state within the diamond cell may not be hydrostatic; more-
over, the sample can even exhibit considerable shear
stresses.30 In consideration of the small difference in chemi-
cal potential between bcc, fcc, and hcp phases, it could then
be that what is experimentally recognized as solid is in fact a
mixture of bcc and fcc-hcp crystallites.

V. CONCLUSIONS

In this paper, we have reported on the results of an exten-
sive NVT Monte Carlo simulation of the exp-6 model, an
effective-interaction model that is thought to provide a real-

istic description of the thermal properties of rare gases under
extreme, high-temperature–high-pressure conditions. We
have plotted the “exact” phase diagram of this system upon
combining the method of thermodynamic integration with
fully fledged free-energy calculations both in the fluid �by
the Widom method� and in the solid phase �by the Frenkel-
Ladd method�.

The aim of this effort was to point out some aspects con-
cerning the uncertain status of the solid phase of xenon at
high densities. In a previous molecular-dynamics study of
the exp-6 system, with parameters being appropriate to Xe,
the two-phase method was employed for simulating the ther-
modynamic coexistence between fluid and solid.5,10 This
study gave evidence of a stable bcc phase in a narrow range
of pressures above 25 GPa, when temperature exceeds 2700
K, i.e., near to where a laser-heated, diamond-anvil-cell ex-
periment finds a cusp on the freezing line of Xe. In fact, our
free-energy calculations partially contradict such findings,
showing that Xe freezes directly into a fcc solid, the bcc
phase becoming stable only at much higher temperatures
�above 4500 K�, provided that the exp-6 modelization is still
valid for Xe in these extreme conditions; moreover, the hcp
solid is practically as stable as the fcc one.

A clue to understanding this disagreement is the very
small difference in Gibbs free energy, for T�2500 K, be-
tween the bcc and fcc solids of equal pressure and similar
size. The little advantage of fcc over bcc at freezing could be
the reason for the apparent stability of the bcc phase in the
former numerical study of the exp-6 model. In our simula-
tion study, we find that, at sufficiently high temperature,
there is a narrow range of pressures where the bcc solid is
more stable than the fcc, but less stable than the fluid. Only
beginning from T*=20, the bcc phase gains true thermody-
namic stability in an interval of pressures. Obviously, this
careful monitoring of the relative stability of the various
phases as a function of both temperature and pressure would
simply be impossible without the knowledge of their respec-
tive chemical potentials, and this is the ultimate reason for
preferring exact free-energy calculations to other methods.

As far as the experiment is concerned, it is likely that the
cusplike feature on the Xe freezing line is just an experimen-
tal artifact, which could be due to the increasing difficulty, as
the freezing density progressively grows, in establishing hy-
drostatic conditions, a problem also worsened by the exis-
tence of two different solid phases that so closely compete
with each other for stability.
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