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We analyze the decay of quantum oscillations in a charge qubit consisting of a Cooper pair box connected
by a Josephson junction to a finite-size superconductor. We concentrate on the contribution of quasiparticles in
the superconductors to the decay rate. Passing of a quasiparticle through the Josephson junction leads to the
escape of the qubit out of its Hilbert space, and thus determines the decay rate of quantum oscillations. We find
the temperature dependence of the quasiparticle contribution to the decay rate for open and isolated systems.
The former case is realized if a normal-state trap is included in the circuit, or if just one vortex resides in the
qubit; we find exponential suppression of the rate, ��exp�−� /T�, at low temperatures �here, � is the super-
conducting gap�. In a superconducting qubit isolated from the environment ��exp�−2� /T� if the number of
electrons is even, while for an odd number of electrons the decay rate remains finite in the limit T→0. We
estimate � for realistic parameters of a qubit.
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I. INTRODUCTION

Recent experiments with superconducting qubits show
promising results, allowing one to observe hundreds of qubit
charge or phase oscillations.1–4 A superconducting qubit is
essentially a controllable quantum two-level system and can
be realized using phase or charge degrees of freedom. Most
of the charge qubits use a Cooper-pair box �CPB�, a small
mesoscopic island connected to a large superconducting res-
ervoir via two Josephson junctions. A device with a large
superconducting gap, ��Ec�EJ�T, can be controlled with
the gate voltage and magnetic flux, and has only one discrete
degree of freedom: number of Cooper pairs in the box.
�Here, Ec is the charging energy of the island, and EJ is an
effective Josephson energy of its junctions with the reservoir;
EJ depends on the flux.� At the degeneracy point the qubit
evolves coherently between the ground and excited states,
�−� and �+ �, which are represented by the superposition of 0
or 1 excess Cooper pairs in the box. The frequency of these
oscillations is determined by the Josephson energy.

The main difficulty in technological realization of a
charge-based superconducting qubit is due to the decoher-
ence present in it. The mechanisms of the decoherence are
currently unknown and can be attributed to phonons, two-
level systems in insulating barrier, thermally excited
quasiparticles.5,6 In this paper we concentrate on the contri-
bution of the quasiparticles to the decay rate. Quasiparticles
having a continuous spectrum are inherently present in any
superconducting device, and set a fundamental constraint on
the coherence time. Quasiparticle “poisoning,” first investi-
gated in the context of charge-parity effects in mesoscopic
superconductors,7–9 manifests itself also in the experiments
with charge qubits.11–15 It was reported that even at low tem-
peratures ��10–50 mK� quasiparticles are present in the
CPB. If this is the case, Hilbert space of the CPB expands,
and the qubit is no longer a simple two-level system. The
transient presence of a quasiparticle in the CPB detunes the
qubit from the resonant state of Cooper pair tunneling and

affects coherent oscillations. In this paper we build a quan-
titative theory of the quasiparticle effect on the charge qubit
oscillations.

We consider two regimes which can be realized experi-
mentally: open system corresponding to fixed chemical po-
tential in the reservoir, and isolated system corresponding to
fixed number of electrons in the qubit �see Fig. 1�. The
former case allows for a change of the total number of elec-
trons in superconducting parts of the system, and is experi-
mentally realized if a quasiparticle trap, e.g., normal-state
part or a vortex, is included in the circuit. The latter case
corresponds to a superconducting qubit isolated from the
normal-metal environment. Both cases may be relevant in
the context of the cavity quantum electrodynamics experi-

FIG. 1. Schematic picture of the charge qubit in different ex-
perimental regimes: �a� open system; �b� isolated system. The left
supercon- ducting mesoscopic island is the Cooper pair box con-
nected via a tunable Josephson junction to the large superconduct-
ing reservoir �right�. Gate bias is applied through the capacitance Cg

�assuming that C��Cg�.
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ments where the state of the qubit is determined using pho-
ton degrees of freedom.

The paper is organized as follows. We begin in Sec. II
with a brief overview of the charge qubit before the discus-
sion of the quasiparticle effect on the charge qubit in an open
system. In Sec. III we consider the opposite case of the iso-
lated qubit. Finally, in Sec. IV we present simplified results
for the quasiparticle contribution to the decoherence rate for
the mentioned experimental realizations and discuss how to
decrease it.

II. STATES OF THE QUBIT IN AN OPEN SYSTEM

Dynamics of the superconducting charge qubit is usually
described by an effective Hamiltonian

Hef f = Ec�N − Ng�2 + HJ, �1�

where Ec is charging energy of the box, N is dimensionless
charge of the CPB, and Ng is dimensionless gate voltage. The
Hamiltonian corresponding to tunneling of Cooper pairs, HJ,
is defined as HJ=−�EJ /2���N+2��N�+H.c.�, where EJ is ef-
fective Josephson energy. In the regime where superconduct-
ing gap is the largest energy scale in the system ��Ec
�EJ�T, quasiparticles are usually neglected, and the dy-
namics of the system is described by the above Hamiltonian,
where there is only one discrete degree of freedom—excess
number of Cooper pairs in the box. At the operating point,
when the dimensionless gate voltage is tuned to be equal to
1, Ng=1, there is degeneracy with respect to charging energy
between the charge states �N� and �N+2�. This degeneracy is
lifted by the Josephson energy, and the states of a qubit are
described by the symmetric and antisymmetric superposition
of the charge states, �−�= ��N+2�+ �N�� /	2 and �+ �= ��N+2�
− �N�� /	2, with corresponding energies

	− = Ec −
EJ

2
and 	+ = Ec +

EJ

2
. �2�

Other charge states have much higher energy, and effectively
the Cooper pair box reduces to a two-level system. Once a
qubit is excited, quantum oscillations between states �−� and
�+ � emerge, and the frequency of these oscillations is deter-
mined by the Josephson energy EJ.

10 The appearance of a
quasiparticle with a continuum spectrum provides a channel
for relaxation of the qubit. Since quasiparticles are inherently
present in any superconducting system, their contribution to
the decay rate is intrinsic.

A. Thermodynamic properties of a qubit in an open system

At a finite temperature, density of quasiparticles is expo-
nentially small, n�exp�−� /T�, but the number of quasipar-
ticles in the grain can be of the order of one. It is important
to point out that even one unpaired electron can affect the
qubit performance. In order to estimate the number of qua-
siparticles in the grains, one has to account for the huge
statistical weight of the states with a single quasiparticle,
proportional to the volume of the grain, N

	2
�bT�bVbexp�−�b /T�, where �b is normal density of

states�per volume�, Vb volume of the grain. For an isolated
dot, the characteristic temperature18 at which quasiparticles
appear is �kB=1�

Tb
* =

�b

ln��b/�b�
, �3�

where �b=1/	2
�bVb is the mean level spacing in the box,
and �b is superconducting gap energy in the box. The ap-
pearance of a quasiparticle in the qubit occurs at lower tem-

perature T̃b
* due to the finite charging energy

T̃b
* =

�b − Ec + EJ/2

ln��b/�b�
= Tb

*�1 −
Ec − EJ/2

�b
� . �4�

If T
 T̃b
*, states with odd number of electrons in the box are

statistically rare. The probability of finding the qubit in a
“good” state �not poisoned by quasiparticles� is important for
qubit preparation and is determined by thermodynamics.
However, the qubit coherence time is controlled by kinetics,
which we study in the next section.

B. Quasiparticle decay rate in the open system

If an unpaired electron tunnels into the CPB, it tunes the
qubit away from the resonant state of Cooper pair tunneling,
which leads to the decay of quantum oscillations. At the
operating point Ng=1 it is energetically favorable for a qua-
siparticle to tunnel to the CPB, since charging energy is
gained in such process. Assuming that initially the qubit was
prepared in the state with no quasiparticles in the box, the
lifetime of the qubit is determined by the time of quasiparti-
cle tunneling to the CPB. In order to estimate this time we
use the following Hamiltonian:

H = H0� + HT,

H0� = HBCS
L + HBCS

R + Ec�Q/e − Ng�2, �5�

where HBCS
L ,HBCS

R are BCS Hamiltonians of the box and su-
perconducting reservoir �see Fig. 1�, and Q denotes the
charge in the box. The tunneling Hamiltonian between two
electrodes, HT, is defined as

HT = 

kp�

�tkpck,�
† cp,� + H.c.� �6�

where tkp is tunnelling matrix element, ck,� ,cp,� are the an-
nihilation operators for an electron in the state k ,� in the
CPB and state p ,� in the superconducting reservoir.

We now consider the lifetime of the qubit in the open
system, allowing for a change in the number of electrons in
the superconducting reservoir. Assuming that the qubit was
prepared in the initial state without a quasiparticle in the box,
the time of its coherent evolution is limited by the rate of
quasiparticle tunneling to the CPB. In order to calculate the
lifetime of the qubit, we have to distinguish between tunnel-
ing of Cooper pairs and quasiparticles. To do this, we write
the Hamiltonian H in Eq. �5� in the following form:
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H = H0 + H1, �7�

where H0=H0�+HJ, and H1=HT−HJ. HJ is second order in
tunneling amplitude

HJ = �N��N�HT
1

E − H0�
HT�N + 2��N + 2� + H.c. �8�

The matrix element �N�HT�1/ �E−H0���HT�N+2� is propor-
tional to effective Josephson energy EJ, and HT is defined in
Eq. �6�. Without quasiparticles Hamiltonian H0 reduces to
Eq. �1�.

The quasiparticle tunneling rate is found using Fermi’s
golden rule and averaging over initial configuration with the
appropriate density matrix ��=1�

� = 2


i,f

��f �H1�i��2��Ef − Ei����H0� . �9�

Here, ���H0� is the density matrix for the initial state of the
system. The perturbation Hamiltonian accounts for quasipar-
ticle tunneling only, �f �H1�i�= �f �HT�i�. Thus, Eq. �9� takes
into account Cooper pair tunneling exactly while treating
quasiparticle tunneling perturbatively. At the operating point,
Ng=1, initial state of qubit is defined by the superposition of
0 and 1 excess Cooper pairs in the box, �± �= ��N�� �N
+2�� /	2; the final state �f�= �N+1� is the state with odd num-
ber of electrons in the CPB, corresponding to charge 1e.
There are two mechanisms that contribute to the rate of the
process �± �→ �N+1�: �1� a quasiparticle tunnels from the
superconducting reservoir to the CPB, and �2� a Cooper pair
in the box breaks into two quasiparticles, and then one qua-
siparticle tunnels out into the reservoir. Two corresponding
contributions to the total tunneling rate are

�± = �1± + �2±, �10�

�1± = 2
 

n,pj,ki

��N + 1,k,�p�n−1�HT� ± ,�p�n��2

� ��Ek − Ep − 	±����H0� , �11�

�2± = 2
 

n,pj,ki

��N + 1,p,�k�2n−1�HT� ± ,�k�2n��2

� ��Ep − Ek − 	±����H0� , �12�

where �± is decay rate for the excited �+ � or ground state
�−� of the qubit, and 	± is defined in Eq. �2�. State
�+ , �p�n�, for example, denotes the excited state of the qubit
with n quasiparticles in the reservoir with energies Ep

=	�p
2 +�r

2

� + ,�p�n� = � + � � �p1, ¯ ,pj, ¯ ,pn� . �13�

The state �+ , �k�2n� denotes the excited state of the qubit with
n broken Cooper pairs in the box, leading to the appearance
of 2n quasiparticles with energies Ek=	�k

2+�b
2

� + ,�k�2n� = � + ,k1, ¯ ,kj, ¯ ,k2n� . �14�

In the following, we concentrate on the decay rate of the

qubit excited state in the open system, i.e., evaluate �+
op. In

order to calculate this decay rate we take into account one-
electron processes in the lowest order in quasiparticle den-
sity. We assume that in the first contribution to �+

op, Eq. �11�,
all quasiparticles are in the reservoir and one of them is
tunneling into an unoccupied state of the CPB; in the second
contribution, Eq. �12�, all quasiparticles are in the box and
one of them is tunneling out into an unoccupied state of the
reservoir. Keeping this in mind, the density matrix for first
process can be reduced by tracing out irrelevant degrees of
freedom: �op��H0�=Tr�k����H0�, and Eq. �11� becomes

�1
op = 
 


n,pj,k
��N + 1,k,�p�n−1�HT�N,�p�n��2

� ��Ek − Ep − 	±��op��H0� . �15�

Taking into account that only one quasiparticle is transferred
through the junction by the action of Hamiltonian HT, and
performing the sum over momenta in Eq. �15�, the contribu-
tion of the first mechanism is simplified to

�1
op = 



p1,k
��N + 1,k�HT�N,p1��2��Ek − Ep1

− 	+�

� exp�−
Ep1

T
� , �16�

where the exponential factor is the low-temperature �T

�r� approximation of the Fermi function. The matrix ele-
ment �N+1,k�HT�N , p� can be calculated using the particle
conserving Bogoliubov transformation16 and is equal to
�N+1,k�HT�N , p�=2�tpkupuk− tkpvpvk�, where up ,vp are co-
herence factors

up
2 =

1

2
�1 +

�p

Ep
�, and vp

2 =
1

2
�1 −

�p

Ep
� .

By changing the sum to an integral in Eq. �16� and integrat-
ing over Ek, we get the following expression for �1

op:

�1
op =

g

4

�

�r

�

dEp
��Ep + 	+ − �b�

	��Ep + 	+�2 − �b
2��Ep

2 − �r
2�

� „Ep�Ep + 	+� − �r�b…exp�−
Ep

T
� , �17�

where ��x� is the step function, g=h /e2R is dimensionless
conductance. R is resistance of the tunnel junction in the
normal state

R−1 = 4
e2

p,k

�tpk�2���p����k� .

Assuming that mismatch between superconducting gap ener-
gies in the box and reservoir is small, �r−�b+	+�0, which
corresponds to most charge qubit experiments, expressions
for �1

op can be simplified. The leading contribution to the
decay rate at low temperatures given by the first mechanism
is equal to �1

op=W�	+ ,�r ,�b�

QUASIPARTICLE DECAY RATE OF JOSEPHSON … PHYSICAL REVIEW B 72, 014517 �2005�

014517-3



W�	+,�r,�b� =
g	�r

8	2


��r − �b + 	+�
	�r + �b + 	+

exp�−
�r

T
�

���b

�r
U�3

2
,2,

�r − �b + 	+

T
�

+ 2U�1

2
,2,

�r − �b + 	+

T
�� , �18�

where U�a ,b ,z� is the confluent hypergeometric function. At
low temperature �T
�r−�b+	+� asymptotic result for
W�	+ ,�r ,�b� is simply given by

W�	+,�r,�b� 

g	�rT

4	2

	�r − �b + 	+

�r + �b + 	+
exp�−

�r

T
� .

�19�

As expected, the decay rate due to the first mechanism is
exponentially suppressed due to the fact that it costs energy
� to bring a quasiparticle from the normal parts.

The contribution of the second mechanism given by Eq.
�12� depends on the density matrix of the box. The initial
state of the qubit corresponds to the even-charge state in the
CPB. Statistical weight of the states with even number of
quasiparticles in the dot, 2, 4, 6, …, 2n, is determined by the
density matrix �2n��H0�,

�2n��H0� = Tr�p����H0� =

exp�− 

j=2

2n Ekj

T
�

�2n� ! Zev
, �20�

where Zev=cosh�zb�T ,�b�� is the partition function for the
dot with even number of electrons,18 and zb�T ,�b� is

zb�T,�b� = 

k

exp�−
Ek

T
� =	 T

�b

�b

�b
exp�−

�b

T
� . �21�

According to Eq. �12� and Eq. �20�, the contribution to the
decay rate due to the second mechanism is obtained by sum-
ming over the states with even number of quasiparticles with
appropriate statistical weight

�2
op = 2
 


n,p,kj

��N + 1,p,�k�2n−1�HT� + ,�k�2n��2

� ��Ep − Ek1
− 	+�2n�2n��H0� , �22�

where, for example, �N+1, p , �k�2n−1� is a state corresponding
to the charge on the box equal to 1e ,2n−1 quasiparticles in
the box, and 1 quasiparticle in the reservoir

�N + 1,p,�k�2n−1� = �N + 1,k1, ¯ ,kj, ¯ ,k2n−1� � �p� .

�23�

The additional factor of 2n in Eq. �22� is the result of the
summation of 2n identical terms in Eq. �12�. The tunneling
matrix element in Eq. �22� is determined using the particle-
conserving Bogoliubov transformation and is dependent only
on p and k1. Therefore, by doing the sum over the other
momenta kj, one gets the following result:

�2
op = 



p,k1

��N + 1,p�HT�N + 2,k1��2��Ep − Ek1
− 	+�

� exp�−
Ek1

T
�


n

�zb�T,�b��2n−1

�2n − 1� ! Zev
. �24�

Changing the sum to an integral and integrating over Ep, we
obtained the following expression:

�2
op =

g

4

�

�b

�

dEk
�Ek�Ek + 	+� − �r�b�

	��Ek + 	+�2 − �r
2��Ek

2 − �b
2�

� ��Ek + 	+ − �r�exp�−
Ek

T
�tanh�zb�T,�b�� . �25�

The integration can be performed assuming that mismatch
between superconducting gap energies in the box and reser-
voir is small, and �b−�r+	+�0. Comparing Eqs. �17� and
�25�, one notices that the answer for �2

op can be expressed via
�1

op by permuting �r↔�b

�2
op�	+,�r,�b� = �1

op�	+,�b,�r�tanh�zb�T,�b�� . �26�

Taking into account Eq. �18� and Eq. �26�, we find the
total quasiparticle decay rate for the open system

��N+1�←�+�
op = W�	+,�r,�b� + W�	+,�b,�r� � tanh�zb�T,�b�� ,

�27�

where the first term corresponds to the first mechanism and
is dominating for the open system. The simplified results for
��N+1�←�+�

op are discussed in Sec. IV.
Decay rate evaluation for the ground state of the qubit

�−� can be done similarly provided that the final state �N
+1� of the qubit is lower in energy than the initial state �−�.

III. STATES OF THE QUBIT IN AN ISOLATED
SYSTEM

A. Thermodynamic properties of the qubit with fixed number
of electrons

When the number of electrons in the qubit is fixed, parity
effects become important at low temperatures, T�Tr

* ,Tb
*,

where Tb
* is defined in Eq. �3� and Tr is equal to

Tr
* =

�r

ln��r/�r�
. �28�

Here, �r is the mean level spacing in the reservoir. The den-
sity of quasiparticles in the qubit with even number of elec-
trons is small, n�exp�−2� /T�, since at low temperatures all
electrons are paired, and it costs energy 2� to break a Coo-
per pair. In the odd-charge state, an unpaired electron is
present in the system even at zero temperature. It is impor-
tant to understand the probability of finding a quasiparticle in
the CPB since the qubit will not work if an extra electron is
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present in the box. To find out whether it is favorable or not
for a quasiparticle to reside in the CPB, we calculated the
difference in free energy �F=F1−F0 between two states:
with and without a quasiparticle in the box �F1 and F0, re-
spectively�. At the operating point, the free-energy difference
for the qubit with even ��Fev� and odd ��Fodd� total number
of electrons is given by the following expressions:

�Fev = − Ec +
EJ

2
− T ln�tanh�zb�T,�b���

− T ln�tanh�zr�T,�r��� , �29�

�Fodd = − Ec +
EJ

2
− T ln�tanh�zb�T,�b���

− T ln�coth�zr�T,�r��� . �30�

Negative value of �F indicates that free energy is lower for
a quasiparticle in the CPB. Using these expressions, we can
calculate thermodynamic probability P�T� to find an un-
paired electron in the box as a function of the physical pa-
rameters

P�T� =
Z1

Z1 + Z0
=

1

exp��F
T � + 1

, �31�

where Z1�0�=exp�−�F1�0�� is the partition function with one
�zero� unpaired electrons in the box. The expression for the
free-energy difference �Fop for the open system �fixed
chemical potential regime� can be obtained using �Fev and
taking the limit of infinite volume of the reservoir ��r→0�.
Temperature dependence of the quasiparticle probability in
the CPB for realistic parameters is plotted in Fig. 2.

As shown in Fig. 2, at high temperatures T�Tb
* the prob-

ability of having an extra electron in the CPB coincides for
an open and isolated qubit. At this temperature the number of
thermal quasiparticles in the system is large, and parity

effects are not important. Parity effects start to manifest
themselves below the characteristic temperature Tb

*, when the
number of quasiparticles in the box is of the order of unity.
As can be seen from Fig. 2, at the temperature Tr

* the prob-
ability of having a quasiparticle in the CPB is negligible in
the even-charge state, as well as in the open system. In the
case of odd-charge state of a qubit, lowering the temperature
enhances quasiparticle poisoning.19 This effect can be ex-
plained as a competition of two contributions to the free
energy: a charging energy gained by tunneling to the box and
entropy contribution proportional to the ratio of the volumes
of the reservoir and box, �Vr /Vb. At the temperature Ts

Ts 

Ec − EJ/2

ln�Vr

Vb
� , �32�

the entropy contribution becomes smaller, and the quasipar-
ticle resides in the CPB. Thus, for the odd-charge state there
is only a certain intermediate temperature range when qubit
can work, i.e., can be prepared in the “good” quantum state.
For physical parameters used in Fig. 2 Ts is approximately
equal to 20 mK.

The presence of a quasiparticle in the box can be studied
experimentally by measuring the periodicity of Coulomb
staircase.11–15,17 According to the obtained results, the Cou-
lomb staircase for an open system should be 2e periodic

below the temperature T̃b
*. The qubit with fixed number of

electrons should have two distinct types of behavior corre-
sponding to even and odd total number of electrons in the
box and reservoir. In the former case the Coulomb staircase
is similar to the one in the open system, while in the latter
Coulomb staircase is 1e periodic for temperatures above Tb

*,
then 2e periodic from Tb

* to Ts, and again 1e periodic for T
�Ts.

In principle the probability to find a quasiparticle in the
CPB can be lowered, and the qubit can be brought into the
desired quantum state. We discuss several ways of doing this
in Sec. IV. However, even if the quasiparticle is in the reser-
voir at the initial moment of time, once the qubit is excited
and quantum oscillations emerge, the time of the oscillations
is determined by the kinetics, i.e., by quasiparticle tunneling
rate.

B. Quasiparticle decay rate in the isolated system

Let us turn to the discussion of the lifetime of the charge
qubit in the regime with the fixed number of electrons. In
order to calculate the quasiparticle decay rate, we proceed in
the same manner as in the open system. The decay rate for
the even number of electrons is calculated by averaging over
initial states with even parity density matrix �2n��H0�. This
situation corresponds to having an even number of electrons
in the box and reservoir. The appearance of quasiparticles in
the system occurs at the expense of breaking Cooper pairs.
Using the results of analogous calculation in Eq. �26�, we
can write the expression for the total decay rate

FIG. 2. �Color online� Main panel: temperature dependence of
the number of quasiparticles in the box at the operating point �Ng

=1�. Dash-dot �black� line corresponds to even number of electrons;
solid �blue� line—odd number of electrons; dash �red� line—open
system. Physical parameters are chosen in correspondence to typi-
cal qubit experiments: �r=�b=2.4 K,Ec=0.25 K,EJ=0.3 K,Tb

*

=210 mK, and Tr
*=160 mK �see Eqs. �3� and �28� for definition of

Tb
* and Tr

*�. Inset: temperature dependence of the number of quasi-
particles in the CPB in the vicinity of Tr

*.
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��N+1�←�+�
ev = W�	+,�r,�b�tanh�zr�T,�r��

+ W�	+,�b,�r�tanh�zb�T,�b�� , �33�

where W�	+ ,�r ,�b� is defined in Eq. �18�. The first term
here corresponds to the first mechanism given by Eq. �11�
and averaged over the even-parity initial state.

In the odd-charge case the decoherence rate is the largest
since a quasiparticle is present in the system at T=0. Initial
configuration of the system corresponds to having an odd
number of quasiparticles in the reservoir. The reduced den-
sity matrix for this initial state �2n−1��H0� is then given by

�2n−1��H0� = Tr�k����H0� =

exp�− 

j=1

2n−1 Epj

T
�

�2n − 1� ! Zodd
, �34�

where Zodd=sinh�zr�T ,�r��. Using Eq. �11�, we write the con-
tribution to the decay rate of the first mechanism

�1
odd = 2
 


n,pj,k
��N + 1,k,�p�2n−2�HT� + ,�p�2n−1��2

� ��Ek − Ep1
− 	+��2n − 1��2n−1��H0� . �35�

Going through the same arguments as in Eq. �24�, the expres-
sion for �1

odd can be simplified

�1
odd = 



p1,k
��N + 1,k�HT�N,p1��2��Ek − Ep1

− 	+�

� exp�−
Ep1

T
�


n=1

�
�zr�T,�r��2n−2

�2n − 2� ! Zodd
. �36�

Summing over Ek, we get

�1
odd =

g

4

�

�r

�

dEp
�Ep�Ep + 	+� − �r�b�

	��Ep + 	+�2 − �b
2��Ep

2 − �r
2�

� ��Ep + 	+ − �b�exp�−
Ep

T
�coth�zr�T,�r�� .

�37�

Taking into account Eq. �17� and Eq. �18�, �1
odd is equal to

�1
odd = W�	+,�r,�b�coth�zr�T,�r�� . �38�

In order to find the contribution of the second mechanism,
one has to average over initial states of the CPB. The initial
configuration of the box corresponds to the even-charge state
and is the same for open and isolated qubits. Therefore, con-
tribution of the second mechanism, �2

odd, is given by Eq.
�26�.

Total decay rate ��N+1�←�+�
odd with odd number of electrons

in the qubit is the sum of �1
odd and �2

odd

��N+1�←�+�
odd = W�	+,�r,�b�coth�zr�T,�r��

+ W�	+,�b,�r�tanh�zb�T,�b�� . �39�

At low-temperatures, T�Tr
* ,Tb

*, the first term here is domi-
nant as z�T ,��
1. The detailed analysis of the low-
temperature asymtotics for different experimental regimes is
presented below.

IV. DISCUSSION OF THE RESULTS

Temperature dependence of the quasiparticle decay rate
for different experimental realizations of the qubit is shown
in Fig. 3. As it is clear from the figure, at experimentally
relevant temperatures T
Tr

* ,Tb
*, the largest decay rate corre-

sponds to the odd-charge case. In the vicinity of Tr
* defined in

Eq. �28�, the decay rate is growing quickly due to the appear-
ance of a large number of quasiparticles in the reservoir. As
we approach the temperature T=Tb

* given in Eq. �3�, which
corresponds to the appearance of quasiparticles in the Cooper
pair box, parity effects become irrelevant and decoherence
rates for different cases coincide.

Results obtained in Sec. II and III allow us to quantita-
tively estimate the decoherence rate due to the presence of
quasiparticles in the system. For simplicity we assume that
superconducting gap energies are the same in the box and
reservoir, �b=�r=�, and temperature is low, T�Tr

* ,Tb
*


	+, corresponding to typical qubit experiments �	+ is de-
fined in Eq. �2��. In this approximation, for an “open” qubit
the decay rate is

��N+1�←�+�
op 


g	T�

8	

	 	+

� + 	+/2
exp�−

�

T
�

+
gT

8	

	 	+

� + 	+/2

�

�b
exp�−

2�

T
� . �40�

The leading contribution to the decay rate for the open sys-
tem ��N+1�←�+�

op is proportional to exp�−� /T� since energy
equal to � is required to bring an electron from the normal
parts.

In the even-charge case the leading contribution to
��N+1�←�+�

ev is exponentially small, �exp�−2� /T�, in accor-
dance with the energy necessary to break a Cooper pair

��N+1�←�+�
ev 


gT

8	

	 	+

� + 	+/2

�

�r
exp�−

2�

T
�

+
gT

8	

	 	+

� + 	+/2

�

�b
exp�−

2�

T
� . �41�

Note that Eq. �41� and the last term in Eq. �40� are essen-

FIG. 3. �Color online� Temperature dependence of the quasipar-
ticle decay rate. Dash �red� line corresponds to the open system,
dash-dot �black�—even number of electrons; solid �blue�—odd
number of electrons. Here, we used the same physical parameters as
specified in Fig. 2.
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tially the upper bounds for the contributions to the decay rate
coming from unpaired electrons which originate in the iso-
lated qubit and in the Cooper pair box, respectively. Indeed,
we assumed in the derivation of Eqs. �40� and �41� that the
decay rate is limited by the thermodynamic probability of the
unpaired state, without discussing the kinetics of pair break-
ing leading to such state. It is clear from Fig. 3, however, that
the above-mentioned contributions are negligibly small at
low temperatures.

The decay rate of the qubit with an odd number of elec-
trons ��N+1�←�+�

odd is much larger

��N+1�←�+�
odd 


g�r

8	

	 	+

� + 	+/2

+
gT

8	

	 	+

� + 	+/2

�

�b
exp�−

2�

T
� . �42�

The leading contribution to the decay rate is temperature
independent since the number of quasiparticles is finite even
at T=0. According to the Eq. �42�, the lifetime of qubit in the
odd-charge case is determined by the conductance of the
tunnel junctions and mean level spacing of the reservoir. For
typical experiments quantum conductance, g is of the order
of 1; �r depends on the volume of the reservoir and varies
between 10−10 and 10−12 eV. With these parameters, decay
rate ��N+1�←�+�

odd can be estimated as 105–103 Hz consequently.
This is a substantial contribution to the decoherence of the
isolated charge qubits, which limits qubit operation on a fun-
damental level. However, this decay rate is much smaller
than the present estimates for decoherence in charge qubits;
see, for example, the recent review by Devoret et al.6

We assumed so far that in the initial state an unpaired
electron resides in the reservoir and finally �after the relax-
ation� ends up in the box. Then, one can tune the qubit to the
charge degeneracy between 1e and 3e and still have charge
oscillations for some time until the quasiparticle escapes into
the reservoir. In this case, the quasiparticle escape rate can be
calculated in a similar way and is proportional to the con-

ductance of the tunnel junction and level spacing in the
Cooper-pair box: �odd�g�b.

In principle, quasiparticle poisoning can be decreased by
tuning the proper parameters of the system such as supercon-
ducting gap energies �r,b, charging and Josephson energies,
temperature, volumes of the box and reservoir. For example,
it can be done by adjusting gap energies �r,b with the help of
oxygen doping14 or magnetic field.11 The latter is easy to
implement since magnetic field is already used in charge
qubits to tune Josephson energy EJ. In addition to the sup-
pression of gap energies, large magnetic field �H�Hc1� can
create vortices in the reservoir. The vortex acts as a quasi-
particle trap since an unpaired electron gains gap energy �
by residing inside the vortex.

V. CONCLUSIONS

We demonstrated that the presence of quasiparticles in the
superconducting charge qubit leads to the decay of quantum
oscillations. Two experimental realizations of charge qubit
are considered here, corresponding to open and isolated sys-
tems �in the former, the number of electrons is not fixed�.
Once the qubit is excited and quantum oscillations emerge,
the decay of these oscillations is determined by the quasipar-
ticle tunneling rate to the Cooper pair box. We calculated
temperature dependence of the quasiparticle decay rate in the
charge qubit. This decay rate is exponentially suppressed in
the open system as well as in the isolated system with an
even number of electrons. However, in the case with an odd
number of electrons in the system, the quasiparticle decay
rate is not exponentially suppressed and is estimated to be
105−103 Hz depending on the volume of the superconduct-
ing reservoir and conductance of the tunnel junctions.
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