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Quantitative measurements of the thermal resistance of Andreev interferometers
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Using a local thermometry technique, we have been able to quantitatively measure the thermal resistance R’
of diffusive Andreev interferometers. We find that R” is strongly enhanced from its normal-state value at low
temperatures, and behaves nonlinearly as a function of the thermal current through the sample. We also find
that R oscillates as a function of magnetic flux with a fundamental period corresponding to one flux quantum
®=h/2e, demonstrating the phase-coherent nature of thermal transport in these devices. The magnitude of R”

is larger than predicted by recent numerical simulations.
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A diffusive normal metal (N) in proximity to a supercon-
ductor (S) in a mesoscopic hybrid device also acquires su-
perconducting properties by the process of Andreev
reflection:! at temperatures well below the gap of the super-
conductor, kzT<<A, an electron in the normal metal cannot
be transmitted through the NS interface, but is reflected as a
coherent hole with the simultaneous generation of a Cooper
pair in the superconductor. The electrical transport properties
of such proximity coupled systems have been extensively
investigated both experimentally and theoretically in the last
decade.”® More recently, the thermal transport properties
have attracted much theoretical interest’~'? following mea-
surements of the phase-dependent thermopower of Andreev
interferometers.!'~!3 In elastic-scattering-dominated normal-
metal systems, the ratio of the electrical to the thermal resis-
tance is proportional to the temperature, the so-called
Wiedemann-Franz (WF) law.!* However, theoretical studies
indicate that the thermal resistance of a normal metal in
the proximity regime is strongly enhanced.”%!® The WF
law, which is widely valid in a disordered metal system, is
no longer correct for proximity coupled systems. This
topic was explored experimentally by Dikin et al.'"> How-
ever, the sample in that experiment had two superconducting
elements directly in the path of the thermal current, so that
the reduced thermal conductance may have been due to the
well-known suppression of thermal conductance in a
conventional superconductor’-!> rather than a proximity-
effect phenomenon.

In this Communication, we report measurements of the
temperature and magnetic-field dependence of the thermal
resistance R? of Andreev interferometers (consisting of a hy-
brid loop with one superconducting arm and one normal-
metal arm) without superconductors in the thermal current
path, and therefore in the true proximity regime. As predicted
by theory,”%1% we find that R” of a proximity coupled normal
metal is enhanced by as much as one order of magnitude
from its normal-state value at low temperatures. R also os-
cillates as a function of the external magnetic flux, with a
fundamental period of one superconducting flux quantum
®y=h/2e. These oscillations demonstrate the phase-coherent
nature of the thermal current in this system. Furthermore, RT
is a strongly nonlinear function of the thermal current I” even
at thermal currents as small as a few femtowatts.

Experimentally, the thermal resistance is defined as the
ratio of the temperature differential AT across the sample to
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the thermal current I” through the sample, i.e., RT=AT/I",
under the condition that no electrical current flows through
the sample (/=0). Hence, in order to obtain RT, our devices
should be designed so that I” and AT can be measured di-
rectly. Figure 1(a) shows a scanning electron microscopy
(SEM) image of one of the devices we measured. There are
two layers of metal on this device. The first layer is a 50-nm-
thick Au film, followed by a 100-nm-thick Al film deposited
on top of the Au in a second level of lithography, after an in
situ oxygen plasma etch was used to clean the Au surfaces in
order to obtain good NS interfaces. The device consists of
three parts: (1) In the center is the sample itself, which in this
case is an Andreev interferometer in the “house” configura-
tion (in the terminology introduced in Ref. 11). The Andreev
interferometer includes a one-dimensional normal-metal
(Au) wire and a superconducting (Al) loop. (2) On the left is
a heater, which is essentially a 0.68-um-wide Au line con-
nected electrically to the sample. By passing a direct current
(dc) through this heater, one can raise the electron tempera-
ture at one end of the sample. (3) On the right is a large,
normal-metal pad that serves as the cold end of the sample.
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FIG. 1. (a) Scanning electron microscope (SEM) image of one
of the devices. The device consists of three parts: (1) On the left, a
metallic heater line with a thermometer. (2) On the right, a large
normal-metal pad with another thermometer. (3) In the middle, a
“house” Andreev interferometer. (b) Schematic of Andreev interfer-
ometers we measured with two different geometries: (left) “house”
and (right) “parallelogram.”
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Attached to both the heater and the cold normal-metal pad
are thermometers that measure the local electron tempera-
ture. The normal-metal heater is approximately 25 um long,
much longer than the inelastic electron-scattering length, so
that one can define an effective local electron temperature in
the middle of the heater that can be measured by the ther-
mometer on the left, which we denote the “hot” thermometer
(the thermometer attached to the other end of the sample is
the “cold” thermometer). The design and operation of these
thermometers have been described in detail elsewhere,'® and
will not be discussed here. Connections to both ends of the
heater are made through superconducting Al contacts to re-
duce the heat flow. Two additional probes at each end allow
us to measure the total four-terminal differential resistance of
the heater for any value of the dc current through it, thereby
determining the power generated in the heater. In total, five
devices were measured, in two different configurations: the
“house” and “parallelogram” geometries shown in Fig. 1(b).
Data for three of these devices are discussed in this paper.

To determine the thermal resistance, the electrical resis-
tances of both the hot and cold thermometers are measured
as a function of the temperature of the dilution refrigerator
mixing chamber, with no dc current through the heater. The
resistances of both thermometers are then measured as a
function of the dc current 7, through the heater, with the base
temperature of the dilution refrigerator fixed. The two mea-
surements are then cross correlated to obtain the effective
electron temperature as measured by the hot and cold ther-
mometers as a function of /,; a simultaneous measurement of
the differential resistance of the heater determines the
equivalent power P; generated in the heater. The difference
between the temperatures measured by the two thermometers
gives AT. Since all connections to the heater except the con-
nection to the Andreev interferometer are made via supercon-
ducting contacts whose thermal conductance is negligible at
temperatures far below the transition temperature, the power
generated in the heater can only flow out through the An-
dreev interferometer, or through the substrate. At tempera-
tures below about 200 mK, the electron-phonon coupling in
the normal metal is very weak, so that thermal leakage to the
substrate can be ignored.'6 In addition, while our earlier de-
vices (such as the parallelogram interferometer discussed in
this paper) were fabricated on oxidized Si substrates, more
recent devices [such as the house interferometer shown in
Fig. 1(a)] are fabricated on 50-nm-thick Si;N, substrates. In
these samples, the thermal leakage to the substrate is even
smaller, so that in principle, the valid range of measurement
can be extended to higher temperatures. In practice, the tem-
perature range is restricted by the sensitivity of the thermom-
eters. Since all the power generated in the heater flows
through the Andreev interferometer, the thermal current
through the sample I7 is simply given by the measured value
of P, and the thermal resistance R’ is given by AT/P,. This
measurement is repeated at different values of the base tem-
perature of the refrigerator to obtain RT as a function of
temperature.

Figures 2(a) and 2(b) show the thermal resistance R of a
house and a parallelogram interferometer at six different
temperatures as a function of the power of the heater P,. As
shown in Fig. 2, the qualitative behavior of R as a function
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FIG. 2. Thermal resistance R” as a function of the heater power
Pj, at six different base temperatures for (a) the house and (b) the
parallelogram interferometers. (c) R” vs P, at small values of P, for
the house geometry. The solid lines are fits to the functional form
R \1/P,. For the house interferometer, the distances from either
side of the sample and from the NS interfaces to the center node are
[referring to Fig. 1(b)] L=1.55 um and L'=0.29 um, respectively.
For the parallelogram, L=1.19 um, L’=0.24 um, and L"
=0.76 pum.

of P, is similar for the two geometries. In order to experi-
mentally define a thermal resistance in the linear-response
regime, R” should approach a limiting value as I7— 0. How-
ever, RT continues to change as a function of P, (or equiva-
lently, I") even at a heater power of a few femtowatts. At low
values of P;, RTe\1/P,, as shown in Fig. 2(c). This power-
law dependence of R” on P, is valid for all samples and at all
temperatures measured. Theoretically, of course, a linear re-
sponse RT can be defined; however, numerical simulations
for these devices based on the quasiclassical theory® also find
that RT o \[1/P), for intermediate values of P;,. These simula-
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FIG. 3. The solid symbols are the thermal resistance R of the
(a) house and (b) parallelogram interferometers as a function of the
mixing chamber temperature, determined from the data of Fig. 2 at
the lowest heater power applied in the experiments. The dotted lines
are guides to the eye. The solid lines represent the thermal resis-
tance of equivalent normal-metal wires, estimated using the
Wiedemann-Franz law, and the measured normal-state electrical re-
sistance of the interferometers. The dashed lines represent theoret-
ical calculations of the thermal resistance of the Andreev interfer-
ometers, using the experimental parameters for the samples, as
described in the text.

tions show that the linear-response regime is approached for
P, =10 fW, comparable to the minimum values used in the
experiments.

Given the nonlinear behavior of R” on P,, we shall ex-
perimentally define the linear-response thermal resistance as
the value of R” at the lowest heater power measured. This
corresponds to P,=3.7 fW for the house interferometer and
P,=31 fW for the parallelogram interferometer of Fig. 2,
respectively. The solid symbols in Figs. 3(a) and 3(b) show
the resulting thermal resistance as a function of temperature
for the house and parallelogram interferometers. For com-
parison, we also show the expected thermal resistance for an
equivalent normal-metal sample, calculated using the
Wiedemann-Franz law from the measured normal-state
resistance of the wire, using the textbook value for the Lo-
renz number. For both samples, R increases rapidly with
decreasing temperature. For the house thermometer, R is
larger than the thermal resistance for an equivalent normal
system by almost an order of magnitude at the lowest tem-
perature. For the parallelogram interferometer, at first sight,
the increase is not as large; however, it must be noted that RT
for this sample was inferred at a heater power of 31 fW. If
we extrapolate R” to a value of 3.7 fW as for the house
interferometer, we obtain values of R” of the same order of
magnitude as in Fig. 3(a).

Depending on the dimensions of the sample, the electrical
resistance of proximity coupled normal metals can show “re-
entrant” or nonmonotonic behavior, where the resistance first
decreases below the transition of the superconductor, but
reaches a minimum and then starts increasing as the tempera-
ture is decreased further.>!'” The nonmonotonic behavior is
associated with the competition between two effects, a de-
crease in the resistance due to pair correlations induced in the
normal metal, and an increase in the resistance due to a de-
crease in the density of states N(E) near the Fermi energy Ep.
At any finite temperature, the effect of pair correlations is
greater, but at 7=0 there is expected to be an exact cancel-
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lation for systems without interactions, resulting in the sys-
tem regaining its normal-state resistance at 7=0. Theoreti-
cally, the thermal resistance of the house interferometer is
expected to be influenced only by the decrease in N(E), and
hence increases monotonically as the temperature decreases.
Unlike a superconductor, however, N(E) does not go to zero
as T— 0, but saturates at a value that depends on the dimen-
sions of the sample and the transparency of the NS
interfaces.® As T—0, N(E) is small but finite; the quasipar-
ticles occupying the levels in the pseudogap contribute to the
thermal conductance, leading to an enhanced thermal resis-
tance, but one that still varies inversely with 7 according to
the Wiedemann-Franz law. Numerically, R” approaches this
limiting behavior below a temperature corresponding to
approximately 0.1E./ kg, where EL.=ﬁD/L% is the correlation
energy. Here D is the electronic diffusion coefficient in the
normal metal, and L is the length from one end of the inter-
ferometer to one of the NS interfaces. In the house interfer-
ometer of Figs. 2 and 3, for which the diffusion constant D
=208 cm?/sec and Ly=1.84 um, 0.1E,./kz~ 4.7 mK, below
the temperature range of the experiment. Equivalent param-
eters for the parallelogram interferometer are D
=127 cm?/sec and Ly=1.43 um, giving a similar saturation
temperature of 0.1E,./kz~ 4.7 mK. The dashed lines in Figs.
3(a) and 3(b) show the result of the numerical simulations of
the thermal resistance of the house and parallelogram inter-
ferometers, respectively, with the parameters given above,
and assuming perfectly transparent NS interfaces.® The the-
oretical predictions show significant deviations from the
normal-state thermal resistance only at temperatures below
20-30 mK, while the experimental R is already larger than
the normal-state thermal resistance at temperatures about an
order of magnitude higher. We believe this deviation might
be due to an intrinsic mesoscopic effect not restricted to NS
devices associated with the long length scales required to
equilibrate the energy of the quasiparticles in mesoscopic
systems.

The phase-dependent nature of transport in mesoscopic
NS structures means that the thermal resistance of an An-
dreev interferometer should oscillate periodically with an ex-
ternally applied magnetic field, with a fundametal period cor-
responding to a flux h/2e through the area of the
interferometer loop.”$ Detailed simulations in Ref. 8 show
that the house interferometer has a larger oscillation ampli-
tude of the thermal resistance compared with the parallelo-
gram interferometer, hence we focused on the former in mea-
suring oscillations of R?. Experimentally, measuring the
oscillations in R” turns out to be a difficult proposition. Ide-
ally, we would like to bias the sample at a specific heater
power and look at the variations in the temperature measured
by the local electron thermometers as we sweep the magnetic
field. However, at a heater power of 3.7 fW, the maximum
variation in the temperature difference would be on the order
of 0.5 mK [as can be seen from Fig. 2(a)]. To resolve this
small temperature change, one would require an impracti-
cally long averaging time. One could apply a larger amount
of power to the heater; however, the maximum variation in
RT drops dramatically at larger values of P,. Consequently,
in order to measure the variation of R” with external mag-
netic field B, we use the same technique as for the tempera-
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FIG. 4. The solid symbols are the thermal resistance of a house
interferometer at different magnetic fields, measured at 7=40 mK.
The solid line is a guide to the eye. The dashed line is the resistance
of the same sample as a function of the magnetic field at T
=400 mK.

ture dependence: at a fixed external magnetic field B, we
measure the thermal resistance as a function of heater power
P,, and take the value at the lowest measured heater power
as the value of R” at that value of magnetic field B. Figure 4
shows the resulting R for a third Andreev interferometer
device in the house configuration, measured at 7=40 mK, at
P,=2.1 fW. For comparison, we also show oscillations of
the resistance of the interferometer measured at 7=400 mK.

PHYSICAL REVIEW B 72, 020502(R) (2005)

It can be seen that R” oscillates periodically as a function of
B, with a period corresponding to one superconducting flux
quantum Py=h/2¢=0.092 mT through the interferometer
loop. Both the electrical resistance R and R have the same
symmetry with respect to B. Since R is known to be sym-
metric with respect to B, this means that RT is also symmetric
with respect to B, as predicted by theory (the offset seen in
the data is due to the remanent field in the external supercon-
ducting solenoid).

In summary, we have measured the thermal resistance of
Andreev interferometers in two different geometries. We find
that the measured thermal resistance of all the samples is
enhanced at low temperatures and deviates from the values
estimated from the WF law for equivalent normal-metal sys-
tems. In addition, the measured thermal resistance shows
strong nonlinear behavior with respect to the thermal current
I'. At small values of I, R7ec\1/1”. Finally, we have ob-
served that the thermal conductance oscillates periodically as
a function of the applied magnetic flux with a fundamental
period corresponding to ®y=h/2e. Our results are qualita-
tively consistent with recent numerical simulations.®

This work is supported by the NSF through Grant No.
DMR-0201530.

'A. F. Andreev, Sov. Phys. JETP, 19, 1228 (1964).

2P. G. N. de Vegvar, T. A. Fulton, W. H. Mallison, and R. E.
Miller, Phys. Rev. Lett. 73, 1416 (1994); H. Pothier, S. Guéron,
D. Esteve, and M. H. Devoret, ibid. 73, 2488 (1994); V. T.
Petrashov, V. N. Antonov, P. Delsing, and T. Claeson, ibid. 74,
5268 (1995).

3H. Courtois, Ph. Gandit, D. Mailly, and B. Pannetier, Phys. Rev.
Lett. 76, 130 (1996); S. G. den Hartog, C. M. A. Kapteyn, B. J.
van Wees, T. M. Klapwijk, W. van der Graaf, and G. Borghs,
ibid. 76, 4592 (1996); P. Charlat, H. Courtois, Ph. Gandit, D.
Mailly, A. F. Volkov, and B. Pannetier, ibid. 77, 4950 (1996).

4Mesoscopic Superconductivity, edited by F. Hekking, G. Schon,
and D. Averin [Physica B 203, issue 3-4 (1994)]; C. J. Lambert
and R. Raimondi, J. Phys.: Condens. Matter 10, 901 (1998).

>Yu. V. Nazarov and T. H. Stoof, Phys. Rev. Lett. 76, 823 (1996);
T. H. Stoof and Yu. V. Nazarov, Phys. Rev. B 53, 14496 (1996).

SA. A. Golubov, F. K. Wilhelm, and A. D. Zaikin, Phys. Rev. B
55, 1123 (1997).

7E. V. Bezuglyi and V. Vinokur, Phys. Rev. Lett. 91, 137002
(2003).

87. Jiang and V. Chandrasekhar, Phys. Rev. Lett. 94, 147002

(2005).

°P. Virtanen and T. T. Heikkild, Phys. Rev. Lett. 92, 177004
(2004).

0V, Chandrasekhar, in The Physics of Superconductors: Vol. II,
edited by K. H. Bennemann and J. B. Ketterson (Springer, Ber-
lin, 2004).

1], Eom, C.-J. Chien, and V. Chandrasekhar, Phys. Rev. Lett. 81,
437 (1998); Superlattices Microstruct. 25, 733 (1999); J. Low
Temp. Phys. 118, 617 (2000).

12D. A. Dikin, S. Jung, and V. Chandrasekhar, Europhys. Lett. 57
564 (2002).

13A. Parsons, I. A. Sosnin, and V. T. Petrashov, Phys. Rev. B 67,
140502(R) (2003).

14G. Wiedemann and R. Franz, Ann. Phys., 89, 497 (1853).

SD. A. Dikin, S. Jung, and V. Chandrasekhar, Phys. Rev. B 65,
012511 (2002).

167 Jiang, H. Lim, J. Eom, and V. Chandrasekhar, Appl. Phys. Lett.
83, 2190 (2003).

17H. Courtois, Ph. Gandit, and B. Pannetier, Phys. Rev. B 52, 1162
(1995); C.-J. Chien and V. Chandrasekhar, ibid. 60, 15356
(1999).

020502-4

RAPID COMMUNICATIONS



