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The lowest nonlinear correction to the penetration depth, i.e., the nonlinear Meissner effect, is calculated and
compared to data from high-quality YBa2Cu3O7-� �YBCO� films. The calculation is based on the Green-
function formulation of superconductivity, and the data consist of the intermodulation power as function of
temperature and circulating power. At a low power level, the calculated temperature dependence compares very
well with the data, including the divergence as T−2 at very low temperatures. The calculated power dependence
of the nonlinear penetration depth follows the data semiquantitatively and is enhanced due to the d-wave
symmetry of the order parameter. These results support the assertion that the origin of nonlinearity in high-
quality YBCO films is intrinsic. The analysis also implies that the nonlinear corrections to the penetration
depth depend primarily on the total current carried by the strip and thus are insensitive to the edges. The
comparison of the present approach with an alternative approach, based on quasiparticle backflow, is discussed.
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I. INTRODUCTION

The nonlinear Meissner effect, as manifested in a current-
dependent penetration depth and intermodulation distortion
�IMD�, was theoretically predicted for an ideal high tempera-
ture superconductor �HTS� by Yip and Sauls �YS� at T=0.1 It
has recently been observed over a wide range of
temperatures.2,3 While the phenomenon is experimentally
well established, with important practical implications for
microwave filter applications, there has been no consensus
regarding its origin. Early attempts attributed it to current-
driven vortex motion in weak links.4,5 Such weak links act as
Josephson junctions in which penetrating vortices obey a
nonlinear dynamics, and consequently the response of the
vortex-film system to a microwave field is nonlinear as well.
While this mechanism is likely valid, it does not yield a
quantitative explanation for high-quality films, especially at
a low power level.2 A competing view of the phenomenon is
shown in the works of YS and the subsequent generalization
to all temperatures.1,6 These are based on the proposition that
the observed nonlinearity is intrinsic, reflecting the highly
correlated nature of the superconductor condensate state. In
particular, for a superconductor with a d-wave symmetry or-
der parameter �HTS�, this proposition predicts a divergent
nonlinear response as temperature approaches T=0 due to
the low-lying excitations along the nodal lines. Recent at-
tempts to compare predictions of this intrinsic mechanism
with high-quality YBa2Cu3O7-� �YBCO� films data are
encouraging.2,7 Specifically, the predicted divergence at low
temperature and the existence of two or more power regimes
with different nonlinear current dependencies were observed.
In this work the intrinsic nonlinear response is calculated.
However, this calculation differs from the previous work1,6

on several accounts: �1� The approach is based on the many-
body formulation of superconductivity; consequently, the fi-
nal expressions involve only experimentally accessible quan-

tities. �2� The analysis implies that the nonlinear response
obeys a nonlinear electrodynamics of the kind encountered
in type-I superconductors. This result implies that, to a good
approximation, the nonlinear corrections in films depend on
the total current. �3� The theoretical analysis is compared
with recent pertinent data to validate its veracity. While some
of these results have been recently reported,2 the aim here is
to give a comprehensive account of our theoretical approach
and extend the comparisons with the YBCO high-quality
film data.

The calculation begins with the expansion of the
momentum-space constitutive relation �CR� that relates the
supercurrent current density j�S and the electromagnetic vec-

tor potential A� .8–10 In the long wavelength limit and the cgs
unit system, this CR has the form

j�S = −
c

4�
�KL + KNL�A� ��A� , �1.1�

where the chosen gauge is �� ·A� =0, and KL and KNL�A� � de-
note the linear and nonlinear kernels, respectively. The linear
term in �1.1� is equivalent to the London theory10 with KL
=�0

−2, where �0 denotes the London �linear� penetration
depth. The aim here is to go beyond the linear term and

calculate the lowest-order contribution in A� to KNL�A� �, as-
suming that the nonlinear corrections to the penetration
depth are small.2 It has been argued that this lowest-order

contribution is of third order in A� .7 Such a term, in turn,
gives rise to third-order IMD products at frequencies 2f1
− f2 and 2f2− f1, where the incident tones are f1 and f2.2

Consequently, the IMD power generated by a film is directly
related to the nonlinear quantities calculated here, and its
measurement, which has the important advantage of avoid-
ing interference from the large linear inductive
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contribution,2,11 provides a convenient test of the theory.
The paper is organized as follows. In Sec. II the micro-

scopic approach and the derivation of the lowest order cor-
rection to the CR are presented. To render the ensuing ex-
pression tractable, a critical approximation is introduced and
justified. In Sec. III this analysis yields a cubic CR in mo-
mentum space. This CR is analyzed for its implications on
the nonlocality of the nonlinear current component. This
analysis implies that, to a good approximation, the nonlinear
correction to the penetration depth is spatially constant. In
Sec. IV the solutions to the cubic CR are analyzed showing
the existence of two distinct parameter regimes with different
dependencies of the nonlinear penetration depth on the total
current. The low-power regime is characterized by quadratic
current dependence. The high-power regime is characterized

by a fractional-power dependence of the absolute value of
the total current, reminiscent yet different from a similar
term in the YS theory.1,6 Section V is devoted to a compari-
son of these theoretical results with recent IMD data from
high-quality YBCO films, and Sec. VI contains a discussion
of the remaining differences and a comparison with the al-
ternative approaches to analyze nonlinearity.1,6 Several Ap-
pendixes are included to clarify details.

II. CUBIC CONSTITUTIVE RELATION

The approach followed here is based on the Green-
function formulation of superconductivity of an infinite, ho-
mogeneous sample as embodied in the imaginary-time
Gorkov equations.9

�−
��

��
−

1

2m
�− i��� −

qS

c
A� �x��2

+ � ��r��

�*�r�� −
��

��
+

1

2m
�i��� −

qS

c
A� �x��2

− ��� g�x,x�� f�x,x��
f*�x,x�� − g�x�,x�

� = ���x − x��IJ, �2.1�

where x= �r� ,�� denotes the four coordinates in which � is the
imaginary time in the Matsubara formalism, which is limited
to 0���	�, 	=1/ �kBT� where kB is the Bolztmann con-
stant, qS is the single-carrier charge �a positive or negative
electron charge�, m is the proper effective mass, � is the

chemical potential, IJ is the 2
2 unit matrix, ��r�� is the gap
function, and the ordinary and extraordinary Green functions
are g�x ,x�� and f�x ,x��, respectively.12 As is common in a
mean field theory, the gap function and the vector potential
in �2.1� must be solved self-consistently.9 As is often the
case, it will be assumed here that the gap and vector potential
in �2.1� are already self-consistent quantities. This assump-
tion is further discussed in Sec. VI.

Guided by the general structure of the CR, Eq. �1.1�, the
approach is to solve the Gorkov equations in perturbation
theory in the vector potential.7,9 The matrix solution of Eq.
�2.1� can be formally written as an expansion in powers of

the A� -dependent interaction

Ĝ = Ĝ0 +
1

�
Ĝ0ŴĜ0 +

1

�2Ĝ0ŴĜ0ŴĜ0 +
1

�3Ĝ0ŴĜ0ŴĜ0ŴĜ0

+ ¯ , �2.2�

where

Ŵ =
i�qS

mc
�A� · �� �IJ−

qS
2A� · A�

2mc2 �1 0

0 − 1
� . �2.3�

In Eq. �2.2� the full Green function Ĝ and the Green function

in the absence of an electromagnetic field Ĝ0 have the struc-
ture

Ĝ = � g�x,x�� f�x,x��
f*�x,x�� − g�x�,x�

� ,

Ĝ0 = � g0�x,x�� f0�x,x��
f0�x,x � � − g0�x�,x�

� , �2.4�

where the entries in Ĝ0 are given in Appendix A. In terms of
the Green function �2.4�, the CR that connects the current
density and vector potential is consequently obtained from
the general relation9

j��x� = 2	 i�qS

2m
��� r��

− �� r��g�x,x�� −
qS

2

mc
A� �x�g�x,x��
 r��→r�

��→�+0+

.

�2.5�

The last term in Eq. �2.5� contributes only to the linear term
in the CR noting that g�x ,x� is expressible in terms of the
total number of carriers nTOT. Thus, all nonlinear terms in the
CR arise from the first term in Eq. �2.5�. While this scheme
for deriving the nonlinear CR appears straightforward, sim-
plifying assumptions are critical to render it tractable. These
assumptions, to which we turn now, should be considered as
part of our approach.

As a first simplifying approximation, we consider only the

static limit, i.e., when A� �r� , t��A� �r��. As empirically
demonstrated,3 this is an excellent approximation, consistent
with the argument that the characteristic energy scales at
microwave frequencies obey ��� ���. Next, the interaction

Ŵ, Eq. �2.2�, is simplified. Noting that the structure of Eq.

�2.3� is Ŵ=1�A� ·�� �+2�A� ·A� �, the relative importance of
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these two terms is estimated in two ways. In the first way,
note from Eqs. �2.2� and �2.3� that there are two third-order
terms in the expansion. Their ratio is roughly

Ĝ0
41

3�A� · �� �3v3

�Ĝ0
31�A� · �� �2�A� · A� �v2


1

2Ĝ0v
�2�2 , �2.6�

where v denotes a characteristic intermediate-integration vol-
ume �in real space and in the � variable� and � is a charac-
teristic length associated with the gradient action on an un-
perturbed Green function. Denoting by � the coherence

length, adopting the order-of-magnitude estimates Ĝ0�−3,
v�3�� /��,9 and inserting the expressions for �1 ,2� from
Eq. �2.3� and the coherence length estimate ��2kF /m�,10 it
follows that the ratio in Eq. �2.6� is �O�1�.

The second approach to estimate the ratio of the two

terms in Ŵ is to take the London expression for the vector
potential A=4�jS�2 /c, ��−1, and jS jDEPAIR
108 A/cm2, where jDEPAIR is the depairing current for
YBCO. This estimate yields again that the two terms in the

interaction Ŵ are of about equal importance. Either way,
since factors of O�1� are beyond the accuracy scope of the
present calculation, we conclude that for our purpose, it is
justified to approximate

Ŵ �
i�qS

mc
�A� · �� �IJ. �2.7�

The basic expression for the third-order correction to the
CR is then obtained by combining Eqs. �2.2�, �2.5�, and
�2.7�,7

j�S
�3��r�� = 2	 i�qS

2m
��� r��

− �� r��g�3��x,x��
 r��→r�
��→�+0+

= − 2
i�qS

m

1

�3� i�qS

mc
�3

�� r���x�Ĝ0�A� · �� �IJĜ0�A� · �� �


IJĜ0�A� · �� �IJĜ0�x���1,1�� r��→r�
��→�+0+

. �2.8�

A significant simplification of Eq. �2.8� is obtained by con-
sidering the one-dimensional geometry shown in Fig. 1,
where w�d� and the magnetic field wraps around the
strip. In this case the Meissner effect is realized primarily in
the y direction, the current density peaks at the strip edges,
and is to a good approximation uniform in the z direction.
Therefore, we have13

j��r�� = „jx�y�,0,0…, A� �r�� = „Ax�y�,0,0… ,

H� �r�� = „0,0,Hz�y�…, �� · A� = 0. �2.9�

The coordinate-system choice in Fig. 1, however, does not
conform to standard notations where, for a finite �or infinite�
thickness slab, the Meissner effect is realized in the z coor-
dinate aligned normal to its surface. Therefore, while the
expressions below employ the standard z axis as the coordi-
nate in which the Meissner effect is realized, the pertinent

film dimension is w in keeping with the configuration in Fig.
1.

Inserting the unperturbed Green’s functions given in Ap-
pendix A into Eq. �2.8�, taking the one-dimensional Fourier
transform, performing all spatial and temporal intermediate
integrations and summations �see Appendix A�, and employ-

ing the vector-potential transversality, k� ·A� �k��=0, �Eq. �2.9��
yields

j��3��q� = �
−�

�

dze−iqzj��3��z�

=
2qS

4

	�2��5m4c3 �
n=−�

� � dk�1dq1dq2k�1�Ĝ0�k�1,�n�


�A� �q�1� · k�1�IJĜ0�k�1 − q�1,�n��A� �q�2� · k�1 − q�1�IJĜ0�k�1

− q�1 − q�2,�n��A� �q� − q�1 − q�2� · k�1 − q��IJĜ0�k�1

− q� ,�n���1,1�, �2.10�

where the Matsubara frequencies �n are given in �A.2�. The
complex structure of the expression in Eq. �2.10� can be
inferred directly from the diagram in Fig. 2, noting that mo-
mentum is conserved at each vortex. Recall also that it is
assumed that both the gap function and in particular the vec-
tor potential, e.g., in Eq. �2.10�, are self-consistent. For the
latter, this implies a functional dependence on the sample

FIG. 1. Key parameters, coordinate system, and schematic cur-
rent distribution of a superconductor strip. �a� A thick strip �w�d
��� cross section. �b� A thin strip in a stripline resonator �w�d
��.

FIG. 2. Diagram representing the third-order term in the current
density perturbative expansion, Eq. �2.10�. Each bullet represents
the momentum-conserving vector-potential interaction Eq. �A.5� for
the one-dimensional geometry of this work.
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edge coordinate z0, e.g., A� �r���A� �z−z0�, to provide a refer-
ence point where the magnetic-field attenuation starts.14 This
observation is important for the following developments.

The fivefold integration in Eq. �2.10� can be reduced to a
one-dimensional integration by invoking an approximation
based on decoupling the integrations, an integrand expansion
around its maximum in the �q1 ,q2� space, and the standard
retention of contributions only from the immediate proximity
of the Fermi surface; see Appendixes B and C. Due to its
particular importance, this reduction in the number of inte-
grations is detailed next.

Note first that the homogeneous Green function Ĝ0�k� ,�n�
draws its main contribution from momenta near the Fermi

surface �k��kF,9 while the self-consistent A� �q��, approxi-
mately a Lorentzian, is significant only for 0�q�1/��kF.
Consequently, in all Green-function factors in Eq. �2.10�, the
q1 and q2 dependencies can be neglected and the �q1 ,q2�
integrations are constrained only by the scalar-product fac-

tors which are discussed now. Denoting by A� �B� parallel vec-

tors A� and B� , the integrand in Eq. �2.10� attains maximum in
the �q1 ,q2� space at the point where

A� �q�2� � k�1 − q�1, �2.11a�

A� �q� − q�1 − q�2� � k�1 − q� , �2.11b�

A� �q�1� � k�1. �2.11c�

Consider first conditions �2.11a� and �2.11b�. Both are simul-
taneously satisfied provided q� =q�1 since for a real one-

dimensional vector potential A� �q��=A� *�−q��. Furthermore,

noting that the k�1 integration draws its main contribution
when �k�1�kF� �q1� , �q2�,9 it follows that all maximum-
overlap conditions in Eq. �2.12� are approximately satisfied
at the point q�1= ±q�2=q� . This outcome suggests an integrand
expansion in terms of new variables q�1=q� +��1, q�2=−q� +��2,
where the integrand is expected to fall off significantly over
the range ���1 ,��2��1/�. While the details of this falloff are
complicated, it is presumed that only the maximum value
and falloff range of the integrand impact significantly the
magnitude of the integral.

To quantify this assertion, two plausible analytic forms
are explored, both of which share the same maximum value
and falloff range �0 yet differ in the rate of the falloff. Spe-
cifically, consider

R��� =
A� �q + �� · k�1

A� �q� · k�1

= 	 e−��*�0�2

1/�1 + ��*�0�2� .

 �2.12�

The corresponding q1 and q2 integrations in Eq. �2.10� are
analytically available, namely,

�
−�

�

d�1�
−�

�

d�2R��1�R��1�R�q − �1 − �2�

=
1

�0
2��e−�q�0�2

/�3

3�2

9 + �q�0�2 � =
F�q�0�

�0
2 . �2.13�

As Fig. 3 shows, the approximation F�x��=2–3 holds
over the pertinent range of q��O�1�. Consequently, the
�q1 ,q2� integrations in �2.10� are approximated by

� dq1dq2�A� �q�1� · k�1��A� �q�2� · k�1 − q�1��A� �q� − q�1 − q�2� · k�1 − q�1�

�


�0
2 �A� �q�� · k�1�2�A� �− q�� · k�1� , �2.14�

where =O�2–3� is a dimensionless constant. Applying
these approximations to Eq. �2.10� yields the expression for
the third-order correction to the Cooper-pairs current

j�S
�3��q� = −

2qq
4

	�2��5m4c3�0
2 �

n=−�

� � dk�1k�1�A� �q�� · k�1�2


�A� �− q�� · k�1���Ĝ0�k�1,�n��4��1,1�. �2.15�

The steps leading to Eq. �2.15� are based only on general
properties of the vector potential, the unperturbed Green’s
function, and the Fermi surface. The remaining integrations
in Eq. �2.15� depend on details such as the gap-function sym-
metry and Fermi-surface shape. In particular, it is of interest
to compare Eq. �2.15� for the case of a gap function with an
s-wave symmetry and a cylindrical Fermi surface to a previ-
ous calculation elsewhere employing a different method.7 In
Appendix B it is shown that they are equivalent.

In HTS, on the other hand, the gap function has
dx2−y2-wave symmetry and an approximately cylindrical
Fermi surface.16 The details of the angular integrations in Eq.

FIG. 3. The function F�q�� defined in Eq. �2.13� for the as-
sumed Lorentzian and Gaussian form factors, see text. The �1
+ �q�0�2�−3 curve is added for the purpose of delineating the per-
taining range of the variable q�0.

D. AGASSI AND D. E. OATES PHYSICAL REVIEW B 72, 014538 �2005�

014538-4



�2.15� are given in Appendix C. Combining all these steps
together yields the momentum-space �lowest-order� nonlin-
ear CR for d-wave superconductors,

j�S�q� = −
c

4�
� 1

�0
2�T�

+ K�2��T��A�q��2�A� �q� , �2.16�

where

K�2��T� =
qS

4�2kF�ĉ�
�3	mabc2��c�2��0�T��2��0�T��3


 �
n=−�

� �
0

2�

d��cos4 ��


�cos2 2��
cos2 2� − �2��n/�0�T��2

�cos2 2� + ���n/�0�T��2�7/2 .

�2.17�

Expressions �2.16� and �2.17� are the central results of this
work. The symbols kF�ĉ� and mab denote the Fermi momen-
tum in the ĉ direction ��� /ac, where ac is the lattice con-
stant in the c direction� and the effective mass in the ab
plane, respectively, and the gap �0�T� is defined in Appendix
A. Note that Eqs. �2.16� and �2.17� contain only measurable
quantities with the exception of the dimensionless  factor,
which is, however, bracketed within a narrow range. Conse-
quently, a comparison of Eq. �2.16� with data provides a
stringent test to this result.

The angular integral in Eq. �2.17� can be further ex-
pressed in closed form; see Appendix D. Note that conform-
ing to the assumed one-dimensional geometry �Fig. 1� and
the Fourier transform defined in Eq. �A.5�, the vector current
density and vector potential are related to the corresponding
scalar quantities by

j��q� = x̂ j�q�, A� �q� = x̂A�q� . �2.18�

III. NONLINEARITY AND NONLOCALITY

To introduce the issue of nonlocality in nonlinearity, con-
sider the general connection between the momentum-space
CR and its real-space counterpart,16

j��q� = −
c

4�
K�q�A� �q� ⇔ j��r��

= C� R� �R� · A� �r����
R4 K�R�dr��, R� = r� − r��, �3.1�

where the current densities in momentum and real spaces are
j��q�� and j��r��, respectively, and the S subscript attached to the
current densities is omitted to simplify the notation, the sym-
bol ⇔ indicates that both expressions are related by a linear
transform of each other,16 C is an unimportant normalization
constant, and the kernels K�q�� and K�R� are related to each
other via a linear Bessel transform, which implies that their
ranges in momentum and real spaces, respectively, are in-
versely proportional to each other.16

The linear approximation for K�q�� corresponds to K�R�
e−R/� �Ref. 16� since the linear term in Ŵ in Eq. �2.2�
involves only the unperturbed Green functions, which at-
tenuates over the length scale of �. The self-consistent vector
potential, on the other hand, attenuates over a distance �0
from the sample edge. Consequently, Eq. �3.1� implies that
when �0��, the fastest varying factor in the integrand is

K�R�; hence it is justified to pull A� �r����A� �r�� from under the
integral. This yields a linear and local CR, which is a restate-
ment of the London theory for type II superconductors. In
the opposite limit, however, when �0��, the variation of
K�R� in the integrand of Eq. �3.1� is slow in comparison to
that of the other factors, resulting in a nonlocal CR, charac-
teristic of the Pippard theory of type I superconductors.17

These considerations are now applied to the nonlinear
term in Eq. �2.16�, which is the focus of this work. Since the
transformation connecting K�q� and K�R� in �3.1� is linear, it
follows, with self-evident notation, that

K�q� = K�0� + K�2��T��A�q��2 ⇔ K�R�

= K�0��R� + K�2��R� ⇒ j��r��

= j�L�r�� + j�NL�r�� , �3.2�

where we employed Eq. �2.16� and wrote K�2��q�=K�2��T�

�A�q��2 and the current densities j�L and j�NL denote the lin-
ear and nonlinear current densities associated with the corre-
sponding terms in K�q�. The �A�q��2 factor in the nonlinear
kernel in Eq. �2.16� implies a momentum-space range that is
roughly half that of A�q�, i.e., �2�0�−1. Hence the range L of
its real-space counterpart K�2��R� is L2�0. According to

relation �3.1�, K�2��R� with this range implies a j�NL in Eq.
�3.2� that is related to the vector potential through a nonlocal
CR. The particular nonlocal, linear CR encountered in type I
superconductors represents the case when the range of K�R�,
i.e., �, is considerably smaller than the range of A� �r��, i.e.,
�0.17 This qualitative argument implies that all higher non-
linear terms in Eq. �2.2� would also lead to a nonlocal CR.
Because of their small magnitude these nonlocal contribu-
tions can be ignored in most cases so that the London theory
applies.

The same qualitative conclusion follows from consider-
ation of the structure of the real-space expression for the
nonlinear current density j�NL�z�, Eq. �2.8�. Consider a typical
term in that expression

� dz1dz2dz3g0�z − z1�A�z1 − zE�g0�z1 − z2�A�z2 − zE�g0�z2

− z3�A�z3 − zE�g0�z3 − z� . �3.3�

The vector-potential dependence on the edge location zE,
e.g., through a cusplike functional form,14 is explicitly re-
tained in �3.3�. The homogeneous Green function factors
g0�z�� are negligible for �z����, while the vector-potential
factors are negligible for �z�−zE���0. Since in HTS �0��, it
follows that the z coordinate in Eq. �3.3� is approximately
constrained by �z−zE���0. Therefore j�NL�z� and A�z−zE� are
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related in �3.1� by a nonlocal kernel of range O��0�.
The real-space nonlocality implied by the nonlinear CR of

Eq. �2.16� has important implications for the methodology of
data analysis and the relative importance of the strip edges.
Consider the linear and perturbed current densities in Eq.
�3.2�, expressed in terms of the linear �London� superfluid
velocity vS

�0��r� ;�0� and linear and perturbed pair densities
nS

�0��r�� ,nS�r��,

j��r�� = nS�r��q2Sv�S
�0��r�;�0�, j�L�r�� = nS

�0�q2Sv�S
�0��r�;�0� ,

�3.4�

where q2S denotes the Cooper-pair charge. The temperature
is assumed to be sufficiently low to assure a preponderance
of pair current. To calculate the perturbed pair density in Eq.
�3.4�, insert Eq. �2.16� into Eq. �3.1� with the result

j�NL�r�� = C� R� �R� · A�r����
R4 K�2��R;rE�dr��,

C��2� � R� �R� · A� �r����
R4 e−R/�2�0�dr��

� nS
�2�q2Sv�S

�0��r�;2�0� . �3.5�

In going from the first to the second line in Eq. �3.5�, two
arguments were invoked. First, as argued above, the approxi-
mate range L of the kernel K�2��R� is L2�0. Therefore, the
integration in the second integral in �3.5� has the effect of

spatially averaging the factor A� �r���v�S
�0��r� ;�0� �since in the

London theory j�L�A� � over a sliding window of extension
2�0. The ensuing smeared-out superfluid velocity therefore
has the approximate functional dependence v� �0��r� ;2�0� and
small amplitude nS

�2�. Inserting Eq. �3.5� into Eqs. �3.4� and
�3.2� yields for the total pair density the approximate expres-
sion

nS�r�� = nS
�0� + nS

�2�v�S
�0��r�;2�0�
v�S

�0��r�;�0�
= nS

�0� + nS
�2��r�� . �3.6�

The structure of expression �3.6� implies a weak spatial de-
pendence for the nonlinear superfluid density nS

�2��r�� since it
entails a ratio of two superfluid velocities where their corre-
sponding peaks at the strip edges cancel out. This point is
demonstrated in Fig. 4 where we plot the ratio
v�S

�0��r� ;2�0� /v�S
�0��r� ;�0� in Eq. �3.6� for a typical current dis-

tribution in a thin film.23 Therefore the total pair density
nS�r�� is essentially constant throughout the strip width except
for a mild dip �factor 2� at the strip edges which can be
ignored.

The conclusion of an approximately constant superfluid
density depends only on the CR structure, not on particulars
of functional dependencies. It implies considerable simplifi-
cation of the functional relation between the momentum-
space CR, Eq. �2.16�, by providing justification for consid-
ering only the long-wavelength limit q=0 of the CR.
Consequences of this conclusion are taken up in the follow-
ing sections.

IV. THE PENTRATION DEPTH

Having justified the approximation that the nonlinear su-
perfluid density is constant throughout the strip width, we
extract the penetration depth from the CR long-wavelength
limit by following the classic Meissner-effect paradigm.9,10

Thus

1

�2 � K�q = 0;T� =
1

��0 + �NL�2

=
1

�0
2 −

2�NL

�0
3 + ¯ =

1

�0
2 + K�2��T��A�q = 0��2.

�4.1�

The nonlinear corrections to the penetration depth are very
small. Consequently,

�NL = −
�0

3

2
K�2��T��A�q = 0��2

=
�0p

2
�A�q = 0��2,

p = p�T� = − �0
2�T�K�2��T� � 0. �4.2�

The positive parameter p introduced in �4.2� is useful for the
manipulations below.

In principle, the nonlinear penetration depth in Eq. �4.2� is
the end result of the analysis. However, to allow comparison
with data it is necessary to express the vector potential factor
A�q=0� in it in terms of measurable quantities, e.g., the cur-
rent. This requires the inversion of the long-wavelength-limit
cubic CR �Eq. �2.17��

j�q = 0� = −
c

4��0
2 �1 − p�A�q = 0��2�A�q = 0� , �4.3�

where the j�q=0� factor according to the discussion in Sec.
II and Eq. �A.5� is given by

FIG. 4. The near-edge ratio vS�y ;2�0� /vS�y ;�0�, Eq. �3.6�, for
the approximate thin-film superfluid velocity distribution of Ref. 23.
The parameters employed are w=150 �m, �=150 nm, d
=0.35 nm, which correspond to the actual stripline resonator. Ex-
cept at the very edge where this ratio is 0.5, this ratio is unity.
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j�q = 0� = �
−w

0

dzjx�z� = w�jx�z��z =
I

d
. �4.4�

In Eq. �4.4� I is the total current carried by the strip and d is
its thickness, Fig. 1.

Given the expression for the nonlinear penetration depth
Eq. �4.2�, it is suggestive to recast Eq. �4.3� by multiplying it
by its complex conjugate

�j��q = 0��2 = � c

4��0
2�2

�1 − pS�2S, S = �A� �q = 0��2 � 0.

�4.5�

The exact solutions of �4.5� are given by

�S�1�,S�2�,S�3�� = −
1

3p�
��− 1 + ��2,

��− 1�1/3 + �− 1�2/3��2,

��− 1�2/3 + �− 1�1/3��2, �4.6�

where

� = �1 − 2� + ���− 1 + ���1/3,

�− 1�1/3 =
�1 + i�3�

2
, �− 1�2/3 =

�− 1 + i�3�
2

, �4.7�

and the dimensionless, positive control parameter

� = ��I,T�

=
108�2�0

6�T��j�q = 0��2�K�2��T��
c2 =

108�2�0
6�T�I2�K�2��T��
c2d2

�4.8�

carries the nontrivial dependencies on both the total current
and temperature. Note that � scales with the circulating
power �see Eq. �5.7�� and has a nontrivial temperature de-
pendence.

Of the three mathematical solutions in Eq. �4.6�, only one
has physical meaning. To identify the physical solution, con-
sider two limits. When ��1, which corresponds to the low-
circulating-power limit, Eq. �4.6� is

lim
��1

�S�1�,S�2�,S�3�� =
1

p	 4�

27
+ O��2�,1 +

2��

3�3
+ O��3/2�,

1 −
2��

3�3
+ O��3/2�
 . �4.9�

While all solutions in Eq. �4.9� are real and positive, the last
two do not vanish in the limit of a vanishing small � and
hence are inconsistent with the linear London theory Eq.
�1.1� at that limit. Thus, for ��1, the S�1� solution in Eq.
�4.6� is the physical solution. From Eq. �4.5�, the expression
for S�1� in Eq. �4.9� and Eq. �4.8� yields

lim
��1

�A�q��2 =
16�2�j�q = 0��2�0

4

c2 � I2, �4.10�

precisely the square of the linear London theory CR �see Eq.
�1.1��.10 This corresponds to the limit when the cubic term in
the nonlinear CR can be neglected.

The opposite limit, ��1, corresponds to a high circulat-
ing power. Expanding �4.6� to lowest order in �−1 yields

lim
��1

�S�1�,S�2�,S�3�� =
22/3�1/3

3p
	 i

2
�i + �3� +

21/3

�1/3 ,1 +
21/3

�1/3 ,

−
i

2
�− i + �3� +

21/3

�1/3
 + O��−1/3� .

�4.11�

The physical solution in this limit is readily identified as S�2�
since it is the only real one. Employing again Eqs. �4.8� and
�4.11� for S�2� yields

lim
��1

�A�q = 0��2 =
24/3�2/3�0

4/3�j�q = 0��2/3

�cp�2/3 � �I�2/3,

�4.12�

which is the solution of Eq. �4.5� in the limit when the cubic
term dominates. Note that the dependence on a fractional
power of the current in Eq. �4.11� is nonanalytic and differ-
ent from that in the low-power regime, Eq. �4.10�. This
nonanalyticity is reminiscent but distinct from the work of
Yip and Sauls1 and Dahm and Scalapino.6

Given that the physical solutions yield different current
dependencies in the limits ��1 and ��1, it is of particular
interest to explore the nature of the transition between them.
Figure 5 shows an example of the exact solutions, Eq. �4.6�,
plotted over the entire range of � range to provide insight.
The special role of the �=1 point in Fig. 5 is obvious from
the explicit form Eq. �4.7�. In particular, expanding the
physical solutions S�1� and S�2� around the appropriate sides
of the �=1 point yields

lim
�→1+0

S�2� − lim
�→1−0

S�1� =
3

p
, �4.13�

indicating a discontinuity. As discussed in the next section,
measured data shows no discontinuity, suggesting that the
discontinuity Eq. �4.13� is a mathematical artifact, probably
related to the truncation of the perturbation expansion, Eq.
�2.2�, at the third order. It is therefore inferred that the physi-
cal solutions in �4.6� are not reliable too close to the discon-
tinuity point. Note that on both sides of the discontinuity, the
delineation between the low- and high-power regimes as de-
termined by the � parameter depends on both temperature
and total current. This qualitative feature is supported by the
data.2,18

In summary, since �NL� �A�q��2, Eq. �4.2�, the CR ap-
proach of this work predicts a current dependence �NL I2 in
the low-power regime ���1� and �NL�I�2/3 in the high-
power regime ���1�.
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V. COMPARISON WITH EXPERIMENT

In this section the preceding calculated results are com-
pared with measurements of IMD power and surface imped-
ance in a stripline resonator as reported elsewhere.2,11 In the
IMD measurements, the resonator is excited by two closely
spaced tones at frequencies f1 and f2, and the IMD power is
measured at 2f1− f2 and 2f2− f1.11 This method is of high
sensitivity. To measure the nonlinear surface impedance, the
resonance frequency and Q are measured as a function of the
total current in the strip I. The frequency shift �f reflects the
current-induced variation of the kinetic inductance, which is
related to the nonlinear correction to the penetration depth
�NL.6 Measurement of �f , however, is limited to medium
currents, on the order of I=100 mA, while IMD measure-
ments can be carried out with currents of the order I
=1 mA.

Consider first the IMD measurement method. For a purely
harmonic incident field at frequency �, the two-fluid-model,
cycle-averaged, surface electromotive force is12,19

VS = iXSI = i
4��

c2 �I = i
4��

c2 I��0 + �NL�I,T�� , �5.1�

where the nonlinear part of the surface electromotive force is

VS
�NL� = i

4��

c2 I�NL�I,T� . �5.2�

We have neglected the contribution to VS
�NL� from the nonlin-

ear resistance. Dahm and Scalapino have argued that it is
small,6 and experimentally, the nonlinear reactance XS

�NL�


�I ,T� and nonlinear resistance RS
�NL��I ,T� are proportional

over wide ranges of current and temperature.2,3 Thus a non-
linear resistance would at most contribute a correction with
the same temperature and current dependence as the nonlin-
ear reactance. The power delivered to the measurement sys-
tem is proportional to the square of VS

�NL�

PNL � �VS
�NL��2 � �I�NL�I,T��2. �5.3�

Expression �5.3� is now extended to the case of two tones
by invoking our underlying assumption that the nonlinear
penetration depth is approximately frequency independent
and the measured IMD power is equated with the nonlinear
power component PIMD= PIMD�I ,T�� PNL, where we assume
that the IMD power delivered to the measurement system is
proportional to the IMD power circulating in the resonator.
We have ignored the power at other mixing frequencies and
at the third harmonic because the other components are not
resonant, as are the IMD components. Consequently, from
Eqs. �4.2�, �4.5�, and �4.6�, we have

PIMD = C�T�I2SP
2 ���I,T��, S��� =

Sp

3p
, �5.4�

where all purely temperature-dependent prefactors, such as
p�T� and �0�T�, are lumped into C�T�, and SP is the physical
solution of the CR as discussed in Sec. IV. An experimentally
convenient variable for displaying the data in conjunction
with Eq. �5.4� is the circulating power Pcirc in the resonator,
given by

Pcirc = I2Z0, �5.5�

where Z0 is the characteristic impedance of the stripline reso-
nator used in the experiments. The IMD and circulating
power are usually reported in the dimensionless dBm units
defined as

P�dBm� = 10 log10� P

1 mW
� . �5.6�

In terms of the modified power variable �5.6�, the expres-
sions for the IMD and circulating powers Eqs. �5.4� and �5.5�
take the form

y = PIMD�dBm� = 10 log10� PIMD

1 mW
�

= 10 log10	� I

IREF
�2

SP
2 ���I,T��
 + C�T� ,

FIG. 5. The constitutive-relation solutions for the case p
=10 eV
Å, Eq. �4.6�. The real and imaginary parts are denoted by
the thick and thin lines, respectively. The three CR solutions dem-
onstrate the special role of the �=1 point as expressed in Eq. �4.7�.
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x = Pcirc�dBm� = 10 log10� Pcirc

1 mW
� = 10 log10�� I

IREF
�2� .

�5.7�

The reference current IREF in Eq. �5.7� is that current which
generates 1 mW circulating power in the resonator. Expres-
sions �5.7� show that the current dependence of the CR in
Eq. �2.16� can be tested against experiment for a fixed tem-
perature by considering the slope of PIMD�dBm� against
Pcirc�dBm�. According to Eqs. �5.7� and �4.8�, the slope of
the log-log plot is given by

D�x� =
dy

dx
= 1 + 10

d

dx
log10�SP

2 ���T�10x/10�� , �5.8�

where

��T� =
108p�T��2�0

4�T�IREF
2

�dc�2 . �5.9�

In the low-power limit, ��1, and from Eqs. �4.4� and
�4.10�, it follows SP

2 ��2� I4� Pcirc
2 , which yields a slope

D�x�=3. In this limit the �NL has a quadratic current depen-
dence. On the other hand, in the high-power limit, the works
of Yip and Sauls1 and Dahm and Scalapino6 predict for �NL
a current dependence as �I�, which corresponds to a slope of
2, and the transition of slopes between these two power re-
gimes is monotonic. In this work, on the other hand, the
slope in the high-power regime is predicted to be 5/3 �Eqs.
�4.12� and �5.8�� and the slope transition between these two
power regimes is expressed in �5.8�. These distinct predic-
tions are amenable for comparison with the data2 for valida-
tion.

Another test of the present theory is to consider a data cut
where the circulating power is held fixed in the low-power
regime, while the temperature is varied. Since PIMD��NL

2 ,
we focus on the temperature-dependent factors in �NL, Eq.
�4.2�. In addition to such well-known temperature-dependent
factors as �0�T�, PIMD�T� at a constant low power provides a
test of the angular integral in �2.17�. Its analytical expression
is given in Appendix D. Considering the standard tempera-
ture dependencies �0�T�=�0

�1− t2 and �0�T�=�0�T
=0� /�1− t2, where t=T /TC,19 and Eqs. �D.2� and �D.3�, it
follows that

lim
T→0

�NL�I;T� �
I2

T
, lim

T→0
PIMD �

1

T2 for ��I,T� � 1,

�5.10�

since for t�0.1, both �0�T� and �0�T� do not influence the
T−2 behavior. The same low-temperature divergence was pre-
dicted by Dahm and Scalapino.6

The third and last prediction to be considered pertains to a
direct measurement of �NL by measuring the stripline reso-
nance frequency as a function of the circulating current. As
pointed out above, this method is reliable for sufficiently
large frequency shifts. For the case of a quadratic total-
current dependence, f = f0+ f2I2

�NL = �2� I

A
�2

, �5.11�

where A denotes the strip cross section’s area, and �2 is
simply related to the experimentally measured f2, Appendix
E, by

�2 =
f2

f

A2�0�0

�K
, �K =

�0�0
2� dSj2

I2 ,

�0 =

�0�� dS�0
2j2 +� dSH2�

I2 , �5.12�

where �0 and �K are the linear total and kinetic strip induc-
tances per unit length, which require numerical calculation.13

For notational clarity, the temperature dependence embedded
in the various factors in Eq. �5.12� is suppressed. This ex-
perimentally extracted �2 is compared below to the theoreti-
cally calculated �NL in the low-power regime �Sec. IV� in
order to remain consistent with the quadratic total-current
dependence assumed in �5.10�.

The theoretical predictions are now compared to recent
IMD data.2,11 The input parameters are the resonator’s char-
acteristic impedance Z0=33 �, the reference current corre-
sponding to a 1 MW circulating power IREF=5.5
10−3 A,
the strip width and thickness w=150 �m and d=0.35 �m,
the gap function �Eq. �A.3�� �0�T=0�=0.024 eV,18 and the
linear penetration depth �0�T=0�=0.2 �m.2 The
YBa2Cu3O7−� sample measured has an estimated carrier den-
sity of 0.34 holes/unit cell. Given the unit cell volume
�aa�2ac, where aa=ab=0.38 nm, ac=1.17 nm, the hole den-
sity is n=1.7
1021 cm−3. The empirical effective mass,
identified with the ab-plane effective mass, can be extracted
either from measured bulk plasma frequency ���P�2

=4�e2n��c�2 / �m*c2� or from the penetration-depth expres-
sion �2=m*c2 / �4�e2n�.21 However, the mass values using
these two expressions and the carrier density estimated above
are not the same. As a compromise we adopt the value
m* /m0=2, which yields �0�T=0��182 nm and ��P

�1.1 eV, reasonably consistent with the experimental num-
bers �0�T=0�=200 nm and ��P�1.4 eV.21 The ensuing
Fermi energy is ��0.3 eV and the c axis Fermi momentum
is taken as kF�ĉ�=� /ac=3.2 nm−1.

Figure 6 compares the slope prediction Eq. �5.8� to the
experimental IMD-power data at T=1.75 K.2 This particular
temperature is chosen to demonstrate most clearly the slope
variation with the circulating power. The solid line through
the data points is a sixth-order polynomial fit to obtain a
smooth differentiable curve for the measured slope. The
dashed line is the corresponding derivative. The measured
data shows that the slope is nonmonotonic. The calculated
slope shows similar behavior except for the discontinuity
point where the CR physical solution is abruptly changing.
Thus the experimental nonmonotonic slope is interpreted
here to indicate the existence of two distinct power-level
regimes as predicted in Sec. IV.
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Figure 7 shows IMD data in the low-power ���1�, low-
temperature regime in relative units, for comparison with the
predicted divergence of Eq. �5.10�. The predicted T−2 low-
temperature divergence is clearly manifested. Note also that
the calculated curve tracks the experimental curve quite well
for almost the entire temperature range. This comparison
provides further support for the present theory and the as-
sumed d-wave order-parameter symmetry in YBCO. Data at
higher power levels, outside the low-power regime �not
shown here�, do not show this clean T−2 divergence as
expected.2

Figure 8 plots the values of �2 in absolute units vs re-
duced temperature extracted from the IMD measurements at

a low circulating power of 5 dBm. This is the same data as
that shown in Fig. 7 but with the absolute value fixed as
described in the following. The determination of the absolute
�2 values begins with extracting the relative values of �2
from the measured PIMD since, as Eqs. �5.3� and �5.4� indi-
cate, �2��PIMD. This process is detailed in Ref. 2. From the
IMD measurements directly, one can only obtain relative val-
ues of �2 because an experimentally verified expression re-
lating IMD power to �2 does not exist. The process of ob-
taining the relative values leaves one free parameter to
determine the absolute value of �2, which we obtain from
measurements of the shift in resonance frequency of the
stripline resonator by determining the parameter f2, as dis-
cussed in Appendix E. Because the frequency-shift measure-
ments have lower sensitivity than the IMD measurements,
the f2 must be determined at medium to high power levels.
Although we wish to fix the absolute value of �2 at low
power, the f2 determined at high power is valid at low power
as well, provided the IMD vs power curve has a single slope
of 2 throughout the entire range of powers, indicating a
simple quadratic dependence of �NL on current. The data in
Ref. 2 show that at 50 K the IMD slope is 2 throughout, and
thus, f2 determined at any power level is valid throughout the
whole range. Thus we have used the 50 K data to fix the
absolute value of �2 shown in Fig. 8.

VI. DISCUSSION AND SUMMARY

In view of the encouraging comparisons between data and
these calculations, it is instructive to compare this work with
that of Dahm and Scalapino.6 An important difference is the
focus in our calculation on the momentum-space constitutive
relation relating the current density and the vector potential.
Our approach is a natural extension of the London theory
and the classic Meissner effect to the lowest nonlinear order,
Eq. �1.1�. This extension is derived in the framework of the

FIG. 6. Comparison of experimental and calculated IMD power
slope, Eq. �5.8� at T=1.75 K, as a function of the circulating power
in dimensionless dBm units, Eq. �5.6�. The experimental IMD
power and slope �Refs. 2 and 11� are denoted by the open circles
and dotted line, respectively, referring to the left and right ordinates.
The dash-dot line represents the calculation with the parameters
discussed in Sec. V. The discontinuity in the calculated curve mim-
ics the experimental nonmonotonic behavior of the experimental
curve at the correct circulating power range.

FIG. 7. The measured and calculated IMD power temperature
dependence for the low-power regime in relative units, see text. The
data, denoted by open circles, are taken from Ref. 2. The calculated
curve employs Eq. �5.4� for the IMD power where the variable p is
calculated from Eqs. �4.2� and �2.17� and the vector-potential factor

�A� �q=0��2 is identified with the solution S�1� of Eq. �4.6� for the
reasons elaborated in Sec. IV. The parameters are given in Sec. V.
The predicted low-temperature divergence, Eq. �5.10�, is manifested
by the dashed straight line. The solid line is the calculation over an
extended temperature range.

FIG. 8. The temperature dependence of �NL extracted form
resonance-frequency shift data according to nonlocal theory of this
work and the local theory approach �Ref. 6� for a low power point;
see Sec. V. The chosen power-level point is Pcirc=5 dBm. The non-
local theory, Eqs. �5.11� and �E.5�, employs no free parameters. The
local theory, Eqs. �5.11� and �E.7�, employs one free parameter jC,
representing the depairing current. The best fit to the data is ob-
tained for jC=5.2
108 A/cm2.
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general Green-function approach to superconductivity
�Gorkov equations�.9 Since all entries in this approach can be
extracted from measurable quantities, the resulting expres-
sions entail no free parameter. By contrast, the starting point
of the Dahm and Scalapino work is the assumed local form
of the quasiparticle distribution function in the presence of a
current. This approach entails one free parameter and, to our
knowledge, has been validated only in the limit of a vanish-
ing current.22 It is therefore to be expected that while the
results of this and the Dahm and Scalapino theory share
similarities, in particular in the low-power-level regime, they
are distinct in content, specifically the nonlocality of the non-
linear terms of the CR emerges from our theory while the
Dahm and Scalapino theory is local. As discussed in Sec. III,
this nonlocality implies that the nonlinear penetration depth
and IMD depend on the total current carried by the strip, e.g.,
Eqs. �5.11� and �5.12�. This property implies in particular
that strip edges have no prominent role and Eq. �5.1� is used
to extract �NL from experiments. On the other hand, in the
Dahm and Scalapino approach,6 only the local current den-
sity is involved and the current density peaks at the strip
edges play an important role; see Eqs. �E.6� and �E.7�.

The methodologies of extracting the nonlinear penetration
depth from experiment according to the present nonlocal
theory and the Dahm and Scalapino local theory are differ-
ent. According to the latter, to compare the extracted �2 with
the corresponding theoretical expression Eq. �E.7�,6 the one
free parameter of the theory, the depairing current density, is
adjusted to jC=5.2
108 A/cm2; see Fig. 8. According to the
present local theory, the extracted �2 is given by Eq. �5.12�.
While these two sets of extracted �2 have the same tempera-
ture dependence and good fit with the respective theories,
they differ substantially in magnitude; see Fig. 8. Another
comparison between the present theory and the Dahm and
Scalapino results is the slope of the IMD power curve. As
Fig. 6 shows for T=1.75 K, the data yield a nonmonotonic
slope s, starting at s=3 in the low-power regime, dipping
down at higher powers to s1.5 before rising again to a
value s3. In the local theory, the slope varies from s=3 to
value s=2 monotonically.6 On the other hand, our theory
shares with the Dahm and Scalapino theory the prediction of
the low temperature T−2 divergence at a fixed low power
�Fig. 7� and the prediction of two power-level regimes at low
temperatures. It is up to the totality of the data and further
theoretical development to resolve which of the two ap-
proaches, the local1,6 or the present nonlocal approach, is the
appropriate one.

In summary, a systematic microscopic approach for cal-
culating nonlinear corrections to the Meissner effect, and
hence to IMD products, has been presented. It is a natural
extension of the linear constitutive relation underlying the
London theory. Its predictions compare favorably, both
qualitatively and quantitatively, with recent measurements of
the power and temperature dependence of IMD in high-
quality YBCO films, Figs. 6–8. A distinct advantage of the
present approach is that all input parameters are obtainable
from measured quantities. The remaining differences be-
tween the data and present predictions, e.g., Fig. 6, indicate
the need for further extensions of the theory. Efforts in this
direction are underway. Finally the present approach is com-

pared to previous work addressing the nonlinear Meissner
effect,1,6 pointing out the similarities and differences be-
tween the two approaches. In particular, this approach im-
plies the importance of recognizing the underlying nonlocal-
ity of the nonlinear term in the CR while the alternative
approach invokes the local current density.1,6
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APPENDIX A: THE UNIFORM SUPERCONDUCTOR
GREEN FUNCTIONS, d-WAVE SYMMETRY GAP

FUNCTION, AND ONE-DIMENSIONAL FOURIER
TRANSFORMS

For the sake of self-containment and reproducibility of the
results in Sec. II, we quote here some useful expressions, all
in the cgs unit system. For a uniform superconductor free of
an external electromagnetic field, the displacement invariant
Green function matrix Eq. �2.4� is given by

Ĝ0 = �g0�x,x�� f0�x,x��
f0�x,x�� − g0�x�,x�

� = �g0�x − x�� f0�x − x��
f0�x − x�� − g0�x� − x�

� ,

�A.1�

where the explicit expressions are9

�g0�x − x��, f0�x − x���

= ��2��3	��−1 �
n=−�

�

e−i�n��−���


� dk�eik�·�x�−x����g0�k�,�n�, f0�k�,�n�� ,

g0�k�,�n� =
− ��i��n + �k��

���n�2 + �k�
2 + ���k���2

= g0
*�− k�,− �n�, f0�k�,�n�

=
���k��

���n�2 + �k�
2 + ���k���2

,

�n =
�2n + 1��

	�
, �k� = e�k�� − � . �A.2�

In �A.2�, e�k�� denotes the single electron energy in the first
Brillouin zone and �n are the Matsubara frequencies for fer-
mions where the index n runs over all integers. It can be

readily verified that Eq. �A.2� solves Eq. �2.1� for A� =0. In
the case of a dx2−y2 gap symmetry, the gap function can be
parametrized as6,18

��k� ;T� = ���;T� = �0�T�cos�2�� �A.3�

The parametrization in Eq. �A.3� implies a particular orien-
tation of the gap’s nodal lines with respect to the direction of
current flow; see Fig. 1. It has been shown elsewhere6 that
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results depend rather weakly on the particular orientation;
hence hereafter only the nodal-lines orientation implied by
Eq. �A.3� is considered. Complementing �A.2� are the or-
thogonality relations9

��x�� =
1

�2��3�
−�

�

dk�eik�·x�, �
0

	�

d�e−i��n−�n��� = 	��n,n�.

�A.4�

It is implicitly assumed in �A.2� that the gap function is
self-consistent to zero order in the vector potential. This self-

consistency holds also to first order in A� by virtue of a sym-

metry argument:9 since ��r�� is a scalar, its A� dependence is

expressed with only scalar constructs of A� . The only one

such scalar construct linear in the vector potential is �� ·A� ,
which vanishes by virtue of the gauge choice. Furthermore,

the second and all even-order A� -dependent corrections van-
ish by virtue of a time-reversal symmetry argument; namely,
if the gap function contains such terms, so will the ensuing
current-density expression, Eq. �2.5�, which is inconsistent
with the expected property that the current reverses direction

when the field does. Consequently the lowest A� -dependent
correction to the gap function is of third order. The neglect in
this work of this and higher odd-order corrections to the gap
function should be considered as part of the approximation
scheme adopted here. Its validity hinges on the comparison
with the ensuing results and pertinent data. The favorable
comparison with data �see Sec. V� indicates that the ne-
glected terms are indeed negligible.2

On the other hand, the vector-potential self-consistency
acquires the attenuation functional dependence due to the
presence of a superconductor strip, which is key to the es-
tablishment of approximation Eqs. �2.14�. In this sense the
approximation Eq. �2.14� is interpreted as the embodiment of
the vector-potential self-consistency requirement.

Finally note the one-dimensional Fourier transform defi-
nitions of the vector potential and current density used in this
work

A� �r�� =
1

2�
� dq�eiq� ·r�A� �q�� ,

A� �q�� = �Ax�qz�,0,0���qx���qy�, q� = �qz,0,0� ,

j��z� =
1

2�
� dqze

iqzzj��qz�, j��qz� = �jx�qz�,0,0� . �A.5�

APPENDIX B: NONLINEAR KERNEL FOR AN s-WAVE
SUPERCONDUCTOR

The expression Eq. �2.15� is general and hence applies to
an s-wave superconductor. Note, however, that the angular
integration and the Brillouin zone for an s-wave supercon-
ductor are different than that of a d-wave superconductor
�see Appendix C�. The s-wave case has been derived
elsewhere7 by a different technique. It is important to check

�2.17� against that previous result. Only results are quoted
here for future reference.

In spherical coordinates and for an arbitrary function F
the angular integration in �2.17� yields

� dk�1k�1�A� �q�� · k�1�2�A� �− q�� · k�1�F�k1�

= x̂�A� �q��2A�q�
4�

5
�

0

�

dk1k1
6F�k1� . �B.1�

For a spherical Brillouin zone and � as defined in Eq. �A.2�,
the momentum integration in �B.1� is approximated by

�
0

�

dk1k1
6F�k1� �

4kFm3�2

�6 �
−�

�

d�F„k1���… �B.2�

Employing Eqs. �A.1�, �A.2�, and �2.16� yields for an s-wave
superconductor the third-order nonlinear kernel correction

K�2��T� =
2qS

4�2kF�2�T�
5�2mc2��c�2	�0

2�T� �
n=−�

�
�2�T� − �2��n�2

��2�T� + ���n�2�7/2 .

�B.3�

Expression �B.3� has a different form than that derived in
Ref. 7. However, we checked numerically that both forms
are identical. This equality implies that the series in Eq. �B.3�
has a closed-form sum, i.e., that given in Ref. 7.

In view of the nonlinear penetration-depth divergence at
low temperatures for a d-wave gap symmetry superconductor
as in Eq. �5.10�, it is of particular interest to examine the
corresponding T→0 limit of �B.3�. In this limit the summa-
tion in Eq. �B.3� can be replaced by an integration, i.e.,

�
0

�

dx
1 − �2x�2

�1 + x2�7/2 = 0. �B.4�

Thus, in the T→0 limit, the kernel K�2��T� vanishes for an
s-wave superconductor, opposite to the divergence encoun-
tered for a d-wave superconductor.

APPENDIX C: THE k�1 INTEGRATION IN Eq. (2.15) FOR A
d-WAVE SUPERCONDUCTOR

For the sake of self-containment of this work, the impor-
tant approximations and details of the k�1 integration are
given here. In the case of a d-wave superconductor with the
assumed cylindrical Fermi surface,15 the cylindrical coordi-
nate system is a natural choice. In that coordinate system and
the Cartesian coordinate system of Fig. 1, the k�1-integration,
vectors, and scalar products involved are given by

k�1 = K�x̂ cos � + ŷ sin �� + ẑkz, � dk�

= �
0

�

dKK�
0

2�

d��
−�

�

dkz, �A� �q� · k�� = A�q�K cos � .

�C.1�

The K-momentum integration in Eq. �C.1� is replaced by

D. AGASSI AND D. E. OATES PHYSICAL REVIEW B 72, 014538 �2005�

014538-12



integration over the relative energy ��K ,kz�, Eq. �A.2�. Thus,
for the assumed cylindrical Brillouin zone we approximate

��K,kz� =
�2K2

2mab
+

�2kz
2

2mz
− � �

�2K2

2mab
− � = ��K� ,

�C.2�

since mz�mab for YBCO. Most of the contribution to the
integral in Eq. �2.15� comes from the vicinity of the Fermi
surface9; the contributions from the rest of the integration
range are cut off by the Green functions factors in the inte-
grand. It follows therefore that given the approximation Eq.
�C.2�, the kz integration in Eq. �2.15� runs over the height of
the cylindrical Fermi surface, while the � integration, Eq.
�C.2�, can be extended to infinity. Combining these steps
yields

�
−�

�

dkz�
0

�

dKK5I�K,kz,�� � 8kF�ĉ�


�mab

�2 �3

�2�
−�

�

d�I�K���,�� ,

�C.3�

where I denotes the integrand in �2.15�.
The angular integration in Eq. �2.15� is a bit more com-

plex. For the gap function of Eq. �A.3�, inserting Eqs.
�C.1�–�C.3� into Eq. �2.15�, noting the particular angular de-
pendence of the homogeneous Green function factors �Ap-
pendix A� by virtue of the gap-function angular dependence,
and given that

�
0

2�

d��cos ��3�cos�2���n = �
0

2�

d��cos ��3sin����cos�2���n

= 0, �C.4�

it follows that the angular integration eliminates all but the x̂
component in Eq. �2.15�, as expected. As for the � integra-
tion of the x̂ component momentum, lengthy algebra yields
the simple result

� d���Ĝ0��,�n��4��1,1� =
��4�2��;T���2��;T� − 4���n�2�

2��2��;T� + ���n�2�7/2 .

�C.5�

This result is identical to that embedded in Eq. �B.3� except
for the gap-function angular dependence in Eq. �C.5�. The
latter is taken up in Appendix D.

APPENDIX D: THE ANGULAR INTEGRATION IN Eq.
(2.17)

In terms of elliptic integrals according to the definitions in
Ref. 24, it can be shown that the angular integration has the
closed form

�
0

2�

dx cos4�x�cos2�2x�	 �cos2�2x� − �2B�2�
�cos2�2x� + �B�2�7/2


=
1

3B2�1 + B2�5/2��− 1 − 14B2 + 3B4�E� 1

1 + B2� + B2�5

− 3B2�K� 1

1 + B2�� . �D.1�

In �D.1� the functions K�m� and E�m� denote the complete
elliptic functions of the first and second kind, respectively.
Note also the useful relations20

E�1� = 1, lim
x→0

�xK� 1

1 + x2�� = 0, �
n=−�

�
1

�2n + 1�2 =
�2

4
.

�D.2�

Comparing the structure of the left-hand side of Eq. �D.1�
to Eq. �2.17�, it follows that the dimensionless entries to Eq.
�D.1� are

B�T� =
�2n + 1��

��T�
, ��T� = 	�0�T�, 	 =

1

kBT
. �D.3�

APPENDIX E: EXTRACTING THE ABSOLUTE VALUE OF
�NL FROM THE MEASURED RESONANCE-

FREQUENCY SHIFT

The measured change of resonance frequency �f as a
function of the circulating current is related to the nonlinear
penetration depth �NL. Considering the parallel R-L-C
equivalent circuit of the resonator25 for which the resonance
angular frequency is �=1/�LC. Consequently,

�f

f
= −

�L

2L
, �E.1�

where �=2�f , the resonance-frequency shift is �f �df and
the inductance variation �as a function of the current� is
�L�dL. The value of L is related to the inductance per unit
length of the strip � as L= �2/�2���, where � is the strip
length. In terms of the MKS units employed hereafter in this
appendix, the coordinate system of Fig. 1 and the current and
field distributions in and around the strip, � is given by13

� =

�0� dydz�2j�y,z�2

I2 +

�0� dydzH�y,z�2

I2 , �E.2�

where j�y ,z� is the current density and H�y ,z� is the mag-
netic field.

1. Nonlocal case

Consider the nonlinear regime of a quadratic dependence
on total current,

L = L0 + L2I2, � = �0 + �2I2, f = f0 + f2I2, �E.3�
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� = �0 + �2�j�2 = �0 + �2�I/A�2,

where A is the strip cross-sectional area and �j�= I /A is the
averaged current density. This dependence agrees with em-
pirical observation and the results of discussion in Sec. III. It
is implicit in Eq. �E.3� that the nonlocality of the nonlinear
contributions is manifest in the expression for �, which de-
pends on I /A, the average current density, rather than the
local current density j�y ,z�. Equation �E.6� considers the lo-
cal nonlinearity case.

To a very good approximation, the nonlinear inductance
arises primarily from the kinetic term in Eq. �E.2�,6 and the
total inductance is to a very good approximation the linear
inductance L0. Thus, inserting �E.3� into �E.2� and �E.1�
yields

−
2f2L0

f
� −

2f2L

f
= L2 =

2�

�2

2�0�0�2� dydzj2�y,z�

�AI�2 .

�E.4�

Simple manipulations yield

�2 =
f2

f

A2I2�0

�0�0� dydzj2�y,z�
=

f2

f

A2�0�0

�K
, �E.5�

where �K the kinetic inductance is given by

�K =

�0�0
2� dydzj2�y,z�

I2 .

Equation �E.5� relates the �2 to the experimentally mea-
sured quantity f2 and to �0 and �K, which has been calcu-
lated numerically and verified experimentally.13

2. Local case

We turn now to the corresponding derivation in the local
Dahm and Scalapino theory,6 in which the calculated nonlin-
ear penetration depth depends on the local current density
j�y ,z�. Its coefficient �2 is given by

� = �0 + �2j2�y,z� , �E.6�

where

�2 =
�0b�

2jC
2 ,

jC is an adjustable parameter, nominally the depairing cur-
rent density,10 and b� stands for an angular integral, similar
to that in Eq. �2.17�.6 Using Eqs. �E.1� and �E.2� with the
insertion of Eq. �E.6� instead of Eq. �E.3�, we obtain the
expression for �2.

�2 =
f2

f

I4�0

�0�0� dydzj4�y,z�
. �E.7�

Note the difference in normalization between Eqs. �E.5�
and �E.7�, where in the latter the current-density peaks at the
strip edges dominate the integral in the denominator. Thus in
extracting �2 from the experimental f2 different values of �2
will be obtained depending whether the local �Eq. �E.5�� or
nonlical �Eq. �E.7�� model is used.
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