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We report an extensive study of the formation of normal-state domains in type-I superconductors. Domain
patterns are first considered theoretically. The magnetic interaction between domains is described in the frame-
work of the “current-loop” model: the intermediate state is modeled by a set of loops of screening current
encircling the domains and interacting as in the free space. This system is shown to be formally equivalent to
a set of uniformly magnetized domains. An extension of the current-loop model is proposed to take into
account the constraint of the magnetic shielding by the superconducting regions. We determine the free energy
of a hexagonal array of cylindrical domains �bubbles� and of a lattice of infinitely long and parallel stripes. The
equilibrium values of both the volume fraction of the normal phase and the domain size are calculated as
functions of the magnetic field. A bubble-to-stripe transition is predicted to occur for a volume fraction of the
normal phase about 0.3. Experimentally, normal-state domains are studied with the high-resolution magneto-
optical imaging technique. The observed patterns consist in coexisting bubbles and disordered labyrinthine
lamellae structures. We show evidence of the contribution of pinning on the position of domain interfaces. The
average width of the lamellae is then analyzed as a function of the applied magnetic field and found to increase
in good agreement with the predictions. In contrast, the average diameter of bubbles remains constant: it is
almost independent of the magnetic interaction between domains. A very good agreement, over three decades
of the magnetic Bond number, is found with the equilibrium diameter of an isolated bubble. The proposed
constrained current-loop model is shown to provide significantly more accurate predictions than the current-
loop model, in particular for small magnetic Bond numbers. Additionally, increasing the volume fraction of the
normal phase results in a bubble-to-lamella transition, as predicted theoretically.
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I. INTRODUCTION

Self-organization in domains is observed in many quasi-
two-dimensional systems where two phases coexist: polar-
ized Langmuir monolayers confined at air-water interfaces,1,2

ferrofluids,3–8 ferro- and ferrimagnetic thin films,9,10 the in-
termediate state �IS� in type-I superconductors,11–13 adsor-
bates on a metal substrate,14 and in different nonequilibrium
systems, for example, those described by reaction-diffusion
equations.15,16 Pattern formation essentially results from the
competition between long-range �electrostatic, magneto-
static, or elastic� forces between domains and short-range
forces described by an interfacial tension between the two
phases. A review of these pattern formation processes is
given in Ref. 17. The static and dynamic properties of those
structures are actively studied theoretically.4,18,19

IS patterns in type-I superconductors consist of fully dia-
magnetic, superconducting �SC� domains coexisting with
normal-state �NS�, flux-bearing domains of complex shape.13

They are observed in samples with large demagnetizing fac-
tor such as thin films placed in a perpendicular magnetic
field. At very low applied field the sample is in the Meissner
state: the magnetic flux is totally expelled. Due to the demag-
netizing factor, the local magnetic field on the sharp edges of
the sample is larger than the applied field. The magnetic flux
starts to penetrate into the sample when this local field
reaches the thermodynamic critical field. The sample exhibits

coexisting NS and SC regions up to the complete transition
to the NS. The most frequently encountered structures con-
sist of cylindrically shaped domains �bubbles or flux tubes�
and of branched and intricate fingered domains �lamellae�.
The lamellar structure has been extensively studied since the
first calculation of the free energy of a lattice of infinitely
long and parallel stripes by Landau.20 This two-dimensional
problem was solved by the conformal mapping technique.
The field-dependent predicted and measured periods were
found to be in good agreement,21,22 thus suggesting that
lamellar structures correspond to a quasiground state. In con-
trast, little is known about the static properties of bubble
patterns. The main difficulty for modeling the magnetic in-
teraction of a hexagonal array of cylindrical domains origi-
nates in the three-dimensional nature of the problem. A pre-
vious calculation uses an approximate expression of the
magnetic energy23 and leads to predicted field-dependent
bubble spacings different from the measured ones.22–25 As a
result, it is not established whether the observed bubble pat-
terns also correspond to quasiground states. Moreover, the
origin of the coexistence between bubbles and lamellar ob-
served experimentally is not well understood. In particular,
whether bubble or lamellae structures constitute the ground
state of the IS remains an open theoretical question.

A promising approach to the pattern formation in type-I
superconductors arises due to the current-loop �CL� model.
This model, proposed in Refs. 19 and 26, is adapted from
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formalisms developed for pattern formation in thin ferromag-
netic films and ferrofluids.3,9 It is based on the analogy which
exists between the interaction of the superconducting cur-
rents screening the magnetic field in the normal phase and
interaction between domains in thin films of ferromagnetics
or ferrofluids. This analogy comes from magnetostatics when
the magnetic fields created by a solenoid of finite height and
a magnetized body with the same shape are considered.
Since in type-I superconductors the penetration length � is
less than the coherence length � determining the thickness of
the transition layer between the SC and normal phases and �
usually is much smaller than other characteristic lengths in
the system27 �distance between the domains, thickness of the
film� then, in the sharp interface limit, it is possible to con-
sider the phase interface as a current loop of finite height.
The current loops are then assumed to interact as in free
space. For a lattice of stripes, predicted field-dependent pe-
riods are close to those calculated by Landau and in good
agreement with the experimental findings.28 This suggests
that the CL model reasonably well describes the magnetic
interactions between domains. Moreover, as the CL model is
formulated for arbitrary domain shape, it can be applied to
the bubble pattern.29 It should also allow us to determine the
ground state of the IS bubble or stripe phase as a function of
the volume fraction of the normal phase, which is impossible
to solve by the existing approaches, and to compare it to the
structures experimentally observed. However, the CL model
does not take into account a specific feature of superconduct-
ors: the existence of screening currents on the top and bot-
tom surfaces of the films. The importance of this effect on
the domain structure of the IS state and on the period and
size of the IS patterns needs to be considered. We propose to
modify the CL model in order to include this screening ef-
fect.

IS models assume that the system reaches equilibrium
conditions for any variation of the external parameters. How-
ever, it is well known experimentally that the formation of
the IS depends on the magnetic history of the samples due to
irreversible processes. An important issue is to determine
how far from equilibrium the system is brought by these
processes. First, domains can be pinned by defects. Pinning
may induce disorder in the IS structures and limit the free
motion and the growth of domains. Second, the variation of
the volume fraction of the NS phase can only result from
penetration of magnetic flux on the edges of samples.30 This
penetration is known to be irreversible and controlled by an
energy barrier of geometrical nature.31,32 The mechanism of
flux penetration probably drives the early stage of the forma-
tion of domains. The respective contributions of the nucle-
ation of flux domains on the edges of the sample and of the
competition between short-range and long-range forces in
the observed patterns need to be studied. Moreover, in con-
trast to other physical systems that exhibit self-organized
structures, the growth of NS domains with an applied mag-
netic field may depend on whether the NS domains are iso-
lated or not in the SC phase.33 This consequence of the spe-
cific properties of the SC phase has not been thoroughly
investigated yet. In the experimental part of this paper, we
analyze the respective contributions of the sources of irre-
versibility mentioned above and of the competition between

short-range and long-range interactions in the formation of
domains.

The outline of this paper is as follows. Sections II and III
are devoted to theory. In Sec. II we analyze the CL model
and the approximations involved. Interface dynamics is dis-
cussed. As an improvement of the CL model we propose the
constrained current-loop �CCL� model in order to account
for the magnetic screening by the superconducting surface
currents. We discuss its validity for thin films. In Sec. III the
energies of the periodic stripe phase and bubble hexagonal
phase are calculated. We obtain the dependence of the den-
sity of the normal phase and of the size of domains on the
applied magnetic field. Section IV describes the experimental
setup and presents qualitative features of IS patterns. The
importance of pinning is investigated. We also discuss the
validity of the usual approximation that consists in taking the
magnetic field in NS domains equal to the critical field. Sec-
tion V is devoted to the study of the growth of lamellae. The
field dependence of the lamellar width is compared to theo-
retical predictions. Section VI presents a very important re-
sult of this paper: we show that the mean diameter of bubbles
is independent of the magnetic interaction between them. An
interpretation that takes into account the specific properties
of the SC phase is proposed. The CCL model is found to
provide a much better agreement with experimental results
than the CL model. Section VII presents results on the tran-
sition from flux tubes to flux lamellae. A summary of the
results and perspectives for future studies are given in the
conclusion.

II. CURRENT-LOOP MODEL

A. General relations

To calculate the magnetic field energy of the intermediate

state �1/8���h�2dV, accounting for the Meissner effect, we

take h�s=0 and h�n=H� n �the indices s and n denote the super-
conducting and normal phases, respectively�. In the sharp
interface limit the jump of the magnetic field strength on the
phase boundary is

�h� = − H� n.

The magnetic field strength h� can be written as a sum of the

magnetic field created by the external coils H� 0 and the mag-

netic field H� created by the superconducting currents:

h� =H� 0+H� . As a result the expression for the magnetic energy
is

Em =
1

8�
� h�2dV

=
1

8�
� H� 0

2dV +
1

4�
� H� 0H� dV +

1

8�
� H� 2dV . �1�

The magnetic field of the intermediate state created by the

superconducting currents on the border of film is H� � and that
of the superconducting currents around the domains of the

normal phase H� �. Thus H� =H� �+H� �. The magnetic energy
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terms in relation �1� are transformed as follows �h� =rot A� �:

1

4�
� H� 0H� dV

=
1

4�
� �h� − H� �H� dV =

1

c
� A� j�sdV

−
1

4�
� H� 2dV . �2�

In the sharp interface limit, since ���, the first term in

relation �2� reads �i�s is the surface density of the supercon-
ducting currents, and summation over i means the sum with
respect to all domains of the normal phase�

1

c
�

S�

A� i�sdS +
1

c
�

i
�

Si

A� i�sdS . �3�

The integral in the first term of relation �3� is around the
border of the superconductor film, but the second term takes
into account all inclusions of the normal phase. The bound-
ary condition for the surface current density on the interface
of the domain of the normal phase is

i�s = −
c

4�
�n� � h�n� . �4�

Here n� is the external normal to the surface of the domain,

but h�n is the magnetic field strength in the normal phase. In

the mean-field approximation �Li
A� dl�=	n=HnSi, the second

term in relation �3� can be written as

1

c
�

i
�

Si

A� i�sdS =
1

4�
�

i
�

Li

� A� dl� Hndz

= �
i

1

4�
SiHn

2d =
1

4�
Hn

2
nV .

Here Hne�z is the mean value of h�n across the film with thick-
ness d and 
n=Sn /S is the density of the normal phase.

The expression for the magnetic energy of the supercon-

ducting currents �1/8���H� 2dV can be transformed as fol-
lows:

1

8�
� H� 2dV =

1

8�
� H� �2 +

1

4�
� H� �H� �dV +

1

8�
� H� �

2 dV .

�5�

The second term in the relation �5� can be transformed as
follows:

1

4�
� H� �H� �dV =

1

c
�

S�

A� �i�sdS .

Finally for the magnetic energy of the intermediate state we
have

1

8�
� h�2dV =

1

8�
� H� 0

2dV −
1

8�
� H� �

2 dV

+
1

c
�

S�

�A� 0 + A� ��i�sdS + V
1

4�
Hn

2
n

−
1

8�
� H� �2dV . �6�

The last two terms in relation �6� are relevant for the descrip-
tion of the transitions between the different patterns of the
intermediate state. We introduce the notation

Em = V
1

4�
Hn

2
n −
1

8�
� H� �2dV .

Em can be put in an equivalent form using the analogy which
exists between the magnetic field created by a solenoid with
finite height and a magnetized body with the shape of a
solenoid. The convenience of this transformation is in the
fact that it allows us to obtain in explicit form the terms
determining the density of the normal phase in the case of
thick films when the magnetic interactions between the do-
mains of normal phase are not important. To do this we put

H� � = Hne�z��Vn� + H�̃ . �7�

Here the Heaviside function � is equal to 1 in the domains
of the normal phase and to zero outside. Hn according to
relation �4� is determined by the superconducting currents
circulating on the interface of the normal phase,

Hne�z =
4�

c
�n� � i�s� .

Due to Eq. �7� H�̃ is continuous on the part of the interface
normal to the boundaries of the film and can be expressed as

the gradient of a potential �H�̃ = ���. The normal component

of H�̃ on the part of the boundary of the film belonging to the
normal phase is discontinuous. Its jump there is equal to

e�z�H�̃ e − H�̃ i� = Hn. �8�

Thus

1

8�
� H� �2dV =

Hn
2Vn

8�
+

1

4�
�

Vn

H̃z
iHndV +

1

8�
� H�̃ 2dV .

�9�

The second term in relation �9� is transformed as follows:

1

4�
�

Vn

H̃z
iHndV =

1

4�
� �i� ��e

�n
−

��i

�n
	dS = −

1

4�
� H�̃ 2dV .

Thus for Em we have

Em = V
1

8�
Hn

2
n +
1

8�
� H�̃ 2dV .

The first term in this relation corresponds to the magnetic
field energy of the normal phase of an infinitely thick
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sample; the second describes the demagnetizing field energy
correction due to the finite thickness of the sample. Accord-
ing to the relation �8� � can be expressed by the sum of two
single-layer potentials created by surface charges with den-
sities �1/4��Hn at z=d and 0, respectively,

� = −
Hn

4�
� dS�


�
� − 
���2 + �z − d�2
+

Hn

4�
� dS�


�
� − 
���2 + z2
.

Due to the symmetry, one has �+=��z=d�=−��z=0�=−�−.
As a result

1

8�
� H�̃ 2dV =

1

8�
� �i� ��i

�n
−

��e

�n
	dS = − M � �+dS;

�10�

here

�+�
�� = − M � J�
� − 
��,d�dS�

= −� M dS�� 1


�
� − 
���2
−

1


�
� − 
���2 + d2	
�11�

where M = �1/4��Hn is the effective magnetization of the
normal phase. The first and second terms in the expression
for J correspond to the interaction of fictitious magnetic
charges located on the same and on the opposite side of the
sample. Depending on the way they are taken into account
different models �CL and CCL� are obtained. The full free
energy of the problem accounting for the condensation en-
ergy of the superconducting phase �1/8��Hc

2 and the surface
energy of the interfaces between the normal and supercon-
ducting phases �the surface tension � of the interface be-
tween the normal and superconducting phases is usually rep-
resented as �Hc

2 /8���, introducing the wall energy parameter
�� reads

F = Fsupra + V� 1

8�
Hc

2
n +
1

8�
Hn

2
n	
+ �

i

�d�
Li

dl +
1

8�
� H�̃ 2dV . �12�

The term in parentheses contains the condensation energy
and the bulk magnetic energy of a uniformly magnetized
sample; the next term is the surface energy. The last term
describes the correction due to the finite thickness of the
sample.

B. Constrained current-loop model

The representation of the magnetic field created by the
superconducting currents on the boundaries of the domains
of the normal phase given by Eqs. �7� and �11� allows us to
account for screening superconducting currents on the top
and bottom surfaces of the film, at least for thin samples,
which are neglected in the existing version of the CL
model19,26 �see discussion on this in Refs. 34 and 35�. Here

we give the argument that accounting for the screening su-
perconducting surface currents corresponds to the kernel J in
relation �11� at d→�. Indeed, considering the domain of the
normal phase the boundary conditions on its top and bottom
surfaces are

��e

�z
−

��i

�z
= Hn. �13�

On the top and bottom surfaces of the surrounding supercon-
ducting regions we have

��e

�z
= 0.

For a thin film of superconductor the mixed boundary value
problem arises for the harmonic magnetostatic potential �
satisfying the condition ��
� ,z�=−��
� ,−z�, whose solution
can be obtained from the integral equation36 �
� �Sn�

Hn = �
Sn

K�
� ,
�����
��,0+�dS
� �14�

The expression for the kernel K�
� ,
��� follows from the
Greens function of the Dirichlet problem for the semispace.
The solution of Eq. �14� is known for the circular shape of
the domain36

��
� ,0+� = −
2Hn

�

R2 − r2.

This allows us to calculate the last term in relation �12�:

1

8�
� H�̃ 2dV =

1

8�
� �

��

�n
dS =

Hn
2R3

3�
. �15�

This is just the expression of the magnetic energy of the
circular domain of the normal phase obtained in the limit
d→� from the general relations for the hexagonal lattice of
the domains of normal phase given in Appendix B. In this
limit for small volume fractions of the normal phase when
the interactions between different domains can be neglected
we have

Em = N
Hn

2R3

3�
+ V

1

8�
Hn

2
n.

This corresponds to the magnetic energy with the correction
term given by the relation �15�. The last relation when put in
an equivalent form

Em =
N�R2dHn

2

8�
�1 +

8R

3�d
	

coincides with the one given by the correction to the self-
induction of a solenoid L of finite length derived in Ref. 33
for small R /d,

L = L��1 −
8R

3�d
	 .

Our argument shows that due to the screening superconduct-
ing surface currents this correction term works even for
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small d when the approximate expression for the correction
term should not be valid anymore. Moreover, as illustrated
below in the limit of small volume fractions of the domains
of the normal phase the minimization of the energy of the
hexagonal phase with respect to the period of the structure is
equivalent to the minimization of the energy per unit area of
the domain with respect to its radius.29 Accounting for the
surface energy of the domain 2��Rd, the energy per unit
area of the domain is

Hn
2R

3�2 +
2�d

R
.

Taking into account that Hn=Hc for small volume fractions
of the normal phase, minimization with respect to R leads to

2R

d
=
 3

2Bm
. �16�

Here the magnetic Bond number Bm=Mc
2d /�

=d /2���Mc=Hc /4�� characterizing the ratio of the mag-
netic and surface forces is introduced. The relation �16�, as
shown in Sec. VI, is in very good agreement with the exist-
ing experimental data. It is important that relation �16� works
even for small thicknesses of the film when the asymptotics
d→� of the CL model is not supposed to be valid. Accord-
ing to the above discussion we could expect such behavior
since the CL model in the limit d→� takes into account
screening superconducting currents on the top and bottom
surfaces of the film. We name this limit of current-loop
model the constrained current-loop model.

The validity of the CCL model is further demonstrated by
considering the instabilities of the stripe pattern. An analysis
of the serpentine instability of the stripe phase of the inter-
mediate state taking into account the screening supercon-
ducting currents was recently carried out in Ref. 28. The
general expression for the magnetic energy of slightly buck-
led periodic system of stripes in the frame of CL model is
derived in Ref. 37. The magnetic energy per stripe em in the
buckled state can be expressed as follows:37

em =
1

2�
� dq���q��2�F�q� − F�0�� . �17�

Here �a is the period of the structure, 2w is the stripe width�

F�q� = �
k=1

�
16�M2

a
�2�k/a�2 + q2

��1 − exp�− 
�2�k/a�2 + q2d�� sin2�2�wk

a
	 .

�18�

��y�= �1/2�����q�exp�iqy�dq is periodic along the y axis
stripe boundary displacement. Transforming the expression
of the energy variation to discrete Fourier modes considered
in Ref. 28, �n= �1/Ly���q�, q=2�p /Ly, where Ly is the size
of the system in the y axis direction in the limit d→� and
�=� cos��0y�, the relation �17� for the variation of the mag-
netic energy per unit surface area gives

Hc
2

8�
�
k=1

�
sin2�2�wk/a�

4�2 �−
1

k2�/a
+

1


��2�k�/a�2 + �0
2	 .

�19�

This is just the relation derived in Ref. 28 taking into account
screening superconducting currents. On the basis of the rela-
tion �19� the experimentally observed development of the
serpentine instability has been described. This illustrates the
usefulness of the CCL model for the description of the ser-
pentine instability of the intermediate state. It should be re-
marked that on transformation of the relation �17�–�19� also
a multiplier of 1 /2 has been accounted for since in Ref. 28
only one interface of the film is considered.

The above discussion illustrates the versatility of the ap-
proach connected with the consideration of the analogy be-
tween a magnetized body and a solenoid of finite height with
the same shape. This allows us in a simple way to obtain the
expressions for the magnetic energy of thin samples taking
into account the screening by the superconducting currents.

On the basis of the general expression for the energy of
the intermediate state �12� different problems can be consid-
ered. One of them is the long-standing problem of the tran-
sition between hexagonal and stripe phases considered al-
ready in Ref. 23. Nevertheless the approximate expressions
for the energies of the hexagonal and the stripe phases given
in Ref. 23 show that they are close but do not indicate a
hexagon-stripe transition, which is observed in experiments
�see Ref. 29 and below�. Here this problem will be consid-
ered based on the general CL model �12�.

C. Interface dynamics

Finishing the general part of this work let us consider the
interface dynamics as described by the CL model. The law of
the interface motion can be derived by considering the free
energy variation at the motion of the interface. Considering

the interface position variation 
��=
� +�� and taking into ac-
count the relations �vn is the normal to the interface velocity
component of the domain boundary, k is the curvature of the
interface taken constant across the film, S is the surface area
of the sample, and l is the countour L arclength�

�
n =
1

S
�

i
�

Li

vnidl dt ,

��d�
Li

dl = �d�
Li

kivnidl dt ,

�
1

8�
� H�̃ 2dV = 2M2�

i
�

Li

vnidl dt�
Sn

dS�J�
� − 
��,d� ,

the free energy variation is expressed as follows:
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dF

dt
= d�

i
�Hc

2

8�
−

H0
2

8�
n
2	�

Li

vnidl + �d�
i
�

Li

kivnidl

+ 2M2�
i
�

Li

vnidl�
Sn

dS�J�
� − 
��,d� . �20�

Since dF /dt=−TdSt /dt �St is the total entropy� this gives the
following kinetic law for the interface motion:

vni = −
1

�
�Hc

2

8�
−

H0
2

8�
n
2 + �ki +

2M2

d
�

Sn

dS�J�
� − 
��,d�	 .

�21�

Here � is the kinetic coefficient. At equilibrium when the
interface does not move the right side of Eq. �21� is equal to
zero. This condition is equivalent to the condition of the
absence of pressure in a system of domains of the normal
phase with equal size:

p = −
�F

�Vn
= −

1

V

�F

�
n
.

Thus one of the conditions determining the structure of the
intermediate state is �F /�
n=0. This condition was not con-
sidered in the previous papers describing the intermediate
state in the framework of the CL model.19,26 The equivalent
form for the law of interface motion allowing a physical
interpretation in terms of the Lorentz force on the supercon-
ducting currents is given in Appendix A. Another condition
for the determination of the pattern of the intermediate state
comes from the minimization of the free energy with respect
to the period of the structure. Necessary relations and the
results of numerical calculations are given in Sec. III.

III. STRIPE AND HEXAGONAL PHASES

In this section we will determine the free energy, the pe-
riod, and the domain sizes of the bubble hexagonal phase and
the stripe phase.

A. Stripe phase

Let us first consider the case of the stripe phase, which is
simpler. Resolving the magnetostatic problem of the mag-
netic field distribution created by the periodic system of the
magnetized stripes with width 2w and period a for the mag-
netic energy we obtain

1

8�
� H�̃ 2dV = 2��S� 1


n
2�H0

Hc
	2

Bm
a

d

��
n=1

�
sin2�2�nw/a��1 − exp�− 2�nd/a��

�3n3

+
1


n
2Bm�H0

Hc
	2�2w

a
	2 . �22�

The magnetic field strength Hn in the normal phase is
fixed by flux conservation: H0=
nHn, where 
n=2w /a. Us-
ing the relation in Ref. 38,

�
k=1

�
�1 − �− 1�kcos��kz��

k3 �1 − exp�− kx��

= −
x2

2
�

0

1

�1 − t�ln�1 +
cos2��z/2�
sinh2�xt/2�	dt +

x�2�1 − z2�
4

,

�23�

it is convenient to rewrite the expression for the free energy
of the stripe phase in the following form:

Fs = Fsupra + 2��S�Bm
n + �H0

Hc
	2Bm


n
+

d

�a

+ �H0

Hc
	2 1


n
2Bm�
n −

d

�a
�

0

1

�1 − t�

�ln�1 +
sin2��
n�

sinh2��dt/a�	dt� . �24�

Before considering the results following from the general
expression of the magnetic energy of the stripe phase �24� let
us consider the limiting case d→� of the CCL model. Tak-
ing into account the relations

�2
n�1 − 
n� = �
0

�

ln�1 +
sin2��
n�
sinh2�y� 	dy

and

�
k=1

�
sin2��k
n�

k3 = �
0

�

y ln�1 +
sin2��
n�
sinh2�y� 	dy ,

we obtain for the energy of the stripe phase

Fs = Fsupra + 2��S�Bm
n + �H0

Hc
	2Bm


n
+

d

�a
+ Bm�H0

Hc
	2

+
1


n
2�H0

Hc
	2

Bm
a

�3d
�

0

�

y ln�1 +
sin2��
n�
sinh2�y� 	dy . �25�

In this case minimization with respect to the period can be
carried out directly, which gives the relation

�d

a
	2

=
1


n
2�H0

Hc
	2

Bm
1

�2�
0

�

y ln�1 +
sin2��
n�
sinh2�y� 	dy .

This relation gives the result, which is close to that obtained
in Landau’s classical paper,20 as shown in Refs. 19 and 26.

Minimization of the free energy with respect to the two
variables 
n and a is carried out by the downhill simplex
method. The dependence of the width of the stripes on the
magnetic field strength is shown in Fig. 1 �Bm=5 and 300�.
In the limit of vanishing field strength the thickness of the
stripes has a limiting value which can be determined as fol-
lows. Differentiating the free energy expression with respect
to the period the following equation is obtained:
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�H0

Hc
	2 1


n
2Bm�

0

1

t ln�1 +
sin2��
n�

sinh2��dt/a�	dt = 1. �26�

In the limit H0→0, when H0=
nHc and a→� relation �26�
gives the following equation for the limiting value of the
relative width of the stripes of normal phase �=2w /d:

Bm
1

2
��2ln�1 +

1

�2	 + ln�1 + �2� = 1. �27�

This is exactly the equation for the relative width of stripes
arising at magnetic-field-induced phase separation of mag-
netic colloids found from thermodynamic arguments in Ref.
39. At this particular value of the stripe width its effective
surface tension as shown in Ref. 37 is exactly equal to zero.
This is correlated with the fact that arising stripes of the
normal phase are usually buckled. The value of the relative
stripe width as shown by the black dots in Fig. 1 coincides
well with the width of the stripes in the limit of low field
found from the numerical minimization of the free energy
given by the relation �24�. The comparison of the calculated
dependence of the stripe width with experiment is carried out
in Sec. V. The volume fraction of the stripe phase in depen-
dence on the external magnetic field strength is shown in Fig.
2 �Bm=5 and 300�. For the small value of the magnetic
Bond number Bm=5 the dependence of the volume fraction
deviates from the simple linear law 
n=H0 /Hc corresponding
to the case when the interactions between the domains of the
normal phase can be neglected. As shown in Sec. IV D it
corresponds to the experimental results quite well.

B. Hexagonal phase

According to relations �10�–�12� the energy of the hex-
agonal lattice of the cylindrical domains of the normal phase
is expressed as follows:

Fh = Fsupra + V
1

8�
Hc

2
n + V
1

8�
Hn

2
n + N2��dR

+ NM2� dS� dS�J�
� − 
��,d�

+ NM2 �
n1,n2�0

� dS� dS�J�
� − 
�� − 
�n,d� . �28�

Here N is the number of domains, and 
�n=a�n1e�1+n2e�2�,
where e�1 and e�2 are basic vectors of the elementary cell of
the hexagonal lattice with period a. The number of domains
N is expressed using the period of the structure as N
=2S /
3a2, where S is the area of the film. As a result the free
energy of the hexagonal pattern can be written as follows

Fh = Fsupra + 2��S��H0

Hc
	2Bm


n
2 Ndm�x,y� +

xy

3

+ Bm 
n

+ �H0

Hc
	2Bm


n
; �29�

here 
n=2�R2 /
3a2. The effective demagnetizing field co-
efficient Ndm�x ,y� as function of parameters x=d /a and y
=2R /a is given in Appendix B. For its calculation the rela-
tion

1

p
=

2

�
�

0

1/2
�

exp�− t2p2�dt +
1

p
erfc� p

2
�
	

is used and the sums are calculated according to the Evald
summation technique. Minimization of the free energy with
respect to the variables 
n and a is carried out by the down-
hill simplex method. The radius of the domain of the normal
phase in dependence on the magnetic field is shown in Fig. 3
�Bm=5 and 300�. Looking at these curves we pay attention
to the limiting value of the radius when the applied magnetic
field H0 goes to zero. In this limit the density of the normal
phase is small and interactions between domains can be ne-
glected. In this case the free energy has the following func-
tional dependence:

FIG. 1. Relative width of the stripe of the normal phase in
dependence on the magnetic field strength: Bm=5 �solid curve, left
scale� and 300 �dashed curve, right scale�.

FIG. 2. Volume fraction of the stripes of the normal phase in
dependence on the magnetic field strength: Bm=5 �solid curve� and
300 �dashed curve�.
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Fh = Fsupra + 2��SG��2
3
n

�
	1/2a

d
,
n,Bm,

H0

Hc
� .

From the last expression it follows that in the limit of
the vanishing density of the normal phase the minimization
with respect to the period is equivalent to the minimization
of the free energy with respect to the radius of the
domain of the normal phase. This gives the equation29

(k2= �2R�2 / �d2+ �2R�2�):

Bm =
3�1 − k2�

2k2�1 + �k2 − 2�E�k�/k3 + 2�1 − k2�K�k�/k3�
. �30�

The relation �30� in the limit k→0 fairly well describes the
existing experimental data.29

An important issue for understanding the morphology of
the intermediate state concerns the comparison of the ener-
gies of the hexagonal and stripe phases. The energy differ-
ence between the stripe and the hexagonal phases for the two
values of the magnetic Bond number is given in Fig. 4
�Bm=5 and 300�. Although the energies are very near each
other �the difference does not exceed 1%� there exists a tran-

sition from the hexagonal to the stripe phase. Already with
the illustrations shown in Fig. 4, a few comments can be
made: �i� the transition field only slightly varies with the
magnetic Bond number; �ii� for large magnetic Bond num-
bers the free energies of the stripe and hexagonal phase are
much closer than for small Bond numbers.

In the next sections we report experimental results con-
cerning the growth of bubbles and lamellae and discuss them
in view of the theoretical predictions of Secs. II and III.

IV. IMAGING THE INTERMEDIATE-STATE
STRUCTURES

A. Experimental setup and samples

The IS flux pattern in SC films was studied with the high-
resolution Faraday microscopy imaging technique. A
magneto-optic layer �MOL� is placed against the SC film,
which allows one to map the normal component of the mag-
netic induction at the surface of the slab. The SC samples
consisted of lead and indium films. Lead samples were cut
out from 25 and 120±1 �m thick foils of Goodfellow 99.9%
purity annealed lead. The thinnest indium samples were
grown by Joule evaporation directly onto the MOL. The
thicknesses of evaporated indium samples were 0.6, 1.1, 1.5,
2.2, and 10.0±0.1 �m. Other indium samples were cut out
from 33± 3 �m and 112± 3 �m thick foils of Goodfellow
99.8% purity indium. Investigating samples of various thick-
nesses d from materials with different interface energy pa-
rameters � aimed at exploring the full range of magnetic
Bond numbers Bm=d /2���T� over which the nonbranching
IS pattern is expected to be observed.23,40 As ��0�=0.056
and 0.33 �m, for Pb �Ref. 13� and In41, respectively, the
corresponding range of magnetic Bond numbers extends
from 0.3 to 350.

The MOL used to study the lead slabs was made of EuS.
It was fabricated by Joule-effect evaporation on a 0.4 mm
glass substrate and had a thickness of 1500 Å. A 600 Å thick
Al mirror was evaporated on top of it. The lead slabs were
compressed against the mirror. Generally EuS presents self-
magnetic ordering. However, we did not observe magnetic
domains, presumably due to a rather high content of oxygen.
For the indium slabs, the MOL consisted of a
CdMnTe/CdMgTe quantum well structure grown by mo-
lecular beam epitaxy.42 CdMnTe is well known to exhibit a
large Faraday rotation due to the giant Zeeman splitting of
the excitonic transition. The advantageous point of these
MOLs is that there is no self-magnetic ordering due to the
paramagnetic behavior of the Mn ions. Furthermore it is easy
to increase Faraday rotation by designing the MOL as an
optical cavity �metal/semiconductor/vacuum� and by placing
the quantum wells at antinodes of the electric field.43 Here
indium serves as both the SC layer and the cavity back mir-
ror. The peak Faraday angle was found to vary linearly with
the applied magnetic field with a slope of 54.4 deg T−1 at the
quantum well lowest excitonic transition.

The samples were placed in an immersion-type cryostat in
pumped liquid helium. The microscope objective with nu-
merical aperture 0.4 is placed in the vacuum part of the cry-
ostat and can be controlled from outside. The optical setup is

FIG. 3. Relative diameter of the cylindrical domain of the nor-
mal phase in dependence on the magnetic field strength: Bm=5
�solid curve, left scale� and 300 �dashed curve, right scale�.

FIG. 4. The energy difference between the stripe and the hex-
agonal phases: Bm=5 �solid curve, left scale� and 300 �dashed
curve, right scale�.
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similar to a reflection polarizing microscope. The indium
samples were illuminated with linearly polarized light from a
Ti-sapphire laser, through a rotating diffuser in order to re-
move laser speckle. In the case of lead samples a tungsten
lamp with an interference filter centered at 700 nm was used
as a light source. Reflected light from the sample passes
through an analyzer uncrossed by �15° and is focused onto
a charge-coupled device camera. The spatial resolution of
1 �m is limited by the numerical aperture of the microscope.
The magnetic resolution is 8 mT.42 The samples were first
zero-field cooled; then they were subjected to a perpendicu-
lar magnetic field H0 whose maximum value is 60 mT. After
cycling the field, some trapped flux is observed at zero field.

B. Normal-state bubbles and lamellae

Figure 5 shows typical IS structures observed in the
10 �m indium sample at three values of the reduced applied
magnetic field H0 /Hc. Raw images were corrected in order to
remove reflectivity fluctuations of the MOL using a reference
image taken at H0=0.42 The flux-bearing NS domains and
SC areas appear in black and in gray, respectively. The few
white spots correspond to NS domains that remain trapped in
the sample at H0=0. At very low H0 only the movement of
trapped flux consisting of very few bubbles is observed �Fig.
5�a��. Increasing H0 results in an increase of the density of
the NS phase due to the penetration of magnetic flux from
the edges of the slab. At low applied field �Fig. 5�b��, the NS
domains mainly consist of circular bubbles. For all the
samples studied NS bubble domains were systematically ob-
served to form the early stage of the IS. At higher applied
field, lamella-shaped domains appear and form labyrinthine
structures �Fig. 5�c��. The coexistence of bubbles and lamel-
lae as observed in Fig. 5�b� makes difficult a separate deter-
mination of their respective quasiperiods. In order to inves-
tigate the field dependence of these patterns, as developed
below, it is more convenient to measure the diameter of
bubbles and the width of lamellae.

C. Flux inhomogeneities and pinning

Whereas the IS model developed above assumes regular
domain structures, the observed flux distributions are disor-
dered and a global flux inhomogeneity is observed on the
scale of the image at low field value �Fig. 5�b��. The contri-
bution of the pinning of the domains to the disorder can be
evidenced by substracting the IS images obtained for two
successive values of the field. Thus one can follow the move-

ment of flux-bearing structures. Flux tubes very often move
by a distance equal to their diameter. This suggests that do-
main walls are pinned by point centers. By locating those
centers for successive values of the applied field, we obtain a
map of the pinning centers. The measured concentration is
about 9�10−4�m−2. A comparison of this map with the flux
structure in the lamella regime, at higher field �Fig. 6�, shows
that about 60% of the pinning centers are found on one in-
terface of a lamella. Thus pinning is found to contribute to
the positioning of bubbles and to the labyrinthine structure of
the lamellae in addition to shape instabilities.26,28 Hysteresis
or at least a modification of the field dependence of the do-
main period and size is also likely to occur.

At low field values, as observed in Fig. 5�b�, the magnetic
flux is globally not homogeneous. A full diamagnetic band,
about 50 �m wide, separates the IS structure present on the
slab edge from the IS structure present in the interior. This
diamagnetic band results from the existence of an energy
barrier of geometrical origin.25,31,32 The NS domains origi-
nate from the IS structure on the edges of the sample. They
have to cross the diamagnetic band to penetrate into the
sample. This is no longer the case at higher field value �Fig.
5�c��. The diamagnetic band has disappeared and NS lamel-
lae are connected to the edge of the sample. This suggest that

FIG. 5. IS pattern in a 10 �m
indium sample for values of the
reduced magnetic field H0 /Hc

=0.056 �a�, 0.132 �b�, and 0.378
�c� at T=2K �Bm=3.1�. The edge
of the sample is along the right
edge of the images.

FIG. 6. Pinning sites �white spots� overlaying the IS pattern at
H0 /Hc=0.416.
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the formation and penetration mechanisms of NS domains
are different at low field values where bubbles are mainly
observed and at high field values where lamellae form the
dominant pattern.

D. Area fraction of NS domains

Previous IS models usually assume that the magnetic field
hn in the NS domains is equal to the thermodynamical criti-
cal field Hc.

20,26 This is an approximate result obtained by
neglecting interface energy and stray field energy terms,
which are much smaller than bulk energy terms �see Eq.
�12��, in the minimization of the free energy. When all terms
are properly taken into account, hn is found to be smaller
than Hc as discussed in Sec. III. In order to determine the
importance of this effect we measured the area fraction 
n of
NS domains as a function of the applied field. Figure 7 pre-
sents the result obtained for the 2.2 �m indium sample

�Bm=0.73�. Owing to the large demagnetizing factor in our
film samples, 
n increases as soon as H0 reaches a few per-
cent of Hc. At low field, 
n is equal to H0 /Hc, i.e. hn=Hc in
NS domains. Then 
n progressively deviates from the linear
behavior: hn becomes smaller than Hc. The transition to the
NS �
n=1� occurs at an effective critical field lower than
Hc��0.7Hc�. Figure 7 also shows the variation of 
n calcu-
lated in the CL model for stripes �the curve for bubbles, not
shown here, is very similar�. The experimental findings are
qualitatively reproduced by the theoretical results. In agree-
ment with the predictions we found that the effective critical
field increases toward Hc for increasing sample thickness.
For the 112 �m indium sample �Bm=37� the effective criti-
cal field was found equal to �0.9Hc. This indicates that, for
finding the equilibrium condition of the system, the interface
energy and the stray field energy cannot be neglected at large
applied field and for a magnetic Bond number up to a few
tens. A detailed study of this effect, which is beyond the
scope of this paper, will be presented in a forthcoming
publication.44

V. THE GROWTH OF LAMELLAE

A. Field-dependent width of lamellae

In order to determine how accurately the CL and CCL
models describe the magnetic interaction between domains,
let us first analyze the growth of lamellae. Figure 8 shows
the mean width of lamellae as a function of the reduced
applied magnetic field H0 /Hc�T� for the 10 �m indium
sample �left figure� and the 120 �m lead sample �right fig-
ure�. Error bars represent the full width at half maximum of
the size distribution. The dashed �solid� line is the prediction
of the CL �CCL� model for a one-dimensional lattice of in-
finitely long stripes. Hc�T� is assumed to follow a Bardeen-
Cooper-Schrieffer temperature variation: Hc�T�=Hc�0��1
− �T /Tc�2�. Hc�0� equals 28.2 and 80.3 mT for indium and
lead, respectively. Tc is 3.4 K for indium and 7.2 K for lead.
The variation of ��T� with temperature is assumed to follow

FIG. 7. Area fraction of NS domains 
n for the 2.2 �m indium
sample at 1.8 K as a function of the reduced applied magnetic field.
The black circles are the experimental values obtained from the
analysis of images of the magnetic flux. The full line is the calcu-
lated area fraction for a stripe lattice in the CL model with Bm
=0.73. The dashed line corresponds to 
n=H0 /Hc.

FIG. 8. Mean lamella reduced width 2w /d as a function of the reduced magnetic field H0 /Hc�T� for a 10 �m thick In slab �left� and a
120 �m thick Pb slab �right� at T=2 K. The error bars represent the full width at half maximum of the distributions of lamella width. The
dashed �solid� curve represents the calculated equilibrium width using the CL �CCL� model with ��T�=0.51�Bm=3.1� and 0.066 �Bm
=290� for In and Pb, respectively. The two curves coincide for Bm=290.
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the empirical law ��T�=��0� /
1− �T /Tc� proposed in Ref.
41. We use ��0�=0.056 �m for Pb,13 and ��0�=0.33 �m for
In.41 For the lowest H0 /Hc values �H0 /Hc�0.4 for indium
and H0 /Hc�0.65 for lead�, the predicted and the measured
widths present a reasonable agreement. It is important to
notice that the magnetic Bond number is varied by two or-
ders of magnitude �Bm=3.1 for indium and 290 for lead� and
that there is no adjustable parameter. The predictions of the
CL and the CCL models are identical for Bm=290. For
Bm=3.1, the predicted width is smaller for the CCL than for
the CL model. Given the experimental error bars, both mod-
els provide a reasonable description. The mean width of the
lamellae increases with H0 /Hc almost as predicted. This in-
dicates that the observed lamellae patterns can be described
by a succession of equilibrium states, the growth of the
lamellae being essentially the result of the competition be-
tween long-range and short-range interactions. This most
likely results from the fact that a large number of lamellae
are connected to the edges of the slab, thus allowing the
magnetic flux to penetrate continuously from the exterior.

For the highest H0 /Hc values, the width of the lamellae
continues to grow. However, the measured values are smaller
than the predictions. Indeed, in this regime, for indium the IS
pattern consists of a disordered network of SC lamellae sepa-
rated by large NS domains whose width is not well defined
�the distribution of width values is represented by the error
bars� and for lead there is also a non-negligible fraction of

bubbles in the NS phase. Therefore we cannot expect very
good agreement with theoretical predictions made for a per-
fect stripe lattice.

B. Growth and jumps

The evolution of the lamellae pattern can be put in evi-
dence by comparing successive images taken for increasing
field values. Figure 9�a� shows the maze pattern of lamellae
at a reduced applied field H0 /Hc=0.41 for the 10 �m indium
sample. Figure 9�b� shows the result of the subtraction of this
image from the one recorded at H0 /Hc=0.45. White areas
show places from which magnetic flux has moved away and
black areas places where it has arrived. The increase of the
width of lamellae which are connected to the edge is re-
vealed by very thin black filaments on the center and right
parts of Fig 9�b�. The jumps of lamellae appear as adjacent
black and white structures on the left part of Fig. 9�b�.

At large field most lamellae are connected to the edges.
Therefore it is easy to understand that their growth can be
continuous due to the reversible penetration of magnetic flux
from the exterior. At low field, lamellae have to cross the
diamagnetic band to penetrate far into the interior of the
sample. They are often no longer connected to the edge.
However, their mean width also increases with the field.
Since lamellae have several degrees of freedom �width,
length, and buckling�, the length and buckling very likely
become adjusted in such a way that the width is nearly equal
to the equilibrium one. This is reasonable since the energy of
an isolated lamella is governed mainly by its width and al-
most does not depend on its length or buckling.26

VI. THE IMPEDED GROWTH OF BUBBLES

A. Field-independent diameter

The growth of bubbles presents different characteristics as
compared to the growth of lamellae. Figure 10 shows the
mean diameter of bubbles for the 10 �m indium slab �left�
and the 120 �m lead slab �right� as a function of the applied
magnetic field. The dashed �solid� curve represents the equi-
librium diameter calculated using the CL �CCL� model.
Again the CL and CCL models give identical curves for the
lead sample with a large magnetic Bond number. Contrary to

FIG. 9. �a� Image of the IS pattern in the 10 �m indium sample
at H0 /Hc=0.41 and T=2 K�Bm=3.1�. �b� Image �a� is subtracted
from the one taken at H0 /Hc=0.45 in order to reveal flux
movement.

FIG. 10. Mean bubble reduced
diameter 2R /d as a function of the
reduced magnetic field H0 /Hc�T�
for the 10 �m thick In slab �left�
and the 120 �m thick Pb slab
�right� at T=2 K. The dashed
�solid� line represents the equilib-
rium diameter calculated using the
CL �CCL� model with Bm=3.1
for indium and 290 for lead. The
two curves coincide for Bm=290.

NORMAL-STATE BUBBLES AND LAMELLAE IN TYPE-I… PHYSICAL REVIEW B 72, 014513 �2005�

014513-11



the lamella width, the bubble diameter stays almost constant
as the field increases, i.e., as the volume fraction of the nor-
mal phase increases. This indicates that the mean diameter is
independent of the magnetic interactions between NS do-
mains. Indeed the measured diameter tends to the equilib-
rium value predicted by the CCL model for H0→0, that is, in
a situation where interbubble interaction can be neglected.
This suggests that the CCL model might correctly describe
the bubble mean diameter, provided that it is used in the
zero-field limit.

B. The master curve

Since the lack of dependence of the bubble mean diameter
on the interdomain magnetic interaction is demonstrated for
two samples that differ much in their thicknesses and inter-
face parameters, one may suspect that this behavior has a
general character. In order to clarify this point we investi-
gated lead and indium samples of various thicknesses and we
collected earlier data on Pb, Hg, and In from the
literature.22,24,25,45 In Fig. 11 we plot the mean bubble diam-
eter in units of the sample thickness d as a function of the
magnetic Bond number Bm=d / �2���. All the data gather on
a single master curve. This proves that �i� the mean diameter
does not depend on the specificities �shape of the edges,
pinning properties� of the samples studied and �ii� the thick-
ness d and the interface width � are the only parameters that
control the bubble system. The shaded area below a critical
Bond number Bmc=dc / �2��� represents the region where
samples become type-II superconductors. Our thinnest in-
dium sample �d=0.6 �m� falls in this range. Indeed we did
not observe NS domains in this sample although their calcu-
lated size is larger than the spatial resolution. The interface
energy should drop to zero and become negative in a very
narrow range of thickness around dc.

Let us compare the master curve with the theoretical pre-
dictions for the equilibrium radius in the limit H0→0, i.e.,
neglecting interbubble magnetic interaction. The dashed
curve of Fig. 11 represents the diameter calculated in the
framework of the CL model using Eq. �30�. A good quanti-
tative agreement is found for Bm�10. On the contrary, for
Bm�10 the predicted diameter is larger than the measured
one. The discrepancy increases when Bm decreases �for
Bm=0.5 the predicted and measured diameters differ by a
factor of �4�. The CL model is unable to describe accurately
the bubble pattern for small Bond numbers. The solid curve
of Fig. 11 represents the equilibrium diameter calculated us-
ing the CCL model �Eq. �16��. This prediction is in good
agreement with the measurements over three orders of mag-
nitude of the magnetic Bond number �Bm=0.5–500�. This
demonstrates that the CCL model accurately describes the
bubble pattern. We can conclude that the bubble mean diam-
eter is solely determined by the competition between the
interface energy and the energy of the stray field created by
the screening current flowing around the bubble. Moreover,
the CCL model, which takes into account the shielding of
field lines by surface currents, describes experimental results
much better than the CL model, for which current loops are
interacting as in the free space.

The impeded growth of bubbles most likely results from
the nature of the SC phase. Let us consider the time variation
of the magnetic flux 	 in a bubble isolated in the SC matrix.

The Maxwell-Faraday equation gives us d	 /dt=−�E� ·dl�

with E� the electric field. The contour of the line integral is
taken as a closed loop encircling the bubble in the SC matrix
at a distance larger than the penetration depth. As the electric

field E� is zero in the SC phase the magnetic flux 	 within the
NS bubble must remain constant.33 Since the field hn in the
NS areas is equal to the critical field in the limit of small
density of the normal phase �Sec. III� the area of the isolated
NS bubble must remain constant. Consequently, flux varia-
tion in an isolated bubble and therefore size variation can
only result from the movement of an incoming NS domain.

For the bubble size to grow, not only has another NS
domain to reach the bubble, it has to merge with it. However,
the fusion of two NS domains is impeded by their repulsive
interaction.46 Moreover, the formation of bubbles of size
much smaller than the equilibrium one is very unlikely due
to the positive interface energy. As a consequence the con-
tinuous growth of isolated NS domains with the applied field
is hindered.

The fact that isolated bubbles cannot grow in size as the
field increases is not sufficient to explain that the mean di-
ameter of the bubble distribution also does not increase with
the applied field. We would expect that, the higher the field
value at which the bubbles penetrate into the sample, the
larger their diameter. Then the average diameter should in-
crease with the field, though at a smaller rate than predicted.
Actually, as will be discussed below, it is often observed that
a large fraction of the observed bubbles penetrates into the
sample in a single burst at low field and that further flux
penetration is dominated by lamellae. Furthermore, bubble
shape instabilities, which are theoretically and experimen-
tally actively studied in various systems,3,5,18,26 very likely

FIG. 11. Log-log plot of the reduced bubble diameter 2R /d as a
function of the magnetic Bond number d / �2���. The filled circles
and squares were obtained with In and Pb slabs, respectively. The
empty lozenges, squares, and circles are reported from Ref. 22, 24,
and 25 for Hg, Pb, and In, respectively. The shaded region corre-
sponds to type-II superconductivity for very thin slabs. The theoret-
ical curves represent the equilibrium bubble diameter in the limit
H0→0, i.e., neglecting interbubble interactions: the dashed curve is
obtained using the CL model, the solid curve using the CCL model
�see text�.
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play a major role in the fast transformation of large-diameter
bubbles into lamellae therefore making large-size bubbles
unobservable.44

C. Close-to-equilibrium system

Let us examine how far from equilibrium the bubble sys-
tem is. Figure 12 shows the mean diameter and mean dis-
tance between bubbles as a function of the field for the
120 �m lead sample. The full line represents the period of a
hexagonal lattice built from bubbles with their constant di-
ameter assuming flux conservation, i.e., the volume fraction
of NS domains 
n is equal to H0 /Hc. One can see that the
mean distance between bubbles varies with the field in good
agreement with the calculated period. This means that inter-
action between bubbles, which is unimportant for fixing their
size, serves to adjust their distance in such a way that the
constraint of global flux conservation is satisfied. The energy
calculated for such a lattice �Eq. �12�� is at most only 0.5%
larger than the energy of the equilibrium lattice. The reason
is that bulk energy terms that depend on 
n but not on the
period are much larger than the interface and stray-field en-
ergy terms that depend on both 
n and the period. Therefore,
although bubbles keep their zero-field diameter, the bubble
system is only slightly out of equilibrium.

VII. TRANSITION FROM BUBBLE TO STRIPE PATTERN

After having investigated the size variations of lamellae
and bubbles, it is interesting to study their respective concen-
trations and to determine whether there is some experimental
evidence of a bubble-to-lamella transition as predicted in
Sec. III of this paper. Bubble patterns are systematically ob-
served to form in the early stage of the IS whereas the lamel-
lae pattern dominates when H0 /Hc increases �see Fig. 5�.
Typical variations of the area fraction of bubbles 
nb and
lamellae 
nl�
n=
nb+
nl� are shown in Fig. 13 for the
10 �m indium sample. The formation of domains starts for

H0 /Hc�0, due to the finite width of the slab. Lamellae ap-
pear at H0 /Hc=0.075 while bubbles are already present in
the sample. The fraction of lamellae 
nl then increases mono-
tonically with the field. In contrast, the fraction of bubbles

nb only increases over a reduced range of H0 /Hc values and
reaches a plateau. Within the plateau bubbles neither are
created nor disappear. At the end of the plateau
�H0 /Hc=0.26±0.04� ,
nb starts to decrease. Bubbles are
surrounded by other NS domains and cannot escape; they
disappear by fusion with those domains. The fact that

nb tends to zero when H0 increases is experimental evidence
of the bubble-to-lamella transition. The decreasing rate
of 
nb was observed to vary systematically with the slab
thickness d �i.e., the magnetic Bond number Bm�. For
the 2.2 �m �Bm=0.73� and the 10 �m thick In slabs
�Bm=3.1� ,
nb→0 for H0 /Hc�0.45 and �0.65, respec-
tively. For the 112 �m thick In slab �Bm=37� ,
nb decreases
but bubbles are observed to remain present up to the end of
the transition to the NS. These variations may be associated
with the decrease of energy difference between the bubbles
and the lamellae as Bm increases, as shown in Fig. 4. In
order to get more insight into the bubble-to-lamella transi-
tion, it is important to determine the respective contributions
of equilibrium state processes and of irreversible processes
�such as the pinning of interfaces, the energy barrier against
the fusion of domains,46 and the geometrical barrier� on the
variation of the bubble and lamellae concentrations. Since
the bubble-to-stripe transition is predicted to be of first order,
one expects a coexistence of the two types of patterns and
continuous variations of 
nb and 
nl. Experimentally the co-
existence of bubbles and lamellar patterns is effectively ob-
served. After the plateau, the bubbles start to disappear for a
well-defined value H0 /Hc=0.26±0.04, close to the predicted
value H0 /Hc=0.32, for which the free energies of the bubble
and lamellar lattices become equal. However, within the pla-
teau bubbles are trapped and their growth is impeded. More-
over the penetration of bubbles occurs only when the dia-
magnetic band is present. Therefore 
nb and 
nl may differ
from the equilibrium values and should depend on the
mechanism of flux penetration on the edges of the sample.

FIG. 12. Mean diameter 2R �filled circles� and mean distance a
�filled squares� between bubbles in the 120 �m Pb sample at 2 K
�Bm=290�. The solid line represents the mean distance calculated
with a constant diameter �dotted line�, assuming global flux conser-
vation 
n=H0 /Hc.

FIG. 13. Area fraction of NS bubbles �black circles� and NS
lamellae �black squares� as functions of the reduced applied field
for the 10 �m thick indium sample at 2 K.
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These mechanisms may drive the early stage of the forma-
tion of bubbles and lamellae at low field and are not well
understood.36

VIII. SUMMARY AND CONCLUSION

We have presented an extensive theoretical as well as ex-
perimental study of the formation of NS domains in the IS of
type-I superconductors. The expression of the free energy of
the intermediate state of the type-I superconductor derived in
the current-loop approximation allows one to describe quali-
tatively and quantitatively the peculiarities of the morphol-
ogy of the intermediate state observed in the experiments.
Among the features studied in this paper we should mention
the dependence of the domain size on the magnetic field, the
nonlinear dependence of the volume fraction of the normal
phase on the external field, and the existence of a transition
between the hexagonal and the stripe phases. Different SC
materials and slab thicknesses were used in order to cover
more than three orders of magnitude of the magnetic Bond
number �Bm=0.3–500�, i.e., the full range over which non-
branching IS patterns are expected to occur. Experimentally
we first analyzed the variation of the area fraction of the
normal phase with the magnetic field and its spatial distribu-
tion within the SC slabs. At low field values, the magnetic
field within the NS domains is shown to be equal to the
thermodynamic critical magnetic field. Its value is reduced
when the applied magnetic field increases because of the
interface energy and the mutual interaction between do-
mains. The contributions of the pinning of domain walls and
of the geometrical barrier, which exists at low applied mag-
netic field values, have been shown to play a role in the
inhomogeneity of the magnetic flux distribution at the early
stage of flux penetration.

In order to determine to what extent the observed patterns
correspond to equilibrium states, we have then analyzed the
size variation of lamellae and bubbles. For lamellae, the field
variation of their average width is found in reasonable agree-
ment with the theoretical predictions. We show in addition
that the evolution of the lamellar pattern results from both an
increase of lamellae width and domain jumps, in order to
satisfy the condition of flux conservation. The continuous
growth of lamellae is ensured by the reversible flux penetra-
tion from the edges of the slab.

The case of bubbles is different. Their average diameter is
found to be almost independent of the applied magnetic field,
i.e., independent of the long-range magnetic interactions be-
tween domains. Under appropriate scaling the measured di-
ameters are shown to gather onto a single master curve and
to correspond to the equilibrium diameter of an isolated
bubble. This diameter results solely from the competition
between the Biot-Savart interaction of the screening current
encircling the bubble and the SC-normal interface energy. A
significantly better agreement is found with the CCL model
than with the CL model, in particular for the thinnest SC
slabs. This demonstrates that the NS domains cannot be sim-
ply modeled as current loops interacting as in the free space.
The shielding of the magnetic field lines by surface screening
currents has to be taken into account to accurately describe
the stray-field magnetic energy.

Furthermore, the impeded growth of NS domains isolated
in the SC matrix is shown to result from the nature of the SC
phase. As long as the NS domains are completely surrounded
by the SC phase, they cannot undergo flux variations. The
growth of an isolated NS domain has to result from the
merging with another NS domain. The combined effect of
the repulsive magnetic interaction between domains and of
the positive interface tension precludes the continuous
growth of bubbles. The peculiar properties of the SC phase
set a limit to the analogy between type-I superconductors and
other two-phase, quasi-two-dimensional systems. In ferro- or
ferrimagnetic thin films, like bubble garnets for instance,
there is no similar constraint for flux variation. The up-
magnetized isolated bubble domains can grow at the expense
of the down-magnetized surrounding phase.

Finally, we found some experimental evidence for a
bubble-to-lamella transition, as predicted theoretically. How-
ever, at low applied field, the concentrations of lamellae and
of bubbles are shown to differ from equilibrium values. This
sets a limit for the comparison between the experimental data
and the predictions of the mean-field current-loop model.
Indeed the respective concentrations of the bubbles and of
the lamellae are likely to depend on the mechanism of flux
penetration on the edges of the sample when the diamagnetic
band is present.

Future studies will in particular aim at understanding the
role of bubble shape instabilities in the observed distribu-
tions of bubbles and lamellae sizes at the early stage of flux
penetration. On the opposite side, in the large field limit,
work is in progress to study the transition from the IS to the
NS as a function of the magnetic Bond number and compare
the predictions of the CL and CCL models with experimental
results.

APPENDIX A

The vector potential of the magnetic field created by su-
perconducting currents circulating around the domain of the
normal phase is expressed as follows:

A� � =
1

c
is� t��dl�dz�


�
� − 
���2 + �z − z��2
. �A1�

The component of the magnetic field strength in the direction
normal to the layer is

Hz� = −
1

c
is� ��
� − 
��� � t���e�zdl�dz�

�r� − r���3
. �A2�

For the magnetic field strength averaged across the film we
have

�Hz�� =
2is

cd
� ��
� − 
��� � t���e�zdl�

�
� − 
���
	�� �
� − 
���

d
	 . �A3�

Here 	���=ln�1/�+
1+1/�2�+�−
1+�2 and 	����=1
−
1+1/�2.

The kinetic law for the interface motion �21� can be trans-
formed as follows. The mean accross the film magnetic field

�H̃z�� is expressed as

CĒBERS, et al. PHYSICAL REVIEW B 72, 014513 �2005�

014513-14



�H̃z�� =
1

d
� ��

�z
dz =

2�+

d
= −

2M

d
� dS�J�
� − 
��,d� .

On the interface the following relation according to �7� is
valid:

�H̃z� = −
1

2
Hn + �Hz��

where �Hz�� is found according to relation �A3� where the
principal Cauchy value of the integral should be taken. Thus
the law of the interface motion can be transformed as fol-
lows:

vn = −
1

�
�Hc

2

8�
+ �k − M�Hz��	

= −
1

�
�Hc

2

8�
+ �k −

Hn
2

8�

1

�d
	

�� ��
� − 
��� � t���e�zdl�

�
� − 
���
	�� �
� − 
���

d
	 . �A4�

The law of interface motion �A4� has a simple physical
interpretation for the long cylindrical tube. In this case the
Lorentz force per unit surface acting on the superconducting
currents around the domain of the normal phase is
is /2cHnn� = �Hn

2 /8��n� . If the surface tension of the interface is
neglected the interface motion according to the law vn=
−1/��Hc

2 /8�−Hn
2 /8�� stops at Hn=Hc as it should.

APPENDIX B

Applying the Evald summation technique the effective de-
magnetizing field coefficient is expressed as follows:

Ndm�x,y� =
�y2

2
3
�1 +

4y

3�x
�1 −

�2k2 − 1�E�k�
k3 −

�1 − k2�K�k�
k3 	 +

xy4

32
3
� 8

�x2 �
n1,n2�0

�
�r���1

dr� f�r�� 1

�yr� + 
�n�
erfc��yr� + 
�n�/
��

−
1


�yr� + 
�n�2 + x2
erfc�
�yr� + 
�n�2 + x2/
��	 −

16

x2�
0

1

dr rf�r�� 1

yr
erf� yr


�
	 −

1

y2r2 + x2

erf�
y2r2 + x2


�
	

+
8�2


3x2�x erf� x

�
	 −
 �

�
�1 − exp�−

x2

�
	� +

8�2


3x2y2 �
n1,n2�0

J1
2�kny�

kn
3 �2 erfc�kn


�� − exp�2xkn�erfc�kn

� +

x

�
	

+ exp�− 2xkn�erfc�kn

� −

x

�
		 . �B1�

Here kn=2�
n1
2+n2

2−n1n2 /
3,ni are natural numbers, f�r�=2�arccos r−r
1−r2� ,
�n=n1e�1+n2e�2. � in relation �23� is the
Evald number for which the value 0.6 is taken in numerical calculations.

ACKNOWLEDGMENTS

This work was partially carried out during the stay of one
of the authors �A.C.� at University P. M. Curie Paris 6. He is

thankful for this opportunity. T.O. acknowledges financial
support from the Leading Student Exchange Support Pro-
gram and the Japanese Consortium of “College Doctoral
franco-japonais.”

*Electronic address: catherine.gourdon@insp.jussieu.fr; URL:
http://www.insp.upmc.fr

1 H. M. McConnell, Annu. Rev. Phys. Chem. 42, 171 �1991�.
2 K. J. Stine, Ch. M. Knobler, and R. C. Desai, Phys. Rev. Lett. 65,

1004 �1990�.
3 A. Cebers, M. M. Maiorov, Magn. Gidrodin. 16, 27 �1980� �Mag-

netohydrodynamics �N.Y.� 16, 21 �1980��.
4 A. O. Cebers and M. M. Maiorov, Magnetohydrodynamics �N.Y.�

16, 231 �1980�.
5 F. Elias, C. Flament, J-C. Bacri, and S. Neveu, J. Phys. I 7, 711

�1997�.
6 R. E. Rosensweig, Ferrohydrodynamics �Dover Publications, Mi-

neola, NY, 1997�.
7 S. A. Langer, R. E. Goldstein, and D. P. Jackson, Phys. Rev. A

46, 4894 �1992�.
8 J. Richardi, D. Ingert, and M. P. Pileni, J. Phys. Chem. B 106,

1521 �2002�.
9 M. Seul and R. Wolfe, Phys. Rev. A 46, 7519 �1992�.

10 A. Hubert and R. Schäfer, Magnetic Domains �Springer, Berlin,
2000�.

NORMAL-STATE BUBBLES AND LAMELLAE IN TYPE-I… PHYSICAL REVIEW B 72, 014513 �2005�

014513-15



11 T. E. Faber, Proc. R. Soc. London, Ser. A 248, 460 �1958�.
12 F. Haenssler and L. Rinderer, Helv. Phys. Acta 40, 659 �1967�.
13 R. P. Huebener, Magnetic Flux Structures in Superconductors

�Springer, New York, 1979�.
14 R. Plass, N. C. Bartelt, and G. L. Kellogg, J. Phys.: Condens.

Matter 14, 4227 �2002�.
15 J. D. Murray, Mathematical Biology, 2nd corr. ed. �Springer, Ber-

lin, 1993�.
16 R. E. Goldstein, D. J. Muraki, and D. M. Petrich, Phys. Rev. E

53, 3933 �1996�.
17 M. Seul and D. Andelman, Science 267, 476 �1995�.
18 S. A. Langer, R. E. Goldstein, and D. P. Jackson, Phys. Rev. A

46, 4894 �1992�.
19 R. E. Goldstein, D. P. Jackson, and A. T. Dorsey, Phys. Rev. Lett.

76, 3818 �1996�.
20 L. D. Landau, Zh. Eksp. Teor. Fiz. 7, 371 �1937�.
21 R. E. Miller and G. D. Cody, Phys. Rev. 173, 494 �1968�.
22 D. E. Farrell, R. P. Huebener, and R. T. Kampwirth, J. Low Temp.

Phys. 19, 99 �1975�.
23 R. N. Goren and M. Tinkham, J. Low Temp. Phys. 5, 465 �1971�.
24 R. P. Huebener, R. T. Kampwirth, and V. A. Rowe, Cryogenics

12, 100 �1972�.
25 R. P. Huebener and R. T. Kampwirth, Phys. Status Solidi A 13,

255 �1972�.
26 A. T. Dorsey and R. E. Goldstein, Phys. Rev. B 57, 3058 �1998�.
27 P. G. de Gennes, Superconductivity of Metals and Alloys �W.A.

Benjamin, New York, 1966�.
28 C. R. Reisin and S. G. Lipson, Phys. Rev. B 61, 4251 �2000�.
29 V. Jeudy, C. Gourdon, and T. Okada, Phys. Rev. Lett. 92, 147001

�2004�.
30 D. E. Chimenti and J. R. Clem, Philos. Mag. B 38, 635 �1978�.

31 V. Jeudy, G. Jung, D. Limagne, and G. Waysand, Physica C 225,
331 �1994�.

32 H. Castro, B. Dutoit, A. Jacquier, M. Baharami, and L. Rinderer,
Phys. Rev. B 59, 596 �1999�.

33 L. Landau and E. Lifschitz, Electrodynamics of Continous Media
�Nauka, Moscow, 1956�.

34 O. Narayan, Phys. Rev. Lett. 81, 5035 �1998�.
35 R. E. Goldstein and A. T. Dorsey, Phys. Rev. Lett. 81, 5036

�1998�.
36 H. Bokil and O. Narayan, Phys. Rev. B 56, 11195 �1997�.
37 A. Cebers, Magn. Gidrodin. 30, 179 �1994� �Magnetohydrody-

namics �N.Y.� 30, 148 �1994��.
38 A. Cebers, Magn. Gidrodin. 31, 61 �1995� �Magnetohydrody-

namics �N.Y.� 31, 58 �1995��.
39 A. Cebers, Magn. Gidrodin. 26, 49 �1990� �Magnetohydrody-

namics �N.Y.� 26, 309 �1990��.
40 A. Hubert, Phys. Status Solidi 24, 669 �1967�.
41 Yu. V. Sharvin, Zh. Eksp. Teor. Fiz. 38, 298 �1960� �Sov. Phys.

JETP 11, 216 �1960��.
42 G. Gourdon, V. Jeudy, M. Menant, D. Roditchev, Le Anh Tu, E.

L. Ivchenko, and G. Karczewski, Appl. Phys. Lett. 82, 230
�2003�.

43 C. Gourdon, G. Lazard, V. Jeudy, C. Testelin, E. L. Ivchenko, and
G. Karczewski, Solid State Commun. 123, 299 �2002�.

44 V. Jeudy, C. Gourdon, and A. Cebers �unpublished�.
45 For Hg we take ��0� equal to 0.084 �m, i.e., three times smaller

than the value proposed in Ref. 22. The overestimation of ��0�
in Ref. 22 results from the use of an approximate model to
calculate the magnetic energy.

46 W. H. Fietz, J. Parisi, and R. P. Huebener, J. Low Temp. Phys.
54, 159 �1984�.

CĒBERS, et al. PHYSICAL REVIEW B 72, 014513 �2005�

014513-16


