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We present simulations of the intermediate state of type-I superconducting films solving the time-dependent
Ginzburg-Landau equations, which include the demagnetizing fields via the Biot-Savart law. For small square
samples we find that, when slowly increasing the applied magnetic field Ha, there is a sawtooth behavior of the
magnetization and very geometric patterns, due to the influence of surface barriers; while when slowly de-
creasing Ha, there is a positive magnetization and symmetry-breaking structures. When random initial condi-
tions are considered, we obtain droplet and laberynthine striped patterns, depending on Ha.
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In 1937, Landau modeled the intermediate state �IS� in
thin slabs of type-I superconductors, assuming a periodic
structure of alternating stripes of normal and superconduct-
ing phases.1 Direct experimental observation of the IS re-
vealed that, while in some cases its structure resembled the
Landau picture, very complex patterns and history depen-
dence were usually seen.2–5 Similar types of complex struc-
tures were later observed in two-dimensional �2D� systems
where there is a competition among interfacial tension and
long-range interactions6 like thin magnetic films, ferromag-
netic fluids, Langmuir and lipid monoloyers, and self-
assembled atoms on solid surfaces.6 Labyrinthine patterns
and a transition from structures of droplets to stripes are
typically observed.6 The rich physics found in these 2D sys-
tems has motivated a renewed interest in the study of the IS
in type-I superconductors in several recent experiments.7–11

Most of the theoretical progress12–20 has been made by
modeling the IS with periodic arrays of normal and super-
conducting phases. Recently, a current-loop model18 which
allows to describe simple nonperiodic patterns has been in-
troduced, but a fully consistent theoretical description19 of
the experimental patterns is still needed. Another important
problem not addressed neither experimentally nor theoreti-
cally in type-I superconductors is the study of the IS in
samples of sizes comparable with the expected periodicity of
the patterns, while interesting “mesoscopic” behaviors have
been found in type-II superconductors with sizes of the order
of few times the magnetic size ��� of vortices.21

In this paper we report detailed simulations of
small square type-I superconductors by solving the time-
dependent Ginzburg-Landau �TDGL� equations for slabs of
thickness d. We consider the “nonbranching case,” where
d�ds�800��−�� �Ref. 13�, which can be well approxi-
mated by reducing the equations to a 2D problem, as done,
for example, in Refs. 12 and 18. We therefore assume that
the current density J and the order parameter � can be re-
placed by their average over z for −d /2�z�d /2, i.e.,
J�R ,z�→J�R� and ��R ,z�→��R�, with R= �x ,y� the in-
plane coordinate. The TDGL equations,17,18 in the gauge
where the electrostatic potential is zero, are
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Here �, A, J are 2D in-plane vectors, �G=�2 /D, D is
the diffusion constant, 
n the normal-state conductivity, ��T�
the penetration depth, and ��T� the coherence length. These
2D approximated TDGL equations couple with the
perpendicular component of B. Following Ref. 22 we ex-
press the z-averaged sheet current J by a scalar function g:
J�R�= � � ẑg�R�. This guarantees that � ·J=0, the physical
meaning of g�R� being the local magnetization or density
of tiny current loops. Next, one relates g�R� with
Bz�r�= �� �A�z at z=0 and the applied field Ha by means of
the Biot-Savart law,22

Bz�R,z = 0� = Ha +
1

c
	 Q�R,R��g�R��d2R�. �3�

The kernel Q satisfies Q�R1 ,R2�
Q�R2−R1�, Q�R�d�
=−d /R3, and �d2RQ�R�=0 �due to flux conservation�. To a
good approximation the kernel can be given by �see Maki in
Ref. 12�: Q�R�=4	�R�−d / ��R�2+d2 /43/2. The boundary
conditions are ���−i�2e /�c�A���=0 and �g�b=0.
We solve the equations with a finite difference scheme with
discretization �x=�y=0.5��0�, using link variables to
maintain the gauge invariance.17 We normalize time by
t0=4	
n�2 /c2, A by Hc2�0���0�, T �temperature� by Tc, and
take �G / t0=12. To obtain g�R� we invert �3� using the con-
jugate gradient method as done in Ref. 23.

We show results for square samples of size L�L with
L=256��0�, thickness d=40��0�, �=� /�=0.6, T=0.8Tc, and
time step �t=0.25 �we also obtained similar results for
L=120��0�−256��0�, d=10��0�−40��0�, and �=0.4−0.6.

We performed simulations of the intermediate state fol-
lowing three different procedures: �i� slowly increasing the
magnetic field from Ha=0, �ii� slowly decreasing the mag-
netic field from the normal state �Ha�Hc�, and �iii� starting
from random initial conditions for each value of Ha. The
global results for the three cases are summarized in Fig. 1.
We show the apparent magnetization, 4	Ma= �Bz�−Ha �real
magnetization is 4	M =B−H, but Ma is what can be deter-
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mined experimentally�, in Fig. 1�a�, and the number of flux
quanta inside the sample, N�o= ��A+Js / ���2�dl, in Fig.
1�b�, as a function of h=Ha /Hc�T�.

(i) Slowly increasing the magnetic field. We start from
Ha=0 with a state with ���R��2=1 and B�R�=0 and increase
Ha in small steps, after reaching a stationary state for each
field �when ��E /E��10−6, where �E is the change in energy
between consecutive time steps�. We observe a Meissner
state for Ha�Hp=0.56Hc. Surface barriers preclude the pen-
etration of flux below Hp. The surface barrier in macroscopic
type-I superconductors can lead to relatively large first pen-
etration fields Hp, which depend on the sample shape and
dimensions.7,15 Here the smallness of our system strongly
enhances this effect. We observe that at H�Hp four long
chunks of the normal phase, carrying hundreds of flux
quanta, enter from each side of the square and equilibrate in
the pattern shown in Fig. 2�a�. At a higher field Hp,2, some
other four chunks of flux enter and form the pattern seen in
Fig. 2�b�. Further increasing the field, more complex struc-
tures form, as shown in Figs. 2�c� and 2�d�. The normal
domains tend to stay in the center of the sample, leaving a
flux-free zone near the edge. Above Hc, flux has fully entered
inside the system and there is only surface superconductivity
until Hc3�Hc. The internal structure of the domains is de-
tailed in Figs. 2�e� and 2�f�, which show transversal cuts of
���R��2 and Bz�R� taken at the center of one of the faces for
h=0.58. In Fig. 2�e� we see that in the normal regions there
is a sharp drop to zero of ���2 and that Bz�Hc�T� �see Fig.
2�f�. The global structure of the patterns of the IS observed
in Figs. 2�a�–2�d� follow the geometry of the sample
and have the symmetry of the square. In general, we find
that the entrance of the normal phase occurs only for discrete
values of penetration fields Hp,i where several flux quanta
are nucleated at the four sides of the square, while for
Hp,i�Ha�Hp,i+1, there is no flux entrance. This shows up as
a sawtooth behavior in the magnetization in Fig. 1�a� and as
a series of plateaus and jumps in the number of flux quanta
versus Ha in Fig. 1�b�. This type of behavior is similar to the

results observed in mesoscopic type-II systems,21 which also
show a sawtooth behavior of the magnetization. However,
while in Ref. 21 each jump in Ma corresponds to the entrance
of one quantum of flux �one vortex�, here at each jump in Ma
several hundreds of flux quanta have entered. Our results
suggest the existence of a “mesoscopiclike” behavior in
small type-I samples. This behavior appears when the linear
size L of the sample only allows for a small number of nor-
mal domains inside the system. This means that L is not
more than one order of magnitude larger than the periodicity
of the patterns at intermediate fields. Indeed, we have found
similar “mesoscopiclike” behavior for sizes in the range
L�256��0�.

(ii) Slowly decreasing the magnetic field. We start from
Ha�Hc with a state with �=0 and B=Ha and decrease Ha
in small steps, after reaching a stationary state for each field.
The resulting intermediate state patterns are shown in Fig. 3.
When Ha�Hc the superconducting phase enters into the
sample and the total number of flux quanta is reduced. At
first, the superconducting phase forms four chunks embed-
ded within the normal phase, which nearly follow the square
symmetry of the system, as shown in Fig. 3�a�. However, we
observe that when decreasing the field the square symmetry
is always broken in the patterns. The breaking of symmetry
is stronger the further we decrease the field. In this way,
labyrinthine patterns are formed at midrange fields, as can be
seen in Figs. 3�b� and 3�c�. In general, the expulsion of flux

FIG. 1. �a� −�B−Ha� /Hc�T� and �b� the number of flux quanta
obtained increasing �closed circles�, decreasing �open circles� the
external magnetic field h=Ha /Hc�T�, and with random initial con-
ditions �crosses�.

FIG. 2. �a�–�d� Spatial patterns of ���r��2 obtained continuously
increasing h=Ha /Hc from h=0. �a� h=0.58, �b� h=0.65, �c�
h=0.72, and �d� h=0.78. Gray scale ranging from black for
���r��2=0 to white for ���r��2=1. �e� and �f� show transversal cuts
of ���r��2 and �Bz� taken at the center of one of the faces for
h=0.58 �see �a�. Parameters: �=0.6, d=40��0�, and sample size
256��0��256��0�.
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occurs gradually when decreasing Ha as shown in Fig. 1�b�.
For low fields we see that thin stripes of normal phase are
trapped within the sample, as shown in Fig. 3�d�. The diffi-
culty for expelling flux is due to the surface barrier and re-
sults in a positive magnetization as a function of h as shown
in Fig. 1�a�. Even at h=0, a small amount of flux remains
trapped in the sample, as evidenced in Fig. 1�b�, where the
number of flux quanta is finite at h=0, and in Fig. 1�a�,
where Ma�0 at h=0. In experiments in macroscopic
samples it has been observed that some trapped flux remains
in the system at h=0 when decreasing the field3 and in some
Sn films a positive magnetization has been obtained when
decreasing Ha �Ref. 5�. It is interesting to mention that a
similar positive magnetization was observed in mesoscopic
type-II superconductors21 when decreasing Ha, and attributed
to the importance of surface barriers.

(iii) Random initial conditions. The structures of the IS
discussed above, obtained either by increasing or decreasing
the magnetic field, are strongly influenced by the surface
barriers and/or the geometry of the small sample simulated.
In a film of large linear size L the demagnetization factor N
is such that 1−N�d /L�0, and therefore we expect that
B�Ha. To obtain stationary states more typical of the bulk
behavior of large samples, we start with an initial condition
with random values of A and �, such that we satisfy
�B�=Ha from the start, and that the initial state is supercon-
ducting in average, ����2��0. We performed simulations
with this initial condition for different values of h, and let the
system evolve for each case, using a stronger criterion for
assuming stationarity: ��E /E��10−9. We obtain that in the
stationary state most of the flux remains inside the sample
and �Bz�−Ha�0 as can be seen in Fig. 1�a�. The structures
obtained are shown in Fig. 4. For low fields, we observe in
Fig. 4�a� that the intermediate state consists of almost circu-
lar droplets of the normal phase. For higher fields, the drop-
lets start to coalesce into long lamellarlike domains, as seen
in Fig. 4�b�. At intermediate fields, as shown in Fig. 4�c�,

labyrinthine patterns of stripes of the normal phase are
formed. For high fields close to Hc we observe almost circu-
lar droplets of the superconducting phase embedded within
the mostly normal phase, �see Fig. 4�d�. Similar types of
structures, with droplets of one or the other phase at low and
high fields, and with labyrinthine patterns of stripes at
midrange fields, have been observed experimentally, for ex-

FIG. 5. �a� Spectral intensities obtained from ���r��2 at different
magnetic fields, a maximum at k0 is observed. The inset shows the
Fourier transform of Fig. 4�a�. �b� Periodicity a=2	 /k0 of each
structure as a function of h. The lines correspond to the Landau and
the Goren-Tinkham models.

FIG. 3. Spatial patterns of ���r��2 obtained decreasing h from
the normal state at h�1. Same parameters as in Fig. 2.

FIG. 4. ���r��2 patterns obtained using random initial condi-
tions. Same parameters as in Fig. 2.
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ample, in Figs. 2.8�a�-2.8�f� of Ref. 2 for a lead thin film. An
important feature we find in our small system is that there is
a thin layer of superconducting phase at the surface �see Fig.
4�, which allows for the flow of Meissner currents.

We analyze the structures obtained in Fig. 4, by calculat-
ing the spectral transform of the superconducting order pa-
rameter, I�k�= ��dr���r��2 exp�ik ·r��2, which is shown in
Fig. 5�a�. The nonperiodicity and complex structure of the
patterns result in very broad maxima in I�k� at finite wave
vectors k0=2	 /a which define a typical length scale a. In the
case of low and large fields, a would correspond to the typi-
cal distance between droplets, while for midrange fields, a
would correspond to the average widths of the stripes in the
labyrinthine patterns. We plot a in Fig. 5�b� and compare it
with the Landau model of stripes1 and with a model of Goren
and Tinkham for a periodic array of droplets or “flux
spots.”14 We see that the Landau model agrees qualitatively
with the results obtained at midrange h �for these fields the
patterns of Fig. 4 can have a mixture of “stripes” with a few
droplets, which make a smaller than the Landau value�. On

the other hand, at low h the Goren-Tinkham model does not
agree well with the size of the droplets obtained. Also in
some experiments4,10 it has been found a departure from the
Goren-Tinkham model at low fields.

In conclusion, our simulations predict that the strong in-
fluence of the surface barriers in small type-I samples will
lead to a sawtooth behavior of the magnetization and very
geometric patterns when slowly increasing Ha, and to a posi-
tive magnetization and symmetry-breaking structures when
slowly decreasing Ha. These results suggest the existence of
a “mesoscopiclike” behavior in the IS when the sample lin-
ear size is of the order of a few times the periodicity of the
patterns. It will be interesting if experiments on small
samples of type-I superconductors could be performed.
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