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The critical dynamics of superconductors is studied using renormalization group and duality arguments. We
show that in extreme type-II superconductors the dynamic critical exponent is given exactly by z=3/2. This
result does not rely on the widely used models of critical dynamics. Instead, it is shown that z=3/2 follows
from the duality between the extreme type-II superconductor and a model with a critically fluctuating gauge
field. Our result is in agreement with Monte Carlo simulations and at least one experiment.
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I. INTRODUCTION

The high-Tc cuprate superconductors have very large val-
ues of the Ginzburg parameter �. In a material like
YBa2Cu3O7−� �YBCO� at optimal doping, we have ��100.
It is therefore a good approximation to assume that these
materials are extreme type-II superconductors. By extreme
type-II superconductor we mean �→�. In such a regime it is
expected that the static critical properties at zero external
field are the same as in superfluid 4He.1 This expectation is
confirmed by experiments measuring the specific heat2 and
penetration depth3 in bulk samples of YBCO. Thus, as far as
static critical phenomena are concerned, there is no doubt
that the critical behavior of bulk YBCO is governed by the
three-dimensional XY universality class. On the basis of such
a consensus, we might also expect that the dynamical uni-
versality class is the same as in superfluid 4He. Unfortu-
nately, we are far from reaching a consensus on the dynami-
cal universality class of YBCO or, more generally, of any
high-Tc cuprate. What is interesting here is that the lack of
consensus comes both from the theoretical and experimental
sides. The theoretical debate tries to establish whether the
dynamical universality class corresponds to model-A or
model-F dynamics.4 Model-A dynamics is purely relax-
ational and gives the value z�2.015 for the dynamic critical
exponent in three dimensions. Model F, on the other hand,
features a conserved density coupled to a spin-wave mode
and gives the exact value z=d /2 for d� �2,4�. For the dy-
namical universality class of extreme type-II superconduct-
ors, Monte Carlo simulations give z�3/2,5,6 which would
be consistent with model-F dynamics and therefore with su-
perfluid 4He dynamical universality class. However, in a re-
cent Letter, Agi and Goldenfeld7 claim that the correct result
from a lattice model should be instead z�2—i.e., consistent
with model-A dynamics. Experimentally, either large values
for z are found, typically in the range z�2.3–3.0,8 or values
consistent with model-F dynamics.9,10 The arguments of Ref.
7 were further discussed in two recent Comments.11

In principle, model-F dynamics is not compatible with
superconductor critical dynamics, since screening effects
tend to suppress the spin-wave mode.12,13 However, model A

is also inappropriate to study the critical dynamics in super-
conductors. Indeed, model A does not give a gauge-
independent result for z in the magnetic critical fluctuation
�MCF� regime. A technically correct analysis should con-
sider the extreme type-II regime as a limit of the full MCF
regime which has a genuine local gauge symmetry. It turns
out that in a gauge-invariant theory the only operators with a
nonzero expectation value are the gauge-invariant ones.14

For instance, the ac conductivity is such a gauge invariant
quantity. Therefore, its scaling behavior is necessarily gauge
independent. Since evaluation of z through model A in the
MCF regime gives a gauge-dependent result, we conclude
that model A is also not the right option.

In this paper we use renormalization group �RG� and du-
ality arguments to determine the dynamical universality class
of extreme type-II superconductors. We will establish that in
three dimensions z=3/2 exactly. This result will be obtained
by combining exact scaling arguments with exact duality re-
sults. While the scaling arguments are generally valid in d
� �2,4�, the duality arguments will be only valid at d=3.
The result will be obtained through the following strategy. In
Sec. II we use the RG to obtain exact scaling relations for the
penetration depth and for the ac conductivity. This will be
done in both the XY �extreme type-II limit� and MCF re-
gimes. While much of the steps in this part of derivation are
known, it is important to review this approach here to em-
phasize the intimate relationship between the scaling of the
penetration depth and the one of the ac conductivity. The
important point is that scaling behavior in the XY regime is
different from the one in the MCF regime. In Sec. III we
discuss the critical dynamics from the perspective of the ex-
act duality between an extreme type-II superconductor at
zero field and a model exactly equivalent to the Ginzburg-
Landau �GL� model in the MCF regime. Indeed, the dual
model features a fluctuating vector potential coupled to a
complex field, dubbed the disorder parameter field as op-
posed to the order parameter field of the original model. The
derived results for the GL model in the MCF regime will
then be applied to the dual model, and duality relations be-
tween the currents will be used to establish that z=3/2.
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II. SCALING AND DYNAMICS IN THE
GINZBURG-LANDAU MODEL

In order to make the paper self-contained, we review in
this section the basic scaling properties of the GL model in
both the static and dynamic critical regimes.

A. Static scaling behavior

Let us consider the bare Hamiltonian of the GL model,

H =
1

2
�� � A0�2 + ���− iq0A0��0�2 + �0

2��0�2 +
u0

2
��0�4,

�1�

where q0=2e0 is the charge of the Cooper pair and �0
2�	,

with 	= �T−Tc� /Tc. In our notation the zero subindex de-
notes bare quantities while in renormalized quantities the
zero subindices are absent. The bare Ginzburg parameter is
�0=
0 /�0= �u0 /2q0

2�1/2, where 
0 and �0��0
−1 are the bare

penetration depth and correlation length, respectively.10 We
can rewrite the above Hamiltonian in terms of renormalized
quantities as follows:

H =
ZA

2
�� � A�2 + Z����− iqA���2 + Z��2���2 +

Zuu

2
���4.

�2�

The renormalized correlation length is given by �=�−1.
From the Ward identities it follows that the renormalized
charge squared is given by q2=ZAq0

2. The dimensionless cou-
plings are f ��d−4q2 and g��d−4Z�

2u0 /Zu. The fixed-point
structure is well known but cannot be completely obtained
by perturbative means. Fixed points associated with nonzero
charge f*�0 are nonperturbative but their existence in the
flow diagram is now well established.15–24 The infrared-
stable charged fixed point governs the MCF regime while the
extreme type-II or XY regime is governed by the uncharged
XY fixed point.25

The renormalized Ginzburg parameter is given by �
=� /�A, where �A=
−1 is the renormalized vector potential
mass generated by the Anderson-Higgs mechanism. Due to
the Ward identities, this can also be written as �= �g /2f�1/2,
and therefore the renormalized Ginzburg parameter has the
same form as the bare one, with the bare coupling constants
replaced by the renormalized ones. From this it can be shown
that the following exact evolution equation for the renormal-
ized vector potential mass holds:22

�
��A

2

��
= �d − 2 + �A −

g

g
	�A

2 , �3�

where �A�f ,g���� ln ZA /�� and g���g /��. Equation
�3� implies that near the phase transition,

�A � ��d−2+�A�/2, �4�

where �A=�A
* is the anomalous dimension of the vector po-

tential. In the MCF regime �A=4−d,18,20,23 and we obtain
that ��=�,20 where �� and � are the penetration depth and
correlation length exponents, respectively. This result was

confirmed by Monte Carlo simulations.21 In the XY regime,
on the other hand, the penetration depth exponent is given
by12

�� =
��d − 2�

2
, �5�

where � is the correlation length exponent. At d=3 we have
��2/3 and ���1/3. The result ���1/3 is confirmed ex-
perimentally in high-quality single crystals of YBCO.3 Note
that in the XY regime �0→� while �→0.12

B. Dynamic scaling behavior

The ac conductivity is given by

���� =
q2K�− i��

− i�
, �6�

where K�−i�� is obtained from the current-current correla-
tion function at zero momentum26—i.e., K�−i��
=lim�p�→0K�−i� ,p� where K�−i� ,p�=
�K���−i� ,p� with

K���− i�,p� = ����2���� −
1

q2 �Ĵ���,p� · Ĵ��− �,p�� , �7�

and Ĵ��� ,p� is the Fourier transform of the superconducting
current:

J� = − iq��*��� − ����*� − 2q2���2A�. �8�

The function K���−i� ,p� is purely transverse.26 The super-
fluid density �s is given by lim�→0K�−i�� and thus, by virtue
of the Josephson relation, we obtain

lim
�→0

K�− i�� � �− i���d−2�/z. �9�

Since q2���A, we obtain from Eq. �6� the behavior

������T=Tc
� �− i���d−2−z+�A�/z. �10�

Therefore, in the XY universality class we have12,13

������T=Tc
� �− i���d−2−z�/z, �11�

while in the MCF regime we obtain

����T=Tc
� �− i���2−z�/z. �12�

From Eq. �6� we obtain that below Tc the low-frequency
behavior of the ac conductivity is

���� �
�A

2

− i�
. �13�

In Ref. 12 this is written symply as ������s / �−i��; i.e., the
charge is not shown explicitly since only the XY regime was
considered and in this case the charge does not fluctuate.
Taking the low-frequency behavior �13� into account, we ob-
tain, from Eqs. �3� and �6�,

�
�����

��
� �d − 2 − z + �A −

g

g
	���� , �14�

which implies that near the phase transition,
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���� � �d−2−z+�A. �15�

Since in the XY universality class �A=0, we recover from
Eq. �15� the well-known scaling12

���� � �d−2−z. �16�

Note that Fisher et al.12 need to assume the Josephson rela-
tion �s��d−2 to derive the XY scaling of the ac conductivity.
Within our approach the more general scaling relation �15�
follows from Eq. �3� and the XY scaling emerges as a par-
ticular case. In the MCF regime we obtain27–29

���� � �2−z. �17�

III. DUALITY AND CRITICAL DYNAMICS

A. Duality and disorder field theory

In the extreme type-II limit �0→� and we have essen-
tially a superfluid model at zero field; i.e., the corresponding
Hamiltonian is the same as in Eq. �1� with A0=0. The lattice
version of this model in the London limit is exactly dual to
the so-called “frozen” superconductor.30,31 Starting from the
Villain form of the XY model we obtain, after dualizing it,
the following lattice model Hamiltonian:

H = 

l
 1

2K
�� � hl�2 − 2�iMl · hl� , �18�

where K is the bare superfluid stiffness, al�� �−� ,��, and
Ml� is an integer link variable satisfying the constraint
� ·Ml=0. The lattice derivative is defined as usual, ��f l
� f l+�̂− f l. The link variables play the role of vortex currents,
and the zero lattice divergence constraint means that only
closed vortex loops should be taken into account. Integration
over al gives a long-range interaction between the link vari-
ables. The link variables will interact through a potential
V�rl−rm� behaving at large distances like V�rl−rm��1/ �rl

−rm�. At short distances the potential is divergent. This short-
distance divergence can be regularized by adding to the
Hamiltonian �18� a core energy term ��0 /2�
lMl

2. Writing
the constraint � ·Ml=0 using the integral representation of
the Kronecker delta and performing the sum over Ml using
the Poisson formula we arrive at the Hamiltonian

H = 

l
 1

2�0
���l − 2�Nl − 2��Khl�2 +

1

2
�� � hl�2� ,

�19�

where we have rescaled hl. The dual-lattice Hamiltonian �19�
has exactly the same form as the Hamiltonian for a Villain
lattice superconductor. Note that 2��K plays the role of the
charge. The sum over the integers Ni can be converted into a
disorder field theory �DFT�,32 which has precisely the same
form as the original GL model in Eq. �1�, except that the
physical properties of the fields have changed. The electro-
magnetic vector potential A0 is replaced by the gauge field
h0 describing vortices, and the charge q0 becomes the Biot-
Savart-type coupling strength between vortices 2���s

0,
where �s

0 is the bare superfluid density. An important aspect

of duality is that the disorder field theory that comes out of it
has an “inverted” temperature axis;15 i.e., the broken symme-
try phase of the disorder field theory corresponds to the sym-
metric phase of the original theory and vice versa. This is
actually the meaning of the expression “disorder field” used
in this paper: instead of having an order parameter as in the
original model, the dual model has a disorder parameter.
Both models describe the same physics and have of course
the same critical temperature Tc. Since the Ward identities
for either theory imply that the critical singularities are the
same irrespective of whether Tc is approached from above or
from below, we can use the same scale � to study the scaling
behavior in both models.22,33 The critical exponents � and �
of the dual model are the same as in the original model. This
is because the dual model gives the same free energy of the
original model, up to nonsingular terms. Therefore, the ex-
ponent appearing in the scaling of the singular part of the
free energy, �, is the same in both models. The hyperscaling
relation then implies that � is also the same in both models.

The continuum dual model for superconductors was intro-
duced in Ref. 17 and further discussed in Ref. 34 �see also
Ref. 35�. Such a continuum dual theory represents a gener-
alization of the London model. In the extreme type-II limit
and zero external magnetic field, it is obtained from the con-
tinuum limit of Eq. �19�,

H̃ =
1

2
�� � h0�2 + ���− iq̃0h0��0�2 + m0

2��0�2 +
v0

2
��0�4,

�20�

where the dual bare charge is given by

q̃0 =
2��A,0

q
= 2���s

0. �21�

The Hamiltonian �20� has the same form as the GL
Hamiltonian in Eq. �1�. In Eq. �20� the gauge field h0 is
minimally coupled to the already mentioned disorder field
�0. We should note that this disorder GL-like theory is valid
strictly in d=3. Indeed, if we try to extrapolate to the range
of dimensionalities as in scaling relations of Sec. II, we
would obtain that the renormalized superfluid density, as the
“charge” of the DFT, scales like �s��4−d, which would
agree with Josephson’s relation only for d=3.

B. Critical dynamics of the dual model

In the duality transformations in the lattice only the phase
of the order paramerer plays a role.26,36 Actually, often dual-
ity arguments are worked out directly in the continuum by
relating the gradient of the phase to a “magnetic field” that
couples to the vortex loops within the dual model.35,37 In the
case of critical dynamics it is simpler to follow a similar
approach in order to derive the main results.

The superfluid velocity vs satisfies the dynamical
equation26

�vs

�t
= �0�s

0�2vs + qE , �22�

where �0 is the bare kinetic coefficient, E is the electric field,
and we have neglected the noise for simplicity. The super-
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fluid velocity is related as usual to the phase of the order
parameter—i.e., vs= ��. Because of the vortices, ��vs
�0. The vortex current is given by

Jv =
��s

0

2�
� � vs. �23�

Thus, by taking the curl of Eq. �22�, we obtain a dynamical
equation for the vortex current:

�Jv

�t
= �0�s

0�2Jv −
�A,0

2�

�B

�t
, �24�

where B is the macroscopic magnetic induction field. In Fou-
rier space and at zero momentum we obtain

Jv��� = −
�A,0

2�
B��� . �25�

Thus, the above simple analysis already shows us that the
introduction of dynamics in the duality approach leads to
interesting consequences. In the original model linear re-
sponse theory relates the current to the electric field in Fou-
rier space as

J��,p� = ���,p�E��,p� . �26�

With respect to the dynamics of the system, the statistical
mechanics duality implies also electric-magnetic duality, in
which case the electric field is replaced by the �true� mag-
netic field in a linear response theory for the vortex current.

Generally, the current of the original GL model is related
to the vortex current in the dual model by the formula

� � J�t,r� =� dt�� d3r�Q�t − t�,r − r��Jv�t�,r�� ,

�27�

generalizing the classical static duality relation

2��A,0Jv = � � J , �28�

which is equivalent to Eq. �23�, since J=q�s
0vs. Note that the

factor 2���s
0 accounts for an elementary flux quantum in the

dual model corresponding to a unit charge.35 Equation �28�
also follows from the continuum limit of the exact duality
transformation on the lattice.

The low-frequency limit of Q����Q�� ,p=0� is given by

Q��� � 2�q��s = 2��A. �29�

Thus, when the fluctuations are taken into account, Eq. �28�
will hold approximately in the low-frequency limit with �A,0
replaced by �A.

The electric-magnetic duality in the response functions
implies a linear response

Jv��,p� = �̃��,p�B��,p� , �30�

where �̃ is the dual ac conductivity. The above equation is a
generalization of Eq. �25�. In order to check the validity of
Eq. �30�, we rewrite Eq. �26� in real space:

J�t,r� =� dt�� d3r���t − t�,r − r��E�t�,r�� , �31�

where E=−�A /�t. By taking the curl of Eq. �31� we obtain,
after some trivial algebra, precisely Eq. �30�, with the dual
conductivity related to the conductivity of the original model
through the formula

�̃��� =
i�

2�q��s

���� , �32�

where we have assumed a low-frequency regime at zero mo-
mentum.

Since the DFT Hamiltonian �20� has the same form as the
GL model in the MCF regime, we have that an anomalous
dimension �h=1 is generated for the gauge field h. There-
fore, the scaling behavior of the ac conductivity in the MCF
regime given by Eq. �17� also applies here and we obtain that
�̃�����2−z̃, where z̃ denotes the dynamic critical exponent
of the DFT. Thus, simple dimensional analysis in Eq. �32�,
using the scaling relation �16� for d=3, yields

z̃ =
3

2
. �33�

Note that the dynamic exponent z drops out in the power
counting. The above result would also follow by considering
a renormalized version of Eq. �25�, where �A,0 is replaced by
�A. In the extreme type-II limit �A��1/2, which should have
the same scaling as �̃��2−z̃, implying once more that z̃
=3/2.

The question now is how the exponent z is related to the
exponent z̃ of the dual model. We have seen that the static
exponents coincide, for the obvious reason that both original
and dual models lead to the same singular contribution for
the free energy. The relation between z̃ and z is much less
obvious. It can be obtained as follows. From Eq. �11� and the
Josephson relation we obtain that the right-hand side of Eq.
�32� scales for d=3 and p=0 as

�̃��� � �− i��1/2z. �34�

Since �̃��� must scale like in the MCF regime, we can use
Eq. �12� and write also

�̃��� � �− i���2−z̃�/z̃. �35�

Comparison of Eqs. �34� and �35� leads to the scaling rela-
tion

2z =
z̃

2 − z̃
. �36�

Insertion of the exact result �33� in the above equation gives
then the exact result

z =
3

2
. �37�

It is interesting to note that the scaling relation �36� still
gives a reasonable result for z̃ when the mean-field value z
=2 is used, leading to z̃=8/5=1.6, which is not too discrep-
ant with the exact value �33�.
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The above results imply the following duality relation be-
tween the conductivities of the original and dual models,

�����̃��� � const, �38�

as the critical point is approached. The above duality relation
is analogous to the well-known Dirac relation between elec-
tric and magnetic charges.30,36

IV. DISCUSSION

In this paper we have combined RG and duality argu-
ments in order to solve a controversial issue—namely, on the
value of the dynamic critical exponent z in extreme type-II
superconductors. Our analysis implies that z=3/2 exactly,
therefore confirming the result given by the Monte Carlo
simulations of Ref. 6 and the experimental value of Ref. 9.
An interesting consequence of our analysis is that the origi-
nal model and its dual share the same dynamic exponent.
Thus, z, �, and � are the same in both models, while � is not
the same.38

It remains to discuss how our analysis fits in the classifi-
cation of dynamic models of Hohenberg and Halperin.4 We
have obtained a value of z identical to the one of model E,
which is a model critical dynamics for the spin-wave modes
of a superfluid. Since the spin waves are decoupled from the
vortex degrees of freedom36 and the duality analysis of the
critical dynamics takes precisely the latter into account,
model E should not be expected to govern the critical dy-
namics of an extreme type-II superconductor at zero external
field. The right model critical dynamics is actually given by
a generalization of model A in which the dynamics of the
vortex loops are taken into account. A simplified version of
such a model was considered in the beginning of Sec. III B,
in Eqs. �22� and �24�. These equations describe respectively
the dynamics of the supercurrent and the vortex current. An
interesting physical consequence of such a dynamics is the
electric-magnetic duality in the linear response of the super-
current and the vortex current. Such a point of view leads to
a modified dynamic London equation, which is derived from
the two following Maxwell equations generalized in such a
way to include also the vortex current:

� � E = −
�B

�t
− Jv, �39�

� � B = J +
�E

�t
. �40�

The remaining Maxwell equations are not affected by the
vortices, since � ·Jv=0. Due to this, the electric-magnetic
duality holds only in the above two Maxwell equations. It
would only hold in all the four equations if open vortex lines
were present, in which case magnetic monopoles would be
attached to the vortex line ends. This is obviously not the
case here since the U�1� group is not compact.39

The electric-magnetic duality of the above equations cor-
responds to E→B, B→−E, and J→−Jv. We will derive the
London equation using the approximation where Jv has a
very weak dependence on r—i.e., by using Eqs. �25� and
�28�. Thus, by taking the curl of Eq. �40� and taking into
account Eqs. �25� and �28� and � ·B=0, we obtain

�2B

�t2 − �2B + �A,0
2 B +

�A,0

2�

�B

�t
= 0. �41�

Note that the above dynamic London equation contains a
damping term. The general case is of course more compli-
cated and Eqs. �30� and �32� must be used instead. Remark-
ably, the duality approach allows us to derive an exact value
for the dynamic exponent just by using scaling arguments.
However, in order to derive the scaling functions for the ac
conductivity a more explicit calculation is necessary. This
will be the subject of a forthcoming work.40

We conclude by saying that although the dual dynamics
studied here is different from the quantum case,27,37 the re-
sult �38� applies also there. We should be note, however, that
in the quantum case the dynamics can be derived from the
quantum Lagrangian, which is not case for a classical system
near the critical temperature.
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