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We present a general derivation of Hess-Fairbank effect or nonclassical rotational inertial �NCRI�, i.e., the
refusal to rotate with its container, as well as the quantization of angular momentum, as consequences of
off-diagonal long-range order �ODLRO� in an interacting Bose system. Afterwards, the path integral formula-
tion of superfluid density is rederived without ignoring the centrifugal potential. Finally and in particular, for
a class of variational wave functions used for solid helium, treating the constraint of single-valuedness bound-
ary condition carefully, we show that there is no ODLRO and, especially, demonstrate explicitly that NCRI
cannot be possessed in absence of defects, even though there exist zero-point motion and exchange effect.
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I. INTRODUCTION

It was first suggested by London that the ability of liquid
4He II to flow through narrow capillaries without apparent
friction is a consequence of Bose-Einstein condensation
�BEC�.1 The concept of BEC was later generalized by Pen-
rose and Onsager to be applicable to interacting particles.2,3

It was further generalized and systematically investigated by
Yang, as the notion of off-diagonal long-range order
�ODLRO�.4 Now it is known that the no-friction behavior in
narrow capillaries is only one of several phenomena of
superfluidity.5 As elaborated by Leggett,6 the most basic
manifestation of superfluidity is the Hess-Fairbank effect,7

which was also called “nonclassical rotational inertial”
�NCRI� by Leggett.5 This refers to the refusal of the system
to rotate with its container, when its angular velocity is suf-
ficiently low. It is the counterpart of the Meissner effect of
superconductivity. Furthermore, the quantization of angular
momentum of the superfluid in the rotating container is the
counterpart of the magnetic flux quantization in a supercon-
ductor.

In the case of superconductivity, the demonstration of
Meissner effect and the magnetic flux quantization, as con-
sequences of ODLRO, was made by Yang,4 and by Sewell
and Nieh et al. in a more recent alternative approach.8 Bloch
discussed the relation between superconducting persistent
current and ODLRO.9 In the case of superfluidity, Kohn and
Sherrington derived the Hess-Fairbank effect as a conse-
quence of ODLRO by using a sophisticated hierarchy of
equations of thermal Green functions.10 For a noninteracting
Bose gas and a Gross-Pitaevskii system, Leggett made a
clear-cut demonstration of Hess-Fairbank effect and quanti-
zation of angular momentum as consequences of BEC.11 Ear-
lier, in an extremely thorough and insightful discussion,5

Leggett pointed out that a sufficient condition of superfluid-
ity is a certain topological connectedness property of the
many-body wave function, and that at least for zero tempera-
ture, ODLRO gives rise to this connectivity and thus super-
fluidity, but for a finite temperature, whether ODLRO is suf-
ficient for superfluidity in general is not conclusive.

Moreover, Leggett established, from the point of view of
connectivity of wave function, that BEC and NCRI behavior

can in principle also be exhibited by a solid.12 Recently, Kim
and Chan clearly observed NCRI-like behavior in bulk solid
4He in an annulus channel,13 shortly after an earlier such
observation in solid 4He confined in porous Vycor glass.14

But a consensus on its origin is yet to be reached.15–18 The
earliest predictions on supersolidity, i.e., superfluid behavior
in a solid, were based on BEC of defect states.19,20 But the
concentration of zero-point vacancies is less than 10−6 ac-
cording to the experimental results.21 Thus an important
question is whether it is possible for a pure commensurate
sample of solid 4He, i.e., without vacancies or interstitials, to
become a supersolid. Negative answers were given recently
in a path integral Monte Carlo calculation of exchange fre-
quencies in bulk hcp 4He,16 and in a general argument about
superfluidity density.17

Thus from both the fundamental point of view and the
perspective of understanding supersolid behavior, it appears
still interesting to make a general derivation of the Hess-
Fairbank effect and quantization of angular momentum as
clear consequences of ODLRO for an interacting Bose sys-
tem in a rotating container. In this paper, we first make such
a derivation. Afterwards, for a reason explained below, we
rederive the superfluid density in the path integral
formulation,22 which is the very basis of the analyses of solid
4He in Refs. 16 and 17. Finally, we consider the trial wave
functions ever used in variational calculations for solid he-
lium, including the Hartree wave function, the Hatree-Fock
wave function, and the Nosanow-Jastrow wave function. It is
shown that there is no ODLRO or BEC in these wave func-
tions. Moreover, by examining the dependence of free energy
on the rotation velocity of the container, we explicitly dem-
onstrate that a commensurate solid described by such wave
functions cannot possess NCRI, in absence of vacancies or
interstitials, even if there exist zero-point motion and the
exchange effect.

Note that the nonsuperfluidity of the Hartree-Fock wave
function made up of localized single particle wave packets
has been discussed by Leggett from the point of view of
disconnectivity of the wave function long ago.5 Our ap-
proach provides an explicit construction of the rotating wave
function under the constraint of the “single-valuedness
boundary condition” �SVBC� as called by Leggett,5 while
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keeping the energy the same as that in the static case. To do
this, adjustment on the wave function needs to be made in
the exponentially vanishing regions, as argued by Leggett.

II. HAMILTONIANS AND FREE ENERGIES IN THE TWO
REFERENCE FRAMES

As usual, consider a Bose system in a container rotating
with an angular velocity �. Thermodynamic equilibrium is
determined by the minimization of the free energy in the
corotating frame of reference, in which the wall of the con-
tainer is at rest. In this frame, the Hamiltonian is

H = �
j
� �p j − m� � r j�2

2m
−

1

2
m�� � r j�2 + U�r j��

+
1

2 �
j�k

Vjk, �1�

where the notations are standard, U is the external potential,
Vjk�V��r j −rk�� is the particle-particle interaction and is ro-
tationally invariant. For basic mechanics and thermodynam-
ics of a rotating body and the application to a Bose system,
we refer to the standard texts.23 But we draw attention to the
point that for each particle, the radius vector r j, the canonical
momentum p j, and the angular momentum l j =r j �p j are,
respectively, the same in the laboratory frame and in the
corotating frame. It is for this reason that H can be rewritten
as

H = Hlab − � · �
j

l j ,

where

Hlab = �
j

�p j
2/2m + U�r j�	 + �1/2��

j�k

Vjk

is the Hamiltonian in the laboratory frame. This point is quite
delicate in the ODLRO study.24

For simplicity, as usual, consider a thin cylindrical annu-
lar container, with average radius R and thickness d�R �Fig.
1�. The rotation � is, of course, along the cylindrical axis �z
axis�. Then the centrifugal potential becomes a �-dependent
constant �in the sense that it is independent of the particle
configuration�, − 1

2 M��R�2, where M is the total mass of the
particles.

It is probably useful to make a synopsis here on the free
energies in the two reference frames and their relations with
the rotational inertial and the superfluid density. The free
energy in the corotating frame can be written as

F = F0 −
1

2
Ic�

2 = a −
1

2
I�2, �2�

where a is a constant, Ic=MR2 is the classical rotation iner-
tial,

F0 � a +
1

2
�Ic − I��2.

The total angular momentum is L= 
� jl j�, hence

Lz = I� = −
�F

��
.

In the laboratory frame, the free energy is

Flab = F + � · L = F + I�2.

Therefore,

Flab = Flab,0 +
1

2
Ic�

2 = a +
1

2
I�2,

where

Flab,0 � a −
1

2
�Ic − I��2.

Consistently, one also has

Lz = I� =
�Flab

��
,

I = −
�2F

��2 =
�2Flab

��2 .

For a normal system, I= Ic, thus F0=Flab,0=a. If F0 or,
equivalently, Flab,0 depends on �, then the system is a super-
fluid, with NCRI. The superfluid fraction is

�S

�
= 1 −

I

Ic
=

1

Ic

�2F0

��2 = −
1

Ic

�2Flab,0

��2 ,

where �S and � are the superfluid density and the total fluid
density, respectively. It should be noted that in equilibrium, it
is F, not Flab, that is related to the partition function Q as
F=−kT ln Q.

III. A DERIVATION OF NCRI FROM ODLRO

Now we make a general derivation that if the system pos-
sesses ODLRO, then F0 in Eq. �2� depends on �. We use an
approach similar to Yang’s treatment of superconductivity in
a magnetic field.4

Using the cylindrical coordinates �z ,r ,�� and considering
the geometry, the Hamiltonian �1� can be simplified as

H = H0 −
1

2
M�2R2, �3�

with

FIG. 1. The cylindrical annular container as often considered in
literature and also here. The radius R is much larger than the thick-
ness d. The rotation is along the axis of the two concentric
cylinders.
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H0 = �
j
� �p�j − m�R�2

2m
+

pzj
2

2m
� +

1

2 �
j�k

Vjk + NU�R� ,

where p�j = �1/R�� /�� j. The radial momentum prj =� /�rj is
neglected because d�R. An eigenfunction �� of H satisfies

H�� = E���,

and the periodic boundary condition, or SVBC,

���� j + 2	,��i�j� = ���� j,��i�j� �4�

due to the cylindrical geometry.
Because −M�2R2 /2 is a constant for a given �, we only

need to consider H0, whose eigenfunctions are completely
the same as those of H, i.e.,

H0�� = E����, �5�

where E�� =E�+M�2R2 /2.
By a “gauge” transformation

�� = ���exp� im�R�
j

� j



� ,

��� satisfies

H0���� = E����� ,

where

H0� = �
j
� p�j

2

2m
+

pzj
2

2m
� +

1

2 �
j�k

Vjk + NU�R� .

The angular boundary condition becomes

����� j + 2	,��i�j� = e−2	im�R/
����� j,��i�j� . �6�

Now consider the un-normalized density matrix

�dm = e−H0/kT.

Because H=H0− Ic�
2 /2 , F0 in Eq. �2� is given by F0

=−kT ln Q�H0�, where Q�H0�=Tr �dm. From �dm, by tracing
over all but one particle, one obtains the �un-normalized�
one-particle reduced density matrix �1.

The problem determined by H0 together with SVBC is
equivalent to the description in terms of H0� together with Eq.
�6�. From the � independence of H0� and the boundary con-
dition �6�, one knows that


�� + 2	��1��� = 
����1�� − 2	� = e2	im�R/

����1��� . �7�

We can now apply Yang’s method to the current problem.
Without ODLRO, �1 is vanishingly small except in the

regions around �=��±2n	, where n=0, 1, … . As indicated
by Eq. �7�, the values of �1 in two neighboring regions only
differ by a phase factor e±2	im�R/
.

With ODLRO, these regions with nonvanishing �1 merge
into each other, and �1 is nonvanishing everywhere. The
above phase relation remains.

Furthermore, with ODLRO, Eq. �7� implies that the de-
pendence of 
r���1�r� on r−r� must vary as � varies. Con-
sequently, Q�H0� and thus F0 also vary with �, as Q�H0�
=Tr1�1 and F0=−kT ln Q�H0�. This proves that ODLRO
gives rise to superfluidity or NCRI.

IV. QUANTIZATION OF ANGULAR MOMENTUM

We now demonstrate the quantization of angular momen-
tum as a consequence of ODLRO, by employing the method
of Bloch in discussing superconducting persistent current,9

and also as a generalization of an argument by Leggett.11 As
said above, the angular momentum and momentum are, re-
spectively, the same in the laboratory frame and in the coro-
tating frame. But for convenience, here we use the corotating
frame.

Consider the one-particle reduced density matrix with r
and z coordinates integrated over,


����1��� =� dr� dz
r,��,z��1�r,�,z� ,

and its Fourier transformation


����1��� =
1

2	
�
l�,l

e�i/
��l�−l����
l���1�l� , �8�

where l and l� represent angular momenta. Its normalization
is

� 
���1���d� = �
l


l��1�l� = N .

Conservation of angular momentum in the z direction im-
plies that 
l� ��1 � l�=0 for l�� l.

The total angular momentum, along the z direction, for
the system under consideration can be given as

Lz = �
l

l
l��1�l� . �9�

In the Hamiltonian in Eq. �3�, p�j can be substituted as lzj /R,
where lzj is the z-component angular momentum operator of
the jth particle. Thus H depends on single particle angular
momentum operators through the kinetic term

�
j

�lzj − m�R2�2/�2mR2� .

Define l̃= l−m�R2. In Eq. �9�, if the summation can be

replaced as an integral, then one can substitute l as l̃

+m�R2 and replace the integral over l as that over l̃. Conse-
quently one obtains Lz=Nm�R2+Lz����, where Lz���� is in-
dependent of � and is thus equal to Lz��0�, which must be
vanishing. Therefore

Lz = Nm�R2,

which is exactly the angular momentum of a classical object.
But is it legitimate to replace the summation over angular
momentum eigenvalues as an integral?
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Let �� be the range of ���−�� in which 
����1��� remains
the same order of magnitude as 
���1���, while �l is the half
width of 
l��1�l� around l= l0. Then because of Eq. �8�, we
know

���l � 
 .

In the absence of ODLRO, ���1, thus

�l � 
 .

This allows the replacement of the summation over l as an
integral, provided that 
l��1�l� is smooth.

In contrast, the presence of ODLRO implies that

�� � 1.

Therefore,

�l � 
 ,

which is equal to the unit difference of angular momentum
eigenvalues. It is thus clear that if there is ODLRO, then one
cannot replace the summation as an integral.

For such a probability distribution caused by ODLRO,

l��1�l��N0 for l� l0, where N0 is of the same order of mag-
nitude of N, while 
l��1�l� for other values of l are negligible.
Thus the total angular momentum is quantized as

Lz � N0l0,

with l0 determined by minimizing the Hamiltonian. When �
is sufficiently small, l0=0, i.e., the system exhibits Hess-
Fairbank effect. When � is finite, l0 is finite, but N0l0 is less
than Nm�R2.

V. REDERIVATION OF SUPERFLUID DENSITY IN PATH
INTEGRAL FORMALISM

The analyses on solid 4He in Refs. 16 and 17 were based
on an elegant path integral formulation of superfluid density
in a rotating annulus,22 with the same geometry as in our
consideration above. It was derived by neglecting the cen-
trifugal potential. We believe that the centrifugal potential
cannot be neglected. As this formulation of superfluid den-
sity is very important and widely used, it may be worthwhile
to rederive it without neglecting the centrifugal potential. It
turns out that it nicely remains the same, although the cen-
trifugal potential is added to the free energy. But it seems
that this is known only after it is checked, so it is reported
here.

We rewrite the Hamiltonian in the rotating frame, already
given in Eq. �1�, as

H = �
j

�p j − mv�2

2m
−

1

2
Nmv2 + U + V , �10�

where, to follow Ref. 22, the rotational velocity �R is de-
noted as v. The external potential and the interaction terms
are schematically denoted as U and V, respectively. U is
absent in Ref. 22, but its addition does not change the equa-
tions concerned. This Hamiltonian determines the density
matrix �dm and the statistical distribution.

One obtains22

�N

�
Nmv =

Tr�P�dm�
Tr��dm�

, �11�

where �N is the normal fluid density, P=� jp j is the total
momentum. This identity is obtained by considering the mo-
mentum in the laboratory frame, as v is the container veloc-
ity in the laboratory frame. Again, note that the canonical
momentum is the same in the laboratory and in the corotat-
ing frames, while it reduces to the kinematic momentum in
the laboratory frame.

Because

P = −
�H

�v
,

Eq. �11� can be rewritten as

�N

�
Nmv = −

�F

�v
, �12�

where F=−kT ln�Tr��dm�	 is the free energy in the corotating
frame. Therefore the superfluid fraction is

�S

�
= 1 +

��F

N
�

��1

2
mv2� .

Thus the free-energy change due to the rotation of the con-
tainer, up to the order of v2, is

�F

N
=

mv2

2
��S

�
− 1� , �13�

from which it can be confirmed that the centrifugal potential
mv2 /2 indeed cannot be ignored, since it is no less than the
other term ��S /��mv2 /2.

In the path integral calculation

e−�F =
� �dm�X,X;;v�dX

� �dm�X,X;;v = 0�dX

,

where X represents the configuration of the particles. The
“gauge term” −mv in the kinetic energy term can be trans-
formed away, by adding, in the density matrix elements, a
phase factor in winding the periodic system, as in Eqs. �6�
and �7�. Consequently, one can replace �dm�X ,X ; ;v� as the
density matrix �̃dm�X ,X ; ;v� corresponding to the Hamil-
tonian without the “gauge term,” while multiplying it by a
phase factor due to the total paths WL of the N particles
winding around the system, where W is the winding
number.22

�̃dm=exp�−H̃�, where H̃=H�v=0�−Nmv2 /2. H�v=0� is
just H0� in Sec. III. We obtain
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e−�F = 
ei�m/
�v·WLe�1/2�Nmv2
� ,

where the average is that of the density matrix with v=0.
Consequently, up to the order of v2, we have

�F = N
mv2

2
�m
W2�L2

3
2N
− 1� ,

which, together with Eq. �13�, yields

�S

�
=

m
W2�L2

3
2N
,

which is the same as that given in Ref. 22. They remain the
same even if v is not a small quantity, for the reason is that v
is independent of the particle configuration.

VI. NO ODLRO IN NOSANOW-JASTROW WAVE
FUNCTIONS

Now we turn our attention to solid 4He. For a commen-
surate solid at rest, each atom occupies a lattice site. Because
of quantum-mechanical zero-point motion, which is large in
solid helium, around the neighborhood of each lattice site,
there is a finite region in which the wave function is nonva-
nishing. With the exchange effect put aside first, the wave
function is localized around each lattice site, i.e., it decays
from the maximum at the lattice site. Let us denote the wave
packet of atom i as w�ri−Qi�, where ri is the actual position
of the atom, Qi represents a lattice site fixed in the solid. The
Hartree approximation of the wave function of the solid he-
lium is the product of these single-atom wave functions, i.e.,

�H = �
i=1

N

w�ri − Qi� , �14�

which was indeed used in the earliest �unsatisfactory� varia-
tional calculations of solid helium.25 Later works, starting by
Nosanow,26 took into account the two-particle short-range
correlation by multiplying the Hartree wave function by the
Jastrow factor.

To account for the exchange effect due to overlap between
neighboring single-particle wave packets, one also needs to
consider the wave function symmetrized over all the atoms;
the detailed nature of the exchange effect is then determined
by the Hamiltonian. With symmetrization, the Hartree ap-
proximation is improved to Hartree-Fock approximation

�HF =
1

�N!
�
P

P�
i=1

N

w�ri − Qi� , �15�

where P represents N! permutations of the N lattice sites
�Qi. The symmetrization can be made on either the particle
positions �ri or the lattice sites �Qi. We choose the latter for
easier manipulation below.

The symmetrized Nosanow-Jastrow wave function is

�SNJ = K�
P

P�
i=1

N

w�ri − Qi��
k

�
j�k

f jk, �16�

where K is the normalization constant,

f jk � f�− u��r j − rk��	

is the Jastrow �or, to be historically precise, Bijl-Dingle-
Jastrow� function. f�−u�r�	 attains a maximum larger than 1
at a certain distance r0, and it is constrained to be f →0 as
r→0, and f →1 as r→� or r�� where � is a parameter.
Note that �k� j�kf jk is automatically symmetric for all par-
ticles.

Our consideration is about a thin cylindrical bulk, ri
= �R ,R�i ,zi�. Especially, the periodic boundary condition in
coordinate � should be taken into account in an essential
way. It implies that the Wannier-like function w must be of
the form27

w�r − Q� = A �
�=−�

�

w̄�r − Q − �G� , �17�

where A is the normalization constant, G=2	R�̂ represents
the circumference, � represents integers, w̄ is the �real�
Wannier-like function for the infinite interval. Each w̄ ex-
tends over a finite range, much smaller than the system size,
but finite overlap is allowed. ±� in the summation can be
understood as two bounds which can be arbitrarily large.
Thus

w̄�r�w̄�r − S� � w̄2�r�exp�− �S�/c� , �18�

where S is an arbitrary vector and c is a length scale less than
the lattice constant. Consequently, the normalization constant
A in Eq. �17� is A����,��exp�−��−���G /c�	−1/2.

Moreover, it can be found that

w�r�w�r − S� � w̄2�r�exp�− �S̄��/c� , �19�

where S̄� is the � component of S modulo ±G such that

�S̄���G /2, i.e., �S̄�� is the shortest � component of the dis-
tance between the two physical points represented by r and
r−S.

We now set out to show that there is no ODLRO or BEC
in �H or �HF or �SNJ, by examining the one-particle reduced
density matrix

�1�r,r�� = N� dr2 ¯ drN��r,r2,…,rN���r�,r2,…,rN�

for the ground state wave function � of the form of �H or
�HF or �SNJ.

Though trivial, it is instructive to first consider �H. It is
straightforward to integrate out r2 ,… ,rN, and obtain
�1�r ,r��=Nw�r−Q1�w�r�−Q1�, for which Eq. �19� directly
leads to

�1�r,r�� � Nw̄2�r�exp�− �x − x��/c� , �20�

where x=R� denotes the � component of r. Of course,
w̄2�r��1. Thus �1�r ,r��→0 as �x−x�� approaches the sys-
tem size, i.e., there is no ODLRO or BEC in �H.

Now consider the Hartree-Fock wave function �HF. In the
expansion of �1, suppose the lattice sites in the first � are
denoted as �Qi while those in the second � are denoted as
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�Qi�. The exponential decay of the overlap between single-
particle wave functions, Eq. �19�, implies that among the
�N ! �2 terms in the expansion of �1, one can neglect each
term in which Qi�Qi� for at least one of i=2,… ,N. Conse-
quently, there are only N! remaining terms, in each of which
Qi=Qi� for i=1,… ,N, then r2 ,… ,rN are subsequently all
integrated out. This N! is cancelled by the N! in the normal-
ization constant. Hence, for large �x−x�� , �1�r ,r�� for �HF

behaves in the same way as for the Hartree wave function,
given in Eq. �20�. This proves there is no ODLRO or BEC in
�HF either.

The argument can be extended to symmetrized Nosanow-
Jastrow wave function �SNJ, which can be rewritten as

�SNJ = K�
P

P�
i=1

N

�w�ri − Qi��
j�i

f ji� , �21�

where P represents the permutation of the N lattice sites
�Qi. � j�i f ji is a function of r1 ,… ,ri, and reduces to 1 for
i=1. For each term in the expansion of �1, consider w�ri

−Qi�w�ri−Qi���� j�i f ji�2� w̄2�r�exp�−�Qi�−Qi�� � /c��� j�i f ji�2,
where Qi� is the � component of Qi. It can be seen that the
short-range Jastrow factor does not change the nature of
long-range exponential decay. Therefore, the cross terms, in
which Qi�Qi� for at least one of i=1,… ,N, exponentially
decay, and are negligible with the remaining terms.
Consequently,

�1�r,r�� �

Nw�r1 − Q1�w�r1� − Q1��
i�1

� w2�ri − Qi�� �
1�j�i

f ji�2
f1i f1i� dri

�
i
� w2�ri − Qi���

j�i

f ji�2
dri

�22�

�Nw̄2�r1�e−�x − x��/c
�
i�1

� w2�ri − Qi�� �
1�j�i

f ji�2
f1i f1i� dri

�
i
� w2�ri − Qi���

j�i

f ji�2
dri

, �23�

where f1i� � f�−u��r1�−ri��	. The fraction factor in Eq. �23�
must be bounded by a finite number. Clearly, �1�r ,r�� tends
to exponentially vanish as �x−x�� approaches the system size.
Thus there is no ODLRO or BEC in �SNJ either. It can be
seen that our argument is not disrupted by the thermody-
namic limit N→�.

Furthermore, the argument can be straightforwardly gen-
eralized to a finite temperature, in which each energy eigen-
function is of the form of �H or �HF or �SNJ. The finite-
temperature density matrix is the thermal average of the
density matrices of the eigenfunctions. For an infinite
sample, w would simply be w̄, the conclusion of no ODLRO
can still be obtained, in a simpler way.

Therefore, although there is ODLRO or BEC in the Ja-
strow wave function alone, which describe liquid helium,28

they are dominated by the localized one-particle wave func-
tions. This is a difference between liquid and solid. The ar-
gument extends that of Penrose and Onsager about no BEC
in a solid3 to the case with zero-point motion, exchange ef-
fect, as well as short-range correlation.

VII. NO SUPERSOLIDITY IN NOSANOW-JASTROW
WAVE FUNCTIONS

As ODLRO is a sufficient condition of NCRI, it is not
redundant to demonstrate that there is no NCRI either in �H

or �HF or �SNJ, as we now explicitly do in the following. We
adapt the method of Kohn used in discussing electronic in-
sulating state.27

Recall that the eigenfunctions and energy spectrum is de-
termined by H0, as in Eq. �5�. The idea is the following. For
every eigenfunction ����=0� of H0��=0�, where � is the
index for different eigenfunctions, be it of the form of �H or
�HF or �SNJ, we show that there is a corresponding eigen-
function �����0� of H0���0�, and that its eigenvalue re-
mains the same as that of H0��=0� for ����=0�.

H0���0� is simply related to H0��=0� by a “gauge”
transformation, but one should be cautioned by the require-
ment of the SVBC,5,27 Eq. �4�. In an infinite internal , for a
localized single-particle eigenfunction w̄�r� of a single-
particle Hamiltonian, the correct eigenfunction wave func-
tion for ��0 is

w̄���;r� = w̄�r�exp� im�x



� ,

where, as above, x=R�,
Therefore, for a many-particle eigenfunction ����=0� of

H0��=0�, given by �H or �HF or �SNJ, one may construct
the corresponding eigenfunction �����0� of H0���0� in a
similar way, by replacing every single-particle w̄�r� as w̄��r�.
The presence of Jastrow factor does not affect this.
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On the other hand, by using Eq. �17�, ����=0� can be
written as

���� = 0� = AN �
�=−�

�

�̄���ri� ,

where �̄� is obtained from �̄ by shifting the centers of the
single-particle wave packets w̄ from �Qi to �Qi+�iG, with

�i�i=�; here �̄ is of the form of �̄H=�i=1
N w̄�ri−Qi�, or

�̄HF= �1/�N!��PP�i=1
N w̄�ri−Qi�, or �̄SNJ=K�PP�i=1

N w̄�ri

−Qi��k� j�kf jk.
Following the argument in Ref. 27, using the exponential

decay of the overlap as given in Eq. �18�, and very similar to
the argument in last section, it can be shown that for �
��� and arbitrary � and ��, ��,� and ���,�� have exponen-
tially vanishing overlap and give vanishing matrix element
for an arbitrary one-particle position operator.

Consequently, it can be found that the corresponding
eigenfunction of H0���, satisfying the SVBC, is

����� = �
�=−�

�

��,���ri�exp� im�R


 ��
j

� j − 2	��� .

�24�

Because of exponentially vanishing overlap between ��,�
with different values of �, it is clear that

H0�������� = E���������

with

E���� = E��� = 0� .

It is thus proved that every eigenvalue E���� of H0��� is
independent of �. Interestingly, the argument has gone
through even in presence of the Jastrow factors.

In fact, the explicit construction of the wavefunction here
confirms the principle, established by Leggett,5 that the sys-
tem is nonsuperfluid if for the wave function of the rotating
system, the SVBC can still be satisfied without causing the
energy to be increased by the rotation. Leggett already ap-
plied this principle to the Hartree-Fock wave function.

Therefore, for a commensurate quantum solid described
by Hartree or Hartree-Fock or Nosanow-Jastrow wave func-
tion, even though the exchange effect, large zero-point mo-
tion and short-range correlation are taken into account, the
free energy is of the form of Eq. �2�, with F0 independent of
�. This indicates that it cannot a supersolid.

In our argument, the localized single-particle wave func-
tions play a crucial role. Obviously, the situation would be
different when there exist vacancies or interstitials or both,
which makes the wave functions extended. The recent ex-
perimental result of Kim and Chan poses a significant chal-
lenge. The difficulty might be resolved if an extended factor
is found in the actual wave function.

VIII. SUMMARY

To summarize, we have offered some analytic arguments
concerning the existence or nonexistence of superfluidity or
supersolidity behavior. This work might be useful for further
investigations on the cause of supersolidity. It might be help-
ful in supplementing the understanding of the relevant clas-
sic literature, and in clarifying which specific features are
counterparts between superfluidity and superconductivity.

Our argument seems to suggest that ODLRO is indeed
generically sufficient for superfluidity even in a finite tem-
perature, a question which seems to have remained not en-
tirely resolved previously.

Our discussions start with a synopsis, in Sec. II, on the
Hamiltonians and the free energies in the corotating and the
laboratory reference frames, as well as their relations with
rotational inertial and superfluidity density.

In Secs. III and IV, from the presence of ODLRO, we
make a general derivation of the most basic manifestation of
superfluidity, namely the Hess-Fairbank effect or NCRI, i.e.,
the refusal of the Bose system to follow the rotation of the
container, by using a method of Yang in treating supercon-
ductivity in a magnetic field. We also derive the quantization
of angular momentum as a consequence of ODLRO, by bor-
rowing a method of Bloch in studying superconducting per-
sistent current. In Sec. V, we rederive the path integral for-
mulation of the superfluid density without neglecting the
centrifugal potential.

In Secs. VI and VII, we consider the variational wave
functions which have been used in solid helium calculations,
namely, the Hartree, the Hartree-Fock and the symmetrized
Nosanow-Jastrow wave functions. The nonsuperfluidity in
the Hartree-Fock wave functions was already noted by Leg-
gett from its disconnectivity.5 We show that there is no
ODLRO in these trial wave functions, for both an infinite
sample and that confined in a cylindrical annulus. Moreover,
by extending a method originally due to Kohn in discussing
electronic insulating states, we explicitly demonstrate that
there is no NCRI behavior in a commensurate quantum solid
described by those trial wave functions, even if there exist
large zero-point motion, finite overlap between wave packets
and exchange effect. In this argument, the constraint of
SVBC in the angular direction is carefully taken into ac-
count. The explicit construction of the wavefunction under
the rotation is consistent with the early arguments of Leggett
in terms of the connectivity properties.5,12
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