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We propose a class of ground states for doped Mott insulators in the electron second quantization represen-
tation. They are obtained from a bosonic resonating valence bond �RVB� theory of the t-J model. At half
filling, the ground state describes spin correlations of the S=1/2 Heisenberg model very accurately. Its spin
degrees of freedom are characterized by RVB pairing of spins, the size of which decreases continuously as
holes are doped into the system. Charge degrees of freedom emerge upon doping and are described by twisted
holes in the RVB background. We show that the twisted holes exhibit an off diagonal long range order
�ODLRO� in the pseudogap ground state, which has a finite pairing amplitude, but is short of phase coherence.
Unpaired spins in such a pseudogap ground state behave as free vortices, preventing superconducting phase
coherence. The existence of nodal quasiparticles is also ensured by such a hidden ODLRO in the ground state,
which is non-Fermi liquidlike in the absence of superconducting phase coherence. Two distinct types of spin
excitations can also be constructed. The superconducting instability of the pseudogap ground state is discussed
and a d-wave superconducting ground state is obtained. This class of pseudogap and superconducting ground
states unifies antiferromagnetism, pseudogap, superconductivity, and Mott physics into a new state of matter.
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I. INTRODUCTION

An important question posed by the study of high tem-
perature superconductors is whether the superconducting
ground state of doped Mott insulators can be described by a
BCS-like wave function. A d-wave BCS wave function
and/or its derivatives have been widely used in the phenom-
enology of high temperature superconductors, partly because
electron pairing, as evidenced by 2e flux quantization and
similar experimental results, is observed in the cuprate su-
perconductors. However, owing to the effect of strong on-site
Coulomb repulsion between the electrons, superconductivity
in these systems may be quite different. Whereas in a con-
ventional BCS superconductor, screening and retardation ef-
fects serve to minimize the role of Coulomb interaction, the
role of the latter becomes crucial in a doped Mott insulator
where the charge degrees of freedom are partially frozen by
the severity of the Coulomb interaction. Strong arguments
have been presented in the literature that a high temperature
superconductor evolves from a Mott insulator doped by
holes, and consequently the ground state can be very differ-
ent from a conventional BCS state.1

A simple step towards incorporating Mott physics into a
BCS description was suggested many years ago.1,2 This in-
volves a projection �out of the Hilbert space� of doubly oc-
cupied sites in a d-wave BCS state.3 In this approach, the
charge degrees of freedom on a lattice site i, are partially
frozen by a Gutzwiller operator �1−ni↑ni↓�. At half filling,
only spin degrees of freedom survive, and the wave function
describes a Mott insulating state. This class of wave func-
tions has achieved some success in the phenomenology of

the cuprate superconductors.4–6 A recent paper argues the
case further.7 However, the treatment of low energy spin de-
grees of freedom in this description is not satisfactory. Ex-
perimentally, strong antiferromagnetic �AF� correlations
have been observed for the Cu spins, but projected d-wave
BCS states cannot account correctly for such correlations.
Since we opine that spin correlations are intimately related to
superconductivity in a doped Mott insulator, we are moti-
vated to seek an alternate description in which the spin de-
grees of freedom can be treated more accurately and system-
atically.

In this paper, we propose a new class of ground states
based on a microscopic treatment of the t-J model. These
ground state wave functions are different from the projected
BCS wave functions, and possess the following properties:
�i� the spin degrees of freedom fully restore the AF long
range order �AFLRO� as well as low-lying spin wave exci-
tations at half filling, and evolve into a spin liquid with
strong short-range AF correlations at low doping; �ii� the no
double occupancy constraint is always satisfied for any dop-
ing, and is incorporated self-consistently instead of being
enforced by a “brute-force” projection; �iii� there is an inher-
ent d-wave superconducting instability at finite doping. Thus,
these wave functions offer a unified description of antiferro-
magnetism and superconductivity in a doped Mott insulator.

To motivate the form of the ground state wave function,
let us first consider the ground state of the undoped Mott
insulator on a square lattice. It is well known that the dynam-
ics of the low energy degrees of freedom in this case are
described by the S=1/2 Heisenberg Hamiltonian. While the
exact ground state of this model is not known, a comparison
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with numerical results shows that the best variational state,
��0�, is given by8

��0� = �
i�Aj�B

W�i1 − j1� ¯ W�in − jn��i1j1� ¯ �injn� . �1�

The ground state �1� is defined to be the bosonic RVB state
of the insulator.8 Here, �ij� stands for a singlet spin pairing
between opposite sublattice sites i and j, and W�ij�, the posi-
tive weight factor associated with it. The motivation for such
a construction is to ensure that the ground state satisfies the
so-called Marshall sign rule.9 Marshall showed that the
ground state of the S=1/2 Heisenberg Hamiltonian on a
square lattice satisfies the condition,
sgn��0��1 ,�2 , . . . ,�N��= �−1�P��1,�2,. . .,�N�. Here,
P��1 ,�2 , . . . ,�N� denotes, say, the number of down spins on
sublattice A for the spin configuration ��1 ,�2 , . . . ,�N�. Then,
the matrix elements of the Heisenberg Hamiltonian are nega-
tive and the ground state energy assumes the form of a sum
over negative terms.10 Since each singlet bond �ij� satisfies
the Marshall sign, it follows that the wave function of �1�,
which is given by �0����ij��−1�iW�i− j� �here i�j� stands
for up �down� spin sites and h�i− j�=0 if ij� the same sub-
lattice sites�, always satisfies this criterion.

The ground state �1� describes both short-range and long-
range AF correlations very accurately as the best variational
wave function for the insulator. It is then reasonable to ex-
pect that any putative RVB state, away from half filling,
evolves from �1�. With this in mind, we ask how the wave
function �1� is modified in the presence of holes. As dis-
cussed above, singlet pairing is characterized in the wave
function �1� by the Marshall sign. It can be shown that the
Marshall sign would be still obeyed if doped holes remain
static. Then, from the form of �1�, one may easily see that the
nearest-neighbor �nn� hopping of holes, which displaces
spins as backflow, generally leads to disordering of the Mar-
shall sign �−1�P. Consequently, a hole moving along a closed
path picks up a generalized Berry’s phase, which was first
identified by one of us and co-authors.11 This effect, de-
scribed �and called� as a phase string is illustrated in Fig.
1�a�. It is a singular effect and cannot be repaired by low
energy �transverse� spin excitations.11

It follows that a bare hole created in the RVB background
�1� cannot possibly describe a low-energy state, and must be
dressed by the nonlocal phase string effect. Since the phase
string effect describes a mutual entanglement between spin
and charge degrees of freedom illustrated in Fig. 1�b�, the
RVB background must also respond nonlocally. One may
thus surmise that low-energy charge degrees of freedom are

created by c̃i�=ci�e−i�̂�, instead of by the bare ci�, where

e−i�̂� is a nonlocal operator describing the phase string ef-
fect. We call a hole that is created by c̃i� a twisted hole, and
as will be shown in this paper, such a twisted hole is a
bosonic object whose kinetic energy is optimized in the
�modified� RVB background. We shall obtain a ground state
of the following form:

��G� = 	�
l

Z↑�l�c̃l↑
Nh
↑	�

l

Z↓�l�c̃l↓
Nh
↓
�RVB� , �2�

where Z��l� describes the wave function of the twisted hole
c̃l�, and Nh

↑+Nh
↓=Nh is the total number of holes. The modi-

fied RVB vacuum �RVB� has the same structure as ��0� at
half-filling, except that the RVB pairing amplitudes, Wij’s,
become complex and change continuously with doping. They
can be determined self-consistently as we shall show.

The ground state �2� is one of the central results of this
paper. It generalizes the wave function �1� written down by
Liang et al., to the doped case. We will derive �2� from a
microscopic treatment of the t-J model, based on a reformu-
lation of the model in the so-called phase string representa-
tion.

The wave function �2� differs from the Gutzwiller pro-
jected BCS wave functions in a fundamental way. Spin cor-
relations with various length scales emerge self-consistently
as a function of doping in �RVB� and their interplay with the
charge degrees of freedom is incorporated through the non-

local phase string operator e−i�̂� in c̃i�. We will find that the
ground state �2� describes both an AF insulator �at zero dop-
ing� and a pseudogap phase with short range AF correlations
�at finite doping� in which two distinct kinds of spin excita-
tions emerge. We will identify a hidden ODLRO in this
pseudogap ground state which ensures a finite pairing ampli-
tude and nodal fermionic quasiparticles. Although supercon-
ducting phase coherence of this state is prevented by the
presence of free spins which behave like vortices, there ex-
ists an inherent superconducting instability at finite doping,
which can naturally give rise to d-wave superconductivity.

The outline of the paper is as follows: In Sec. II, we
reformulate the t-J model using the phase string representa-
tion. This is an exact reformulation and allows us to sort out
the effects of hole motion in an AF background discussed
earlier. A singular gauge transformation automatically en-
sures that the single occupancy constraint is satisfied. A brief
review of this formalism and important physical conse-

FIG. 1. �a� The ground state picks up a sequence of signs,
�−1�� �+1�� �+1�� . . ., known as a phase string, during an opera-
tion as a hole moves through a closed path and back to the origin
with the displaced spin configurations being restored. This irrepa-
rable phase string effect has been shown to be a general conse-
quence of the t-J model �Ref. 11�. �b� The � or � sign in a phase
string is determined by the exchange of the hole with an ↑ or ↓ spin
on the path, which can be viewed as an entanglement between the
hole and a spin, illustrated by two entangled loops as both the hole
and a displaced spin should return to their origins after the
operation.
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quences will be discussed in Sec. II. In Sec. III, we obtain the
ground state within a mean field theory, and in Sec. IV we
transform the ground state wave function back to the electron
representation, thus completing the derivation of the wave
function �2�. A discussion of the properties predicted by �2�
follows and finally a superconducting ground state is ob-
tained. The final section is devoted to a general discussion
about the region of validity �in the phase diagram� of this
approach, as well as the questions that this study raises. In
Appendix A, some detailed derivations of the mean-field
theory in the phase string representation are presented. In
Appendix B, we discuss briefly, an effective theory of spin
and charge degrees of freedom that are coupled by the phase
string. In Appendix C, we show that the ground state obeys
time reversal and spin rotational symmetries.

II. PHASE STRING FORMULATION AND PHYSICAL
IMPLICATIONS

In this section, we reformulate the t-J model using the
phase string representation.11 This representation, like the
slave-particle representations used in the literature,12,13 is an
exact reformulation. However, the phase string formulation
has a distinct advantage over these other schemes, in the
following sense. The most singular effects encapsulated in
the t-J model are sorted out by a unitary transformation, and
all nontrivial phases present in the original model now occur
as topological gauge fields. Without these gauge fields, the
model becomes trivial, i.e., free of sign problems, which is
the case in one dimension, or in the particular case of half
filling in two dimensions. The central issue in two dimen-
sions is then how to handle these topological gauge fields at
finite doping. It turns out that they are well controlled, at
least for small doping.

A. Phase string representation

The most singular effect of the hole moving in an AF
background is the phase string effect. This leads to a compe-
tition between hopping and superexchange processes. Since
it is most singular at length scales of a lattice constant �as Z2
signs�, it is crucial to track this effect explicitly, before con-
structing any effective theory. As shown by Weng et al., this
can be achieved starting from a slave-fermion representation
and by performing a unitary transformation of the basis
states.11 In this procedure, the electron operator is decom-
posed into

ci� = hi
†bi�ei�̂i� �3�

where holon hi�
† and spinon bi� operators are both bosonic

fields, satisfying the constraint

hi
†hi + �

�

bi�
† bi� = 1. �4�

The phase factor ei�̂i� in Eq. �3� is defined by

ei�̂i� � ei�i�
string

���N̂h�− ��i, �5�

where N̂h is the �total� holon number operator, the phase
string operator �i�

string� 1
2 ��i

s−�i
0−��i

h� is a nonlocal opera-
tor with

�i
s = �

l�i

	i�l�	�




nl

b 
 , �6�

�i
0 = �

l�i

	i�l� , �7�

and

�i
h = �

l�i

	i�l�nl
h. �8�

Here, nl

b and nl

h are spinon and holon number operators re-
spectively, at site l, and 	i�l�� Im ln�zi−zl�, where zl=xl

+ iyl is a complex coordinate on the lattice.
It is easily verified that the fermionic statistics of ci� is

automatically ensured by ei�i�
string

; besides ensuring fermionic
statistics, the string operator also incorporates the singular
effects of hole motion in the RVB background, as will be

discussed later. The factor ���N̂h guarantees anticommutation
relations between opposite spins. The factor �−��i= ±1 in
Eq. �5� is added for convenience, and incorporates the Mar-
shall sign into the decomposition �3� of the electron in terms
of the holon and spinon operators, which may be regarded as
a bosonization scheme for the electron moving in an RVB
background. The same bosonization decomposition can be
also obtained from the slave-boson representation.14,15

B. The t-J model in the phase string representation

Rewriting the t-J model using the electron decomposition
�3�, we get Ht-J=Ht+HJ, where the hopping term

Ht = − t �
�ij��

�eiAij
s −i�ij

0
�hi

†hj�ei�Aji
h
�bj�

† bi� + H.c., �9�

and the superexchange term

HJ = −
J

2�
�ij�

��̂ij
s �†�̂ij

s . �10�

The RVB pair operator �̂ij
s in HJ is defined by

�̂ij
s � �

�

e−i�Aij
h
bi�bj−�. �11�

The unique feature in this formalism is the emergence of
three phases �link fields�: Aij

s , �ij
0 , and Aij

h defined on the nn
links. Without these, there should be no nontrivial sign prob-
lem in Ht-J, because h and b are both bosonic fields. The
matrix elements of Ht-J would then be real and negative-
definite in the occupation number representation of h and b.
Consequently, the ground state expanded in terms of these
bosonic fields will have real and positive coefficients. There-
fore, any nontrivial signs �phases� of the t-J model arise
solely from these three link fields, defined by
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Aij
s �

1

2 �
l�i,j

�	i�l� − 	 j�l��	�
�

�nl�
b 
 , �12�

�ij
0 �

1

2 �
l�i,j

�	i�l� − 	 j�l�� , �13�

and

Aij
h �

1

2 �
l�i,j

�	i�l� − 	 j�l��nl
h. �14�

It is easy to see that the Hamiltonian Ht-J is invariant
under U�1��U�1� gauge transformations:

hi → hie
ii, Aij

s → Aij
s + �i −  j� , �15�

and

bi� → bi�ei�	i, Aij
h → Aij

h + �	i − 	 j� . �16�

Thus Aij
s and Aij

h are gauge fields, seen by holons and spinons
respectively, as the latter carry their gauge charges according
to Eqs. �15� and �16�. But they are not conventional U�1�
gauge fields, as they must satisfy the topological constraints:
�cAij

s =��l�c�nl↑
b −nl↓

b � and �cAij
h =��l�cnl

h according to Eqs.
�12� and �14�, respectively. Here the subscript c denotes an
arbitrary closed loop such that the fluxes enclosed, �cAij

s and
�cAij

h , are determined by the number of spinons and holons
respectively, inside the loop c; viz., Aij

s and Aij
h are not inde-

pendent gauge fields with their own dynamics. Rather they
are directly connected to matter fields as a pair of mutual
Chern-Simons gauge fields.16 The term “mutual” refers to the
fact that Aij

s describes quantized � fluxoids attached to
spinons, coupled to the holons in Ht. Conversely, Aij

h de-
scribes quantized � fluxoids bound to holons, coupled to
spinons in HJ. The phase �ij

0 describes a uniform and con-
stant flux with a strength � per plaquette: ���ij

0 = ±� ac-
cording to Eq. �13�.

In the case of the one-dimensional model, Aij
s =�ij

0 =Aij
h

=0. Thus there is no sign problem in the phase-string repre-
sentation of the t-J model. It implies that the Hamiltonian
can be treated within a mean field framework, which indeed
results in a correct Luttinger-liquid solution for the large-U
Hubbard model.11 In two dimensions, these nn link phases
can no longer be “gauged away.” They compose a mutual
gauge structure which completely determines the essential
sign problem of the t-J model. These gauge fields are gener-
ally well controlled in the regimes of our interest: �ij

0 is a
nondynamic phase describing a constant � flux per
plaquette; Aij

s is canceled when spinons are RVB paired at
low-temperature phases; Aij

h remains weak at small
doping—it vanishes at half filling, where there is no sign
problem in the Hamiltonian. Therefore, these gauge fields in
the phase string representation are presumably well tractable
in low doping and low temperature regimes. This is one of
the main advantages of the phase string representation over
other approaches.

Finally, it is important to note that the phase string repre-
sentation is defined in a Hilbert space where the total Sz is an
eigenoperator. The total numbers of ↑ and ↓ spinons are con-

served individually, such that the topological gauge field Aij
s

behaves smoothly as defined in Eq. �12�, depicting fictitious
� fluxoids bound to spinons. �Nonconserved Sz would result
in nonconserved � and � fluxoids in Aij

s .� Different Sz states
are connected by the spin-flip operators, defined in the
phase-string representation as

Si
+ = ��− 1�iei�i

h
�bi↑

† bi↓, �17�

�a factor �−1�N̂h has been dropped for simplicity� and Si
−

= �Si
+�†, and Si

z=���bi�
† bi�. These definitions follow from Eq.

�3�. The nonlocal phase �i
h in Eq. �17� plays a crucial role in

restoring the spin rotational symmetry.

C. No double occupancy constraint

Since the t-J model is a projective Hamiltonian, the no
double occupancy constraint is a central issue. It imposes a
severe restriction on the Hilbert space

�
�

ci�
† ci� � 1, �18�

which ensures that the system is a Mott insulator at half
filling and a doped Mott insulator away from half filling. In
conventional slave particle decompositions, the constraint re-
duces to a single occupancy constraint like �4�, and is still
difficult to treat. Typically, the constraint is relaxed at the
level of mean field theory, and restoring its effect beyond the
mean field theory �say, by a gauge theory� is a very challeng-
ing problem. In contrast, the phase string representation out-
lined in the previous subsection provides a new way to
handle the constraint.

A wave function �e in the electron c-operator representa-
tion is defined in a quantum state as

��� = �
iu�jd�

�e�iu�;jd��ci1↑
† ci2↑

†
¯ ciM↑

† cj1↓
† cj2↓

†
¯ cjNe−M↓

† �0� ,

�19�

where the ↑ spin electron sites, iu�= i1 , . . . , iM, and the ↓ spin
sites, jd�= j1 , . . . , jNe−M, obey the no double occupancy con-
straint in the restricted Hilbert space of the t-J Hamiltonian.
On the other hand, in the phase string representation, the
wave function �b�i1 , . . . , iM ; j1 , . . . , jNe−M ; l1 , . . . , lNh

� is de-
fined as

��� = �
iu�jd�

�b�iu�;jd�;lh���iu�;jd�;lh�� , �20�

where the indices lh�= l1 , . . . , lNh denote the empty sites, that
are not independent from iu� and jd� under the constraint.
Here the spinon-holon basis in the phase string representa-
tion, �iu� ; jd� ; lh�� is given by

�iu�;jd�;lh�� � �− 1�NA
↑
bi1↑

† bi2↑
†

¯ biM↑
† bj1↓

† bj2↓
†

¯ bjNe−M↓
†

�hi1
hi2

¯ hjNe−M
�0� , �21�

where the vacuum �0� is chosen to be filled by holons. The

sign factor �−1�NA
↑

in Eq. �21� can be identified with the Mar-

WENG, ZHOU, AND MUTHUKUMAR PHYSICAL REVIEW B 72, 014503 �2005�

014503-4



shall sign, and NA
↑ denotes the total number of ↑ spins in

sublattice A. Here and henceforth, we will always use i to
specify an ↑ spin, j a ↓ spin, and l, a holon, where the sub-
scripts u, d, and h label the sequences of the ↑ spins, ↓ spins,
and holons, respectively.

Now, the decomposition �3� of the electron operator ci�,
relates the wave functions written in the two representations:

ci1↑
† ci2↑

†
¯ ciM↑

† cj1↓
† cj2↓

†
¯ cjNe−M↓

† �0� = K−1�iu�;jd�;lh�� ,

�22�

where

K = �
ud

ziu
* − zjd

*

�ziu
− zjd

� �
u�u�

ziu
* − ziu�

*

�ziu
− ziu�

� �
d�d�

zjd
* − zjd�

*

�zjd
− zjd�

��uh

ziu
* − zlh

*

�ziu
− zlh

�

= C−1�
ud

�ziu
* − zjd

* � �
u�u�

�ziu
* − ziu�

* � �
d�d�

�zjd
* − zjd�

* �

� �
h�h�

�zlh
− zlh�

�	�
uh

�ziu
* − zlh

* ��
dh

�zjd
− zlh

�
 . �23�

The coefficient C is given by

C = �
ud

�ziu
− zjd

� �
u�u�

�ziu
− ziu�

� �
d�d�

�zjd
− zjd�

�

� �
h�h�

�zlh
− zlh�

��
uh

�ziu
− zlh

��
dh

�zjd
− zlh

�

� �
k�m

�zk − zm� ,

in which k and m run through all lattice sites, such that C is
a constant.

Correspondingly, the wave functions in the electron and
phase string representations are related by

�e�i1, . . . ,iM ; j1, . . . , jNe−M�

= K�b�i1, . . . ,iM ; j1, . . . , jNe−M ;l1, . . . ,lNh
� , �24�

which holds generally for the t-J model.
Note that the above expression for K has been obtained

strictly under the no double occupancy constraint. But if the
constraint is relaxed in Eq. �23�, while still treating C as a
constant, then one finds K=0 for double occupancies when
any two particles �spinons and/or holons� occupy the same
site; viz., K defined in Eq. �23� automatically enforces the
constraint �4� through the Jastrow-type factors. Therefore, as
far as �e is concerned, the no double occupancy constraint in
�b or �b /C is no longer important, since K in Eq. �24� natu-
rally plays the role of a projection operator.

Clearly, an exact �b would satisfy the single occupancy
constraint �4�. But, the point is that an approximate �b deter-
mined without the constraint does not affect �e, owing to K.
It means that in the phase string representation the constraint
�4� is indeed “unimportant,” which may be understood in the
following way. In the phase string representation, the effect
of K in the original �e, is transformed into the topological
gauge fields, Aij

s and Aij
h , in the Hamiltonians, �9� and �10�,

which describe spinons and holons as mutual vortices, as

perceived by each other �cf. the discussion in the previous
subsection�. This clearly implies a mutual repulsion between
two species, since a spinon cannot stay at the center of its
vortex �which is a holon�, and vice versa. Thus the constraint
that a holon and a spinon cannot occupy the same site is now
reflected in the interactions present in the new Hamiltonian,
and the condition �4� is not needed as an extra condition to
enforce. Note that the constraint �4� also requires the hard
core conditions among the holons or spinons themselves. But
since both holon and spinon fields are bosonic fields, local
hard core exclusions usually do not involve the sign change
of the wave function. Hence, in the phase string representa-
tion, the local constraint �4� is neither crucial nor singular, as
far as low energy physics is concerned.

D. Phase string effect: A singular doping effect

In this subsection, we point out that the other important
effect, i.e., the phase string effect, is also explicitly built into
this representation via K.

Let us first rewrite K �Eq. �23�� in a more compact form,

K = JG , �25�

where

J � �
u�u�

�ziu
* − ziu�

* � �
d�d�

�zjd
* − zjd�

* ��
ud

�ziu
* − zjd

* �

� �
h�h�

�zlh
− zlh�

��
uh

�ziu
− zlh

��
dh

�zjd
− zlh

� , �26�

and

G � C−1�
uh

ziu
* − zlh

*

�ziu
− zlh

�
. �27�

It is easily seen that the Jastrow-type factors in J enforce the
single occupancy constraint discussed previously: J vanishes
if two spins �or holes� occupy the same site, or if a hole and
a spin occupy the same site. The factor J also explicitly
captures the fermionic statistics of electrons.

Now let us focus on the additional factor G in K, which is
asymmetric with regard to ↑ and ↓ spins: it only involves an
↑ spin complex coordinate ziu

* and a holon coordinate zlh
* .

Suppose that the holon is taken along a closed loop shown in
Fig. 1. The K factor will generally acquire a nontrivial phase
through G. In the following we examine this.

For a spinon inside or outside the loop, there will be no
net contribution to G as the acquired phase is either 2� or 0
under such an operation. So any nontrivial contribution is
solely from spinons occupying lattice sites on the holon’s
loop-path. At each step of hopping, the holon under consid-
eration will have to switch positions with a spinon occupying
a nn site on the loop, obeying the no double occupancy con-
straint. Then G picks up a minus sign from the Jastrow factor
in G every time when the holon and an ↑ spinon are ex-
changed. Thus, if one changes the holon’s coordinate con-
tinuously through the loop without encountering other ho-
lons, G will acquire a sequence of signs,
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G → �− 1�Nloop
↑

G , �28�

where Nloop
↑ denotes the number of ↑ spinons exchanged with

the holon during the above thought experiment. �Note that
the spinons displaced by holon hopping during the operation
should all be restored to the original configuration by pure
spin flips in terms of the superexchange HJ, and this does not
generate any further signs in G.�

Therefore, the electron wave function �e, acquires a sign
factor �which can also be thought of as a Berry phase�
through G:

�− 1�Nloop
↑

= �
loop

�− �m� = �
loop

�m. �29�

This factor �for the closed loop� is just the phase string
shown in Fig. 1, where �m denotes the index of spins on the
loop exchanged with a holon, under the thought experiment
of moving the holon around a closed path �note that a closed
loop on a bipartite lattice always involves an even number of
nn links�. Equation �29� shows that the singular hopping ef-
fect is explicitly incorporated in �e through K, in the phase
string formulation of the t-J model.

To conclude this section, the two singular effects in the
t-J model, viz., the single occupancy constraint and the
phase string effect, are explicitly represented by the factor K,
Eq. �23�. Consequently the ground state wave function in the
phase string representation, �b, is presumably no longer sin-
gular, justifying a mean field theory.

III. CONSTRUCTION OF THE GROUND STATE IN THE
PHASE STRING REPRESENTATION

A mean field theory �bosonic RVB theory� based on the
phase string representation of the t-J model was constructed
in an earlier paper17 and we will follow a similar route here
in dealing with the spin degrees of freedom. However, an
important distinction in this work is the way the charge de-
grees of freedom are incorporated, in order to better facilitate
and optimize the kinetic energy of the holes, as well as to
construct a state in which the no double occupancy constraint
is strictly enforced. As shown in Sec. IV, this construction
directly results in a pseudogap ground state characterized by
a finite pairing amplitude and the emergence of nodal quasi-
particles. The ground state has an inherent superconducting
instability which occurs, when phase coherence is realized.

A. Spin degrees of freedom and bosonic RVB
order parameter

Let us begin by considering the superexchange term HJ,

which is expressed in terms of an RVB pair operator �̂ij
s in

Eq. �10�. Note that �̂ij
s is invariant under the gauge transfor-

mation �16�. It is then natural to define the bosonic RVB
order parameter by

�s � ��̂ij
s �nn �30�

for nn sites, i and j. This RVB order parameter is different
from the RVB order parameter introduced by Anderson and

collaborators:1,2 it involves the charge degrees of freedom
through the gauge field, Aij

h , and is gauge invariant under Eq.
�16�. Note that �bi�

† bj��nn�0 in this theory, and �s is the sole

order parameter. At half filling, Aij
h =0 in �̂ij

s , and �s reduces
to the well known Schwinger-boson mean field order param-
eter ���bi�bj−�� �Ref. 13� �in our definition bi� differs from
the conventional Schwinger boson representation by a sign
factor �−��i�. The mean field solution describes both long
and short range AF correlations of the Heisenberg model
quite well, as will be discussed below. Thus, the bosonic
RVB theory we present is guaranteed to yield good results at
half filling, and provides a natural generalization away from
half filling.

We now show how the spin degrees of freedom are
treated within the bosonic RVB theory. The superexchange
Hamiltonian is rewritten as

Hs = − Js �
�ij��

�ei�Aij
h
�bi�

† bj−�
† + H.c. − ��

i
	�

�

bi�
† bi� + � − 1
 ,

�31�

where Js�J�s /2, and �s is assumed to be real and positive.
The Lagrange multiplier � is introduced to implement the
single occupancy constraint �4� on the average. We reempha-
size that Hs is not a mean field Hamiltonian in the conven-
tional sense. Spinons are coupled to a gauge field Aij

h , related
to the charge degrees of freedom, and the Hamiltonian is
invariant under the internal gauge transformation �16�. So Hs
is still a gauge model, describing low energy, long wave-
length spin fluctuations, underpinned by the bosonic RVB
order parameter �30�. The link field Aij

h defined in Eq. �14�
describes holons as � fluxoids perceived by spinons in Eq.
�31�. In the ground state, Aij

h will be treated as a constant
field, as though the holons are Bose condensed �which con-
dition will be determined self consistently, when we discuss
the charge degrees of freedom�, with

�
�

Aij
h � �� �32�

for each plaquette, where � is the hole concentration.
Then, Hs can be diagonalized by a Bogoliubov

transformation17

bi� = �
m

wm��i��um�m� − vm�m−�
† � , �33�

as

Hs = �
m�

Em�m�
† �m� + const. �34�

Here,

um =
1
�2

	 �

Em
+ 1
1/2

,

vm =
1
�2

	 �

Em
− 1
1/2

sgn��m� ,

and

WENG, ZHOU, AND MUTHUKUMAR PHYSICAL REVIEW B 72, 014503 �2005�

014503-6



Em = ��2 − �m
2 .

The Lagrange multiplier � is determined by enforcing
�i���bi�

† bi��= �1−��N. The wave function wm� and the spec-
trum �m are determined by the following eigen equation,

�mwm��i� = − Js �
j=nn�i�

ei�Aij
h
wm��j� . �35�

The ground state of Hs is constructed in the usual way by
imposing the condition, �m��RVB�MF=0,

�RVB�MF = exp	�
ij

Wijbi↑
† bj↓

† 
�0� , �36�

where the RVB amplitude Wij is given by

Wij � − �
m

vm

um
wm↑

* �i�wm↑�j� = − �
m

vm

um
wm↓�i�wm↓

* �j� .

�37�

In deriving the above, we use wm�
* �i�=wm−��i�, which fol-

lows from Eq. �35�. Furthermore, it is easy to show that for
each state labeled by m, there is always a state labeled by m̄,
for which �m̄=−�m and wm̄��i�= �−1�iwm��i�, such that

Wij =
1 − �− 1�i−j

2
Wij � 0 only if i, j � different sublattices,

�38�

i.e., the RVB amplitude Wij only connects ↑ and ↓ spins on
opposite sublattices.

The nn spin correlations are determined by

�Si · S j�nn = − 3
8 ��s�2 � 0 �39�

which is antiferromagnetic in nature �i.e., in the resulting
bosonic RVB theory, �Si ·S j��0 ��0�, if i and j belong to
the same �opposite� sublattice�. Therefore, �s�0 generally
characterizes a regime with short range AF correlations,
present in a wide range of temperature in the t-J model at
low doping �e.g., �J /kB�1500 K in the zero-doping limit�.
Figure 2 sketches a phase diagram in which �s or short-range
AF correlations controls the high-energy, short-distance cor-
relations in a low-doping regime ��xRVB�.17 Such a spin
singlet-pairing regime, characterized by �s�0, defines the
“pseudogap” regime of the bosonic RVB state, with a char-
acteristic temperature T0, as illustrated in Fig. 2.

In the following two subsections, we further examine the
spin correlations at half-filling and finite doping within this
bosonic RVB description.

1. Antiferromagnetism at half filling

At half filling, the bosonic RVB ground state �RVB�
� PG�RVB�MF, which satisfies the no-double-occupancy con-
straint �PG denotes the Gutzwiller projection operator�, can
be explicitly written as

�RVB� = �
�s�

	�
pair

�
�ij�

Wij
�b1�1

† h1��b2�2

† h2� ¯ �bN�N

† hN��0� ,

�40�

where each site is occupied only by one spinon, with �s�
��1 ,�2 , . . . ,�N being partitioned into RVB pairs connected
by the RVB amplitudes, Wij. Here each RVB pair is denoted
by �ij�, where i�j� refers to the position of an ↑ �↓� spin, as
before. The summation runs over all possible RVB pairing
partitions. The holon annihilation operators in Eq. �40� are
introduced since the spinon vacuum �0� is defined as a state
where every site is occupied by a holon, for later conve-
nience.

�RVB� given in Eq. �40� is equivalent to the class of varia-
tional wave functions �cf. Eq. �1�� proposed by Liang, Dou-
cot, and Anderson �LDA�.8 The RVB amplitudes can be de-
termined from the bosonic mean field theory outlined above.
At half filling, Aij

h =0, and the mean field Hamiltonian �31�
reduces to the Schwinger-boson mean field Hamiltonian. In
this case, the RVB amplitude Wij � �rij�−3, for �rij��a �a be-
ing the lattice constant�, as shown in the inset of Fig. 3. We
use the loop-gas method employed by LDA to determine the
nn spin correlation �which also decides the ground state en-
ergy of the Heisenberg model�, as well as the staggered
magnetization, m. The maximum sample size is 64�64.
We obtained �Si ·S j�nn=−0.3344�2�J, and a staggered magne-
tization, m=0.296�2�. These results are essentially the same
as the best variational result obtained by LDA, and also com-
pare extremely well with exact numerical results,8 �Si ·S j�nn

=−0.3346, and m=0.31.
Therefore, at half filling, the insulating state �RVB� cor-

rectly reproduces both short range and long range AF corre-
lations of the Heisenberg model. AFLRO appears naturally

FIG. 2. Schematic phase diagram of the b-RVB mean field
theory: The bosonic RVB order parameter �s underpins a
pseudogap phase at T�T0, in which the AF state, spontaneous vor-
tex phase �a low-T pseudogap state�, as well as the superconducting
instability occurs at low temperatures, separated by some critical
dopings, xc and xRVB, respectively.
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in the long wavelength limit, with a correct magnitude of
magnetization; short range spin correlations are also well de-
scribed as evidenced by the excellent agreement of our re-
sults with the ground state energy obtained from numerical
studies.

2. Spin liquid at finite doping

At finite doping, the RVB amplitudes Wij, determined by
Eqs. �31� and �37� decay exponentially for large spatial sepa-
rations,

�Wij� � e−��rij�
2/2�2� �41�

with a characteristic length scale

� � a� 2

��
�42�

as shown in Fig. 3. Correspondingly, AFLRO disappears and
a finite length scale, �, for equal time spin correlations
emerges, viz., a featureless RVB spin liquid with short range
correlations evolves continuously from an AF ordered state
at half filling ��→��.

Spin excitations can be created by the action of a spin
raising/lowering operator on the spin liquid �RVB� in Eq.
�40�. In the bosonic mean field theory, spin excitations are
described by the spinon RVB Hamiltonian �31�. The results
from mean field theory have been reported elsewhere,17,18

and we briefly summarize the results below. At small doping,
the spin excitations evolve �from the gapless magnon mode
at half filling� into a sharp resonance at low energies, with a
characteristic energy scale, Eg��J, around the momentum
�� ,��. The spectral weight of this excitation is proportional
to �, while its width in the momentum space is proportional
to �−1, which follows from Eq. �41�. The evolution of the
gapless magnon mode at half filling into a resonant mode at
finite energies reflects the phase string effect on the spin
degrees of freedom, through the effect of the gauge field, Aij

h .

B. Charge degrees of freedom: Optimizing the kinetic energy
of doped holes

At finite doping, the mean field state �RVB�MF describes a
condensate of RVB spinon pairs, and does not involve the
charge degrees of freedom �holons� explicitly; i.e., the distri-
bution of holons is independent of the positions of spinons.
Since the single occupancy constraint is no longer crucial in
the bosonic RVB theory, it is tempting to posit a mean field
ground state

�GS� = ���h � �RVB�MF �43�

where ���h describes the holon condensate. This approach,
adopted in a previous work,17 may be justified for a long
wavelength, low energy theory as the local constraint is not
crucial in the phase-string formalism.19 However, to obtain
the ground state wavefunction, it is desirable to employ a
construction where the single occupancy constraint is satis-
fied exactly, viz., a method that treats spin backflow effects
more carefully, which is also important for facilitating and
optimizing the kinetic energy of doped holes. In the follow-
ing, we show how this can be done differently.

First, we project out all double occupancies in �RVB�MF,
and define �RVB� as given in Eq. �40�, where each site is
occupied only by one spinon, as if the system were at half
filling. However, the RVB amplitudes, Wij, will be deter-
mined by the bosonic RVB mean field theory of Hs at a fixed
hole concentration.

Next, for every doped holon at site l, a spinon at the same
site l is annihilated, by the action of hl

†bl� on �RVB�, i.e.,

�hl
†bl���RVB� �44�

such that the constraint is automatically satisfied. As dis-
cussed below, the construction �44� optimizes the kinetic en-
ergy of the holon-spinon composite, hl

†bl�, by maximizing
the overlap between the RVB configurations before and after
hopping. Clearly, the behavior of the spinon bl� characterizes
the spinon backflow accompanying the motion of the holon
in the RVB background.

Thus, the full ground state may be constructed as

��G� = �
lh�

h�l1,l2, . . . ,lNh
��

h

Z�h
�lh��hlh

† blh�h
��RVB� ,

�45�

where h�lh�� is a bosonic �symmetric� many body wave
function for holons, and Z�h

�lh� denotes a single particle
wave function for the spinon backflow blh�h

, with the spin
index �h under the constraint 1 /2�h�h=Sz �note that Sz=0 in
�RVB��.

In the following, we describe how to determine h�lh��
and Z�h

�lh� in Eq. �45� based on a mean-field approximation.
For this purpose, we introduce a mean-field ground state as
follows:

��G� � PG��G�MF �46�

where the mean-field state

FIG. 3. The RVB amplitudes, �Wij�, obtained from the b-RVB
theory for three different hole concentrations. The inset shows the
result for half filling.
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��G�MF = �
lh�

h�l1,l2, . . . ,lNh
��

h

Z�h
�lh��hlh

† blh�h
��RVB�MF.

�47�

By optimizing the kinetic energy of the holon-spinon com-
posite, hl

†bl�, based on Eq. �47�, h�lh�� and Z�h
�lh� are de-

termined as follows. As shown in Appendix A, one finds

h�l1,l2, . . . ,lNh
� = const. �48�

namely, the holons are in a Bose condensed state; Z�h
�lh�

satisfies the following eigenequation:

�− th�Z�h
�i� = −

t̃

4 �
j=nn�i�

e−i�ij
0 −i�hAij

h
Z�h

�j� , �49�

with th�0 being the maximal eigenvalue such that the total
hopping energy is given by

��G�Ht��G�MF/��G��G�MF = − 4th�N , �50�

and the “bare” hopping integral

t̃ = 	 n̄b

2
+

��s�2

2n̄b 
t, n̄b = 1 − � . �51�

Note that �s�1 at small �, one has t̃� t in terms of Eq. �51�.
So the holes acquire a good “bare” hopping integral in the
bosonic RVB background since the singular frustrations due
to the phase string effect are gauged away in the phase string
formalism �one would get a minus sign in the second �RVB�
term in Eq. �51� in the original slave-fermion representation�.
The residual frustrations of the phase string effect are repre-
sented by the phase field �ij

0 and Aij
h in the eigenequation �49�

which determines the renormalized hopping integral th. The
latter is reduced from t̃ as shown in Fig. 4 numerically. In
Appendix B, we briefly discuss how to go beyond the above
mean-field construction in an effective model description,
which is essentially the same as obtained in Ref. 17.

IV. PSEUDOGAP AND SUPERCONDUCTING GROUND
STATES IN ELECTRON REPRESENTATION

So far, we discussed the reformulation of the t-J model
using the phase string representation, where the singular ef-
fects arising from the constraint on occupancy and the phase
string, are sorted out explicitly. This allowed us to develop
an approximate theory in the above section. In this section,
we will rewrite our results in terms of the underlying elec-
tronic degrees of freedom, and discuss the physical conse-
quences and implications.

A. The ground state Eq. (45) in electron representation

It is straightforward to re-express the ground state Eq.
�45� in terms of the electron operators based on Eq. �3�

��G� = �
lh�

h�l1,l2, . . . ,lNh
��

h

Z�h
�lh��e−i�̂lh�hclh�h

��RVB�

= �
lh�

h�l1,l2, . . . ,lNh
��

h

Z�h
�lh�c̃lh�h

�RVB� �52�

where we introduce a new “hole” creation operator c̃l�
�hi

†bi� which is related to the electron operator by

c̃l� = e−i�̂i�cl�. �53�

The “twisted” hole operator, c̃l�, satisfies bosonic statistics

because of the phase factor, e−i�̂i� �see Sec. II A�. On using
the holon condensation condition �48� and noting that cl�

2

�0 and cl↑cl↓�RVB��0, the ground state can be rewritten in
its final compact form

��G� = const.	�
l

Z↑�l�c̃l↑
Nh
↑	�

l

Z↓�l�c̃l↓
Nh
↓
�RVB�

�54�

where Nh
↑+Nh

↓=Nh is the total number of holes.
We can further re-express �RVB� in the electron represen-

tation after some straightforward manipulations. By using
Eqs. �40� and �3�, we find

�RVB� = const.�
�s�

�RVB��1,�2, . . . ,�N�c1�1

† c2�2

†
¯ cN�N

† �0�

�55�

where the RVB wave function, �RVB, is defined by

�RVB��1,�2, . . . ,�N� � �
pair

�
�ij�

�− 1�iWij . �56�

Note that �RVB� is always half-filled, involving spins on the
whole lattice which satisfy the no double occupancy con-
straint. Here each spin configuration �s�=�1 ,�2 , . . . ,�N is
weighted by �RVB in a way that spins are all paired up with
the RVB amplitudes, �−1�iWij. The latter depend upon dop-
ing as determined by the mean field theory described in the
previous section �see Fig. 3�. The summation in �RVB runs
over all possible pairing partitions for each configuration
�s�.

The ground state ��G�, reduces to �RVB� at half-filling,
where it describes the antiferromagnetism extremely well as

FIG. 4. Ratio of the effective hopping integral th / t obtained
from Eq. �49�.
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discussed in Sec. III A 1. Upon doping, �RVB� may be re-
garded as an insulating RVB vacuum. From Eq. �54�, we see
that each doped hole is “twisted” into a bosonic object c̃, via

the nonlocal phase operator �̂i�, in order to optimize its ki-
netic energy in such an RVB vacuum. The form of the state
��G� suggests a generalized “spin-charge separation;” viz.,
the bosonic holes created by c̃, move freely in the back-
ground �RVB�; they carry the charge while the vacuum is
described by the pairing of neutral spins �spinons�. These
two degrees of freedom are indeed decoupled in the mean-
field sense. But this is different from the typical spin-charge
separation because the twisted holes are accompanied by
spins. Indeed, annihilating a spinon � at the site l in the RVB
vacuum by c̃l� will always create an unpaired spinon −�
within a scale � where the spins were originally RVB paired
�with no free spinons�. So the state ��G� is composed both of
RVB paired spinons and twisted holes as the holon-spinon
pairs as in Eq. �57� below.

Since the spins at the hole sites l’s in the vacuum �RVB�
are automatically annihilated by c̃l�’s, the no double occu-
pancy constraint is exactly imposed in ��G� at finite doping.
As shown in Appendix C 1, the ground state retains time
reversal symmetry, which may not be obvious from the form
of ��G�. It also respects global spin rotational symmetry un-
der the approximation that the twisted holes are perfectly
Bose condensed, as discussed in Appendix C 2.

The structure of ��G� in the doped case looks rather
simple in terms of the twisted holes moving on the RVB
vacuum. But it would look more complicated when written

in terms of the c-operators in Eq. �54� because �̂i� is highly

nontrivial. Physically, the phase string �̂i� can be regarded
as the nonlocal phase shift induced by doped holes. In the
one-dimensional case, where it is responsible for the Lut-
tinger liquid behavior, the phase string can be identified pre-
cisely with the phase shift obtained from the Bethe ansatz
solution for the large-U Hubbard model.11 In the two-

dimensional case, the role of the phase string operator �̂i�
may be seen more clearly in the wave function form dis-
cussed in Sec. II, i.e., Eq. �24�. Below we rewrite the wave
function �54� in terms of the underlying electrons.

Starting from the wave function �b, corresponding to the
ground state �45� in the basis of �21�, and using the relation
between the wave functions in the two basis sets �24�, we
get,

�e�iu�;jd�� = K�
pair

���ij� �− 1�iWij �
�l1j1�

Xl1j1 �
�i1l1��

X̄i1l1��
�ll��

Yll�� .

�57�

Here, we have invoked the holon condensation condition
�48�. In Eq. �54�, a given spin-hole configuration, iu�, jd�,
and lh�, is partitioned into pairs, denoted by �ij� �the sites, i
and j, are occupied by an up and a down spin, respectively�,
�l1j1� �sites l1 and j1 are occupied by a hole and a down spin,
respectively�, �i1l1�� �two sites, i1 and l1�, are occupied by an
up spin and a hole, respectively�, and �ll�� �a pair of holes�.
The latter three pairings have amplitudes, Xl1j1

�Z↑�l1�Wl1j1
,

X̄i1l1�
��−1�i1Wi1l1�

Z↓�l1�, and Yll��Z↑�l�Z↓�l��Wll�, respec-

tively. Figure 5 shows two possible partitions for a given
spin-hole configuration, and the summation in Eq. �57� runs
over all possible partitions. Thus, the wave function �57�
shows that the phase string operator �̂i� leads to the gener-
alized Jastrow-type factor K defined in Eq. �25�. The remain-
ing part of the wave function is bosonic, describing RVB
pairing of spins, pairing between spins and holes as well as
between holes.

B. Hidden ODLRO in the ground state: A pseudogap state

The properties of the RVB vacuum �RVB� were discussed
in Sec. III A. In the following we shall focus on the charge
degrees of freedom in ��G�.

From the definition of Eq. �54�, it follows that

��G�	�
l

Z��l�c̃l�
��G� � ��N �58�

for finite doping: Nh
↑,↓=O��N /2�. Thus the ground state ex-

hibits an ODLRO as the twisted holes, described by c̃i� �or
more precisely the bosonic object, �lZ��l�c̃l�, which is
gauge-invariant under Eqs. �15� and �16��, are Bose con-
densed on the RVB vacuum �RVB� in Eq. �54�. Since c̃i� is a
nonlocal operator which differs from the electron operator by
an infinite-body phase-string twist, the corresponding
ODLRO in Eq. �58� is unlike the conventional ODLRO
based on a local combination of electron operators, such as
spin magnetization or the BCS superconducting pairing op-
erator. In other words, it does not have a direct correspon-
dence to a physical observable. Such a hidden ODLRO char-
acterizes how doped charges �holes� are collectively
reorganized and behave in the RVB background, �RVB�. As a
consequence, the ground state and excited states will exhibit
some very unique novel properties. This will be the subject
of our discussion below.

FIG. 5. Pairing among spins �full circles� and holes �open
circles� are illustrated by the connection of lines. Two sets of bonds
�solid and dashed lines� represent two different resonating pairing
patterns, forming a loop covering of the lattice for a given spin-hole
configuration.
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1. Pairing amplitude

We first show that the hidden ODLRO in ��G� will result
in a finite pairing amplitude between electrons in the singlet
channel.

The electron singlet pair operator can be expressed as

�̂ij
SC � �

�

�ci�cj−� = �
�

�ei�̂i�c̃i�ei�̂j−�c̃j−� = �̂ij
0 ei�1/2���i

s+�j
s�.

�59�

In the last line, the pair operator is formally written in terms
of an amplitude and a phase part, with the amplitude operator
defined by20

�̂ij
0 � �

�

��− 1� je−i�j
0−i�ij

0 −i�Aij
h
�c̃i�c̃j−� �60�

�a constant factor �−1�Nh is omitted�.
We now demonstrate that ��̂ij

0 ��0, i.e., the pairing ampli-
tude is finite as the consequence of the hidden ODLRO.
Since the twisted holes are Bose condensed,
�c̃i�c̃j−��†��G�Ne−2=A��G�Ne

+excited states, where the coef-
ficient A is nonzero and can be estimated by A
�Z��i�Z−��j��Nh

↑Nh
↓ at small doping.23 The pair amplitude

�ij
0 = Ne−2��G��̂ij

0 ��G�Ne
is then given by

�ij
0 � �Nh

↑Nh
↓�

�

�− 1� je−i�j
0−i�ij

0 −i�Aij
h
Z�

*�i�Z−�
* �j�

=
�N

2 �
�

e−i�ij
0 −i�Aij

h
Z�

*�i�Z��j� , �61�

where we have used Nh
↑�Nh

↓�Nh /2=�N /2, and

Z−�
* �j� = Z��j��− 1� jei�j

0
. �62�

The above equation can be obtained from Eq. �49�, and by

noting that ei�i
0−i�j

0
=−ei2�ij

0
. In order to estimate the size of

the pair amplitude, we focus on the pairing amplitude be-
tween nn sites, ��ij

0 �nn. Invoking translational invariance of
the ground state, we get

�0 �
1

2N
�
�ij�

��ij
0 �nn =

�

4�
�ij�

�
�

e−i�ij
0 −i�Aij

h
Z�

*�i�Z��j�

=
�

4�
�

2th

t̃
�

i

�Z��i��2 =
th

t̃
� . �63�

Therefore the ground state �54� indeed possesses a finite
pairing amplitude as a direct consequence of the hidden
ODLRO in ��G�, which is proportional to the doping con-
centration for small doping. Note that a finite pairing ampli-
tude exists only in the singlet channel. It is easily shown that
the mean value of the pairing amplitude in the triplet channel
vanishes identically �in this case, an additional sign � ap-
pears inside the summation of Eq. �60��.

However, superconducting phase coherence is generally
absent. The phase part of the pair operator �59� involves �i

s

which is defined in Eq. �6� and is closely related to the spin
degrees of freedom. More precisely, each unpaired spin con-
tributes to a free ±2� vortex via �i

s in the pair operator �59�.

As will be discussed in subsection C, the presence of free
spins in the ground state ��G� prevents phase coherence in

Eq. �59�. Nevertheless, ��̂ij
0 ��0 in Eq. �59� is a meaningful

definition and description of a low temperature pseudogap
ground state, called the spontaneous vortex phase.21 In this
phase, each unpaired neutral spin �spinon� always carries a
±2� supercurrent vortex, known as a spinon-vortex.22 We
postpone further discussion of the spinon-vortices to Sec.
IV C.

2. Fermionic nodal quasiparticles

In the following, we construct a quasiparticle excitation
based on the ground state ��G�. In particular, we show that
the existence of nodes in the excitation spectrum is ensured
by the hidden ODLRO.

Consider the action of c† on the ground state ��G�. Since

ci�= c̃i�ei�̂i� and the twisted bosonic holes c̃i� are condensed,
one finds

ci�
† ��G�Ne−1 = e−i�̂i�c̃i�

† ��G�Ne−1 � e−i�1/2��i
s
Bi���G�Ne

+ excited states, �64�

where

Bi� � �Nh
� + 1�Z��i�e−i�̂i�ei�1/2��i

s
�

���N

2
���Nh�− ��iZ��i�ei��1+��/2��i

0
e−i��/2���i

0−�i
h�.

�65�

Let us focus on Bi� first. Rewriting Bi� using Eq. �62�, we
get

Bi↑ =��N

2
Z↓

*�i�ei�1/2���i
0−�i

h�, �66�

and

Bi↓ =��N

2
�− 1�NhZ↓�i�e−i�1/2���i

0−�i
h�. �67�

Nontrivial spatial oscillations in Bi� mainly originate from

the phase factor e−i��/2���i
0−�i

h�. We rewrite this phase factor as
a string operator,

e−i��/2���i
0−�i

h� = e−i��/2���i
0−�i

h�ei��/2���i1
0 −�i1

h �e−i��/2���i1
0 −�i1

h �

�ei��/2���i2
0 −�i2

h �
¯ , �68�

where i , i1 , i2 , . . . is a sequence of nn sites on a path ending at
site i. Using the relation 	i�i1�−	i1

�i�= ±�, and invoking the
Bose condensation of the holes, we get

e−i��/2���i
0−�i

h�ei��/2���i1
0 −�i1

h � � e�i���/2��1−��e−i���ii1
0 −Aii1

h �, etc.,

�69�

with �=� such that

Bi�Bj�
† = Dij

�e−i�k0·�ri−rj� �70�

where
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k0 = 	±
�

2
�1 − ��, ±

�

2
�1 − ��
 �71�

at four points in the Brillouin zone �setting the lattice con-
stant a=1�. The quasiparticle weight is proportional to

Dij
↑ = �Dij

↓ �* =
�N

2
Z↓

*�i�e−i��ij
��lm

0 −Alm
h �Z↓�j� � O��� , �72�

which is gauge invariant, as can be seen from Eq. �49�. Here,
�ij denotes a shortest-path connecting sites i and j.

Therefore one finds

ci�
† ��G�Ne−1 � e−i�k0·rie−i�1/2��i

s
��G�Ne

. �73�

If phase coherence is realized such that

e−i�1/2��i
s
��G� � ��G� �74�

�see Sec. IV C�, then ck0�
† ��G�Ne−1 would have a finite over-

lap with ��G�Ne
; namely, the quasiparticle spectrum has four

nodes at momenta, k0’s, that approach �±� /2 , ±� /2� in the
limit of zero doping. Similar momentum structure can be
identified in ck���G�Ne+1. A true d-wavelike quasiparticle
state in the superconducting state can be constructed as a
linear combination of ck�

† ��G� and c−k−���G�, which should
be infinitesimally close to the ground state ��G�Ne

at the four
nodal points, k0’s.

However, as discussed in Sec. IV C, the phase factor

e−i�1/2��i
s

precludes phase coherence, and therefore the quasi-
particle state ci�

† ��G�Ne−1 actually has a vanishing overlap
with the ground state ��G�Ne

because of such a phase factor.
Thus, the low-lying fermionic quasiparticles near the four
nodes, k0’s, have a vanishing spectral weight Zk
��Ne

��G�ck�
† ��G�Ne−1�2=0, viz., the nonsuperconducting

�pseudogap� ground state ��G� is a non-Fermi-liquid in na-
ture. Long lived quasiparticle excitations are expected to
emerge only when superconducting phase coherence is real-
ized in Eq. �74�.

We emphasize that the nodal structure of quasiparticles
results from the ODLRO of the bosonic twisted holes, in

which the phase string factor e−i�̂i�, reflecting the fermionic
nature of the electron operator, determines the momentum
positions of four nodes. Finally we note that in the previous
effective phase string theory in terms of holons and spinons
�see Appendix B�, a similar d-wave quasiparticle excitation
can be obtained as the consequence of forming the holon-
spinon bound pairs by considering residual interactions be-
yond the effective model.20

3. Two types of spin excitations

The hidden ODLRO in Eq. �54� is not only responsible
for the existence of a finite pairing amplitude as well as
d-wave like nodal quasiparticle excitations, it also predicts
the presence of a new type of low-lying spin excitation
which is quite distinctive as compared to the previously dis-
cussed spin excitations created in the RVB background
�RVB� �Sec. III A�.

The latter may be called Type I spin excitations, which
can be created by acting a spin operator, say, Si

+, directly onto

the insulating spin liquid �RVB�, without involving the hole
condensate in Eq. �54�. Obviously, this type of spin excita-
tion is the only elementary excitation at half-filling, where it
reduces to a conventional spin wave in the long-wavelength
limit as discussed in Sec. III A. At small doping, the majority
of spins still remain RVB paired, characterized by �s�0 in
�RVB�. Thus, this kind of spin excitation will naturally per-
sist into the pseudogap regime, where a spin gap will be
opened up in its low-energy spectrum as the spin-spin corre-
lations are short-ranged �here Wij becomes exponential decay
with the distance �i− j�, see Fig. 3�. In fact, as mentioned in
Sec. III A, the corresponding low-lying excitation reduces to
a sharp resonancelike mode in the pseudogap regime, with a
characteristic energy scale Eg��J around the momentum
�� ,��. Remnant spin wavelike dispersion is still present at
high energies,18 which disappears when the temperature
reaches T0 as shown in Fig. 2 where the short-range RVB
pairing vanishes finally.

Now let us discuss a new type �type II� of S=1 excitation
which is associated with the twisted holes and may be re-
garded as composed of a pair of quasiparticle and quasihole,
instead of a pair of neutral spinons in �RVB�. To create a type
II spin excitation by, say, Si

+, a pair of quasiparticles will be
created and annihilated in ��G�, which involves a spin flip in
the “hole condensate” part in Eq. �54�.

To show this, let us rewrite Si
+=ci↑

† ci↓ by

Si
+ = ei�̂i↑c̃i↑

† c̃i↓e
−i�̂i↓ = ��− 1�iei�i

h
�c̃i↑

† c̃i↓. �75�

Then, by using �¯�hole-part to denote type II spin excitations
created by Si

+ in the condensed “hole” part in ��G�, we ob-
tain

�Si
+��G��hole-part � �− 1�iei�i

h
Z↑�i�Z↓

*�i��Nh
↑�Nh

↓ + 1��G� .

�76�

The term on the right-hand side �rhs� has the same origin as
the quasiparticles around nodal points discussed previously.

But the phase factor e−i�̂i� in the quasiparticle channel �Eq.

�64�� is now replaced by �−1�iei�i
h

in the spin channel, after a

recombination of ei�̂i↑ and e−i�̂i↓ in Eq. �75�.24 The leading
contribution to the spin-spin correlation at large distance is
then given by

��G�Sj
−Si

+��G�hole-part � �− 1�i−j�Z↑
*�j�Z↓�j��ij

h Z↑�i�Z↓
*�i���N

�77�

�using Nh
����N� where

�ij
h � ei��i

h−�j
h�. �78�

The momentum structure can be determined by the Fou-
rier transformation of Eq. �77�, in a way similar to that in the
quasiparticle channel. Note that, an additional topological

effect in ei�i
h

�not in ei�1/2��i
h
� requires a little more careful

treatment. As detailed elsewhere,25 �−1�iei�i
h

will lead to the
following incommensurate momenta, to leading order of ap-
proximation,

WENG, ZHOU, AND MUTHUKUMAR PHYSICAL REVIEW B 72, 014503 �2005�

014503-12



Q� = �±�, ± ��1 − ���� and �±��1 − ���, ± �� �79�

with ���2�.
On the other hand, the dynamics of Eq. �77� is mainly

decided by the vortices in ei�i
h

which is in turn determined by
the charge density. To leading order approximation, no su-
perexchange interaction in the spin degrees of freedom influ-

ences Eq. �77�. If one neglects the fluctuation in ei�i
h
, the

term on the rhs of Eq. �76� would have a finite overlap with
��G� at the incommensurate momenta Q�, which implies a
zero mode or the presence of an incommensurate AFLRO.
But the true long-range order will be prevented by the den-
sity fluctuations, because any small fluctuation in the charge

density will be accumulated in the phase factor ei�i
h

in a
sufficiently long time and distance, which in turn will result
in a slow-fluctuating incommensurate AF ordering above
��G�, instead of a true static incommensurate AFLRO. This
low-lying spin fluctuation can provide an alternative expla-
nation, without invoking a dynamic stripe picture, of low-
energy results in neutron scattering experiments on the cu-
prate superconductors.

Therefore, type II spin excitations in Eq. �76� are quite
distinct from type I in nature. As a direct consequence of the
hidden ODLRO, they are absent at half filling �the weight of
this term is proportional to the density of the charge conden-
sate, from Eq. �76��. One should thus properly distinguish
these two in a neutron scattering measurement, as a unique
prediction of this theory.

C. Superconducting phase coherence

As described above, the hidden ODLRO in ��G� leads to
a nonzero pairing amplitude. But it does not necessarily im-
ply superconductivity. Consider the action of the supercon-
ducting pairing operator on the Ne electron ground state. The
resulting state has an overlap with Ne−2 electron ground
state, determined by using Eqs. �59� and �63�, as follows:

��̂ij
SC�nn��G�Ne

� �0e−i�1/2���i
s+�j

s���G�Ne−2 + excited states.

�80�

So superconductivity is established only when

�e−i�1/2���i
s+�j

s�� � 0, �81�

viz., the onset of superconductivity is determined by phase
coherence.

1. Spinon vortices

We noted earlier that each isolated �S=1/2� spin in ��G�
means the creation of a ±2� vortex in the phase of the su-

perconducting order parameter �̂ij
SC, via �i

s, according to Eq.
�80�. Thus, each spin automatically carries a phase or super-
current vortex, called a spinon-vortex, in the state described
by ��G�. This was first identified in previous work based on
the effective theory.21,22

The ±2� vortices centered at ↑ and ↓ spins in �RVB� are
paired as vortex-antivortex pairs, since the underlying spins
are always paired in the singlet RVB vacuum. Then, one has

�RVB�e−i�1/2���i
s+�j

s��RVB� � 0. �82�

This is in analogy with the two-dimensional XY model be-
low the Kosterlitz-Thouless transition where vortex-
antivortex pairs are bound together. In our case, vortices and
antivortices are associated with ↑ and ↓ spins, respectively.
The condition that Sz=0 in the singlet background, �RVB�, is
equivalent to the charge neutrality condition in the XY
model. Since ↑ and ↓ spins are RVB pairs with a finite range
� at finite doping �see Eq. �42��, the cancellation in 1

2 ��i
s

+� j
s� is ensured at large distances. Thus, we see that the spin

RVB pairing in �RVB� is very essential for phase coherence
to occur. Note that this condition fails in the AF phase, where
�→�, or beyond the doping concentration xRVB where the
RVB pairing disappears.

However, the existence of free spins, associated with
doped holes created by c̃l�, will imply the presence of free
vortices in ��G�. To see this, following Eqs. �54� and �82�,
one can write

e−i�1/2���i
s+�j

s���G� = ei�1/2���i
h+�j

h�

�	�
l

Z↑�l�c̃l↑
Nh
↑	�

l

Z↓�l�c̃l↓
Nh
↓

�e−i�1/2���i
s+�j

s��RVB�

� ei�1/2���i
h+�j

h���G� �83�

where �i
h��l�i	i�l� �ñl↑

h − ñl↓
h � with ñl�

h denoting the number
operator of twisted holes of spin � at site l. Then, the Bose
condensation of these free vortices in ��G� will disorder the
phase of the superconducting pairing order parameter ac-
cording to Eq. �83� �although �i

h itself vanishes on average,
its fluctuations will satisfy an area law in the Bose condensed
case�.

Therefore the ground state ��G� is not a true supercon-
ducting ground state due to the lack of phase coherence,
although it possesses a pairing amplitude as well as �incoher-
ent� nodal quasiparticles. It is characterized by the presence
of unpaired spinon-vortices as a direct consequence of the
hidden ODLRO in ��G�. Nontrivial Nernst effect contributed
by such unpaired spinon-vortices has been investigated based
on the effective phase string theory elsewhere.21

2. Superconducting ground state

The superconducting instability occurs when the unpaired
spins associated with twisted holes also become RVB paired.
It reduces the superexchange energy when the spins associ-
ated with the backflow form RVB pairs, and most impor-
tantly it removes the logarithmic-divergent energy associated
with free vortices as vortices-antivortices are paired up at
low temperature. Consequently the phase �i

h is cancelled out
in Eq. �83� and the true phase coherence �81� of the super-
conducting order parameter can be finally established.

Corresponding to the pairing of those free spins associ-
ated with twisted holes, the twisted holes themselves are also
effectively paired and the ground state should evolve from
Eq. �54� into the following form:
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��G�SC = const.�D̂�Nh/2�RVB� �84�

in which

D̂ = �
ij

g�i − j���
�

Z��i�Z−��j�c̃i�c̃j−�� �85�

with g�i− j� characterizing the pairing of the twisted holes.
Note that in the limit of no pairing, with g�i− j�=constant,
Eq. �84� will recover the pseudogap �spontaneous vortex
phase� ground state �54� at Nh

↑=Nh
↓=Nh /2.

According to Eq. �84�, one has �D̂��0. By using Eqs.

�59�–�62�, D̂ can be further written as follows:

D̂ � �
ij

g�i − j�� 2

�N
�
�

e−i�ij
0 −i�Aij

h
Z�

*�i�Z��j�
�̂ij

0

2
�

=
1

2�
ij

g�i − j��ij
0 �̂ij

0

=
1

2�
ij

g�i − j��ij
0 �e−i�1/2���i

s+�j
s��̂ij

SC� �86�

such that

�D̂� =
1

2�
ij

g�i − j��ij
0 �e−i�1/2���i

s+�j
s��̂ij

SC� � 0. �87�

Since the phase coherence �e−i�1/2���i
s+�j

s���0 is established
self-consistently once g�i− j� introduces the pairing among

twisted holes as discussed above, one finally obtains ��̂ij
SC�

�0 according to Eq. �87�. Note that the phase factor

e−i�1/2���i
s+�j

s� also determines the d-wave symmetry of ��̂ij
SC�

as discussed previously in Ref. 20.
Therefore the superconducting ground state �84� can be

obtained as the result of the pairing instability of twisted
holes in the pseudogap ground state �54�. Simultaneously the
phase coherence condition �81� is achieved, and fermionic

electron operators in D̂ become meaningful as

D̂��G�SC � �
ij

g̃ij�
�

�ci�cj−���G�SC, �88�

with the d-wave symmetry characterized by

g̃ij � 1
2�ij

0 g�i − j��e−i�1/2���i
s+�j

s�� . �89�

Equation �88� also implies the restoration of the coherent
fermionic quasiparticle excitations in the superconducting
state.

V. SUMMARY AND DISCUSSION

In this paper, we obtained and analyzed the ground state
of a pseudogap phase �or spontaneous vortex phase� for a
doped Mott insulator, starting from a generalized mean field
treatment of the t-J model in the phase string representation.
In this representation, the most singular effects of doping,
viz., the no double occupancy constraint, and the phase
string effect arising from the disordering of the Marshall

sign, are sorted out through a systematic procedure. All non-
trivial phases in the phase string representation are charac-
terized by a topological gauge structure, which turns out to
be well controlled in the regime of interest �low doping�. The
physical picture of the ground state that emerges, is that of an
underlying RVB vacuum �a spin liquid insulator� which
makes the doped holes be twisted into bosonic objects,
thereby gaining kinetic energy. The ground state retains time
reversal and spin rotational symmetries, and has a simple
form �54� in the electron second-quantization representation.

At half filling, the ground state describes an AF Mott
insulator, and provides a very accurate description of both
long and short range spin correlations of the Heisenberg
model. At finite doping, the spin degrees of freedom are
described by an RVB spin liquid �55�; the mean RVB pair
size �42� reduces continuously as doping increases. Charge
degrees of freedom emerge at finite doping, with a hidden
ODLRO �58�. This leads to a finite �electron� pairing ampli-
tude, which characterizes the pseudogap structure of the
ground state. The hidden ODLRO in the charge sector is also
found to be the underlying reason for the four nodes in the
quasiparticle excitation spectrum, but the ground state is
non-Fermi-liquidlike in the absence of phase coherence. It is
more appropriate to call the pseudogap ground state as a
spontaneous vortex phase, since free S=1/2 spins that act
like vortices prevent superconducting phase coherence in this
state.

Two types of low-lying spin excitations above the
pseudogap ground state were identified. One is composed of
neutral spinons and has a resonancelike feature around
�� ,��. It reduces to the conventional gapless spin wave at
half filling. The other type of spin excitation exists only in
the doped regime and describes a slowly fluctuating incom-
mensurate AF ordering. It provides an alternative explana-
tion of the neutron scattering experiments without invoking a
charge stripe scenario.

Superconducting phase coherence is established by an in-
stability which causes RVB pairing of the free spins associ-
ated with the twisted holes. The ensuing ground state �84�, is
non-BCS-like in many aspects. The properties of the super-
conducting ground state �84�, especially those involving non-
BCS-like features, are very interesting problems to pursue
further.

The class of wave functions discussed in this paper pro-
vides a unified description of Mott physics, antiferromag-
netism, pseudogap physics, and d-wave superconductivity
within a single framework. There are many basic distinctions
between this ground state and BCS-like wave functions. An
important distinction is the independence of the spin excita-
tions from the quasiparticles. The presence of the pairing
amplitude and spontaneous vortices associated with spin ex-
citations is another unique feature and is independent of su-
perconducting phase coherence. Furthermore, generalized
Jastrow-type factors K in Eq. �23� that appear in the ground
state wave function, are incompatible with the �Slater� deter-
minantal wave functions of the BCS theory. Therefore, the
pseudogap and superconducting ground states obtained in
this work represent and describe a new state of matter.

Given that the state �54� undergoes a superconducting in-
stability with phase coherence at low temperature, we may
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discuss further implications for the global phase diagram.
Clearly, the phase coherence condition �82� fails in the spin
ordered phase, when the spatial separation of the RVB pair,
�→�; indeed, at half filling, the RVB amplitude Wij shows a
power law decay at �i− j�→�, without a finite length scale,
as discussed in Sec. III A. In this AF phase, phase coherence
in Eq. �82� due to the tight binding of vortices and antivor-
tices in �i

s is disrupted. In general, such a spin ordered phase
will persist into finite doping at sufficiently low hole concen-
tration, ��xc.

26 The condition of phase coherence is not sat-
isfied also when the RVB pairing between spins in �RVB� is
continuously reduced to zero, at sufficiently large doping
xRVB. In this case, the underlying rigidity for binding of vor-
tices and antivortices in the ground state is also destroyed
and the superconductivity should be suppressed beyond
xRVB. How the ground state wave function systematically
evolves with the doping concentration and the possible exis-
tence of quantum critical points at, say, xc and xRVB, is an
important subject for further investigation.

Finally, the results presented in this paper can be used as
a starting point to pursue several interesting questions, and
we indicate a few possible directions here: �i� The pseudogap
�spontaneous vortex phase� ground state is inherently un-
stable to superconductivity as the result of pairing of the
twisted holes. Nonetheless, the pseudogap ground state can
still be regarded as a true ground state, for instance, when
strong magnetic fields are applied to destroy the RVB pairing
of the low-lying spins associated with the backflow of holes.
The study of this state in the presence of strong magnetic
fields is thus experimentally relevant. �ii� It will be very use-
ful to develop a numerical scheme based on the wave func-
tion �57� for a variational study. At half-filling, we used the
wave function to compute the ground-state energy, magneti-
zation, and equal-time spin-spin correlations by employing
the loop gas method. As pointed out, this gave us accurate
results. However, away from half filling, the RVB amplitude
Wij is no longer a real function and loop products generate a
fictitious flux proportional to doping concentration �cf. Eq.
�C28��. This leads to a sign problem and further work is
necessary to overcome this barrier. Havilio and Auerbach
studied correlations in doped antiferromagnets using a com-
bination of numerical methods and the Gutzwiller approxi-
mation for a different class of RVB wave functions.28 A simi-
lar study of the wave function proposed in this paper should
yield interesting results. �iii� Finally, we note that the form of
the wave function �24� follows from very general conse-
quences of a hole moving in an RVB background, since the
disordering of the Marshall sign, i.e., the phase string effect,
occurs in systems even without AF long range order. Thus
the phase string representation and the bosonic RVB mean
field theory can be used to study models such as the doped
quantum dimer model, where the spin background is known
to be RVB paired.
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APPENDIX A: DETERMINATION of �h AND Z�„l…

From the mean-field state �47�, one finds

��G��G�MF = �
l1�l2�¯

�h�lh���2�RVB��
h

Z
�h�
* �lh�Z�h

�lh�

��hlh
hlh

† ��blh�h�
† blh�h

��RVB�MF

� �
l1�l2�¯

�h�lh���2�
h

�Z�h
�lh��2

��RVB�nlh�h

b �RVB�MF. �A1�

In obtaining the last line, we omit RVB pairings involving
two holon sites, e.g., the second term on the rhs of the fol-
lowing expression �note that lh refers to a holon site�:

�RVB�nl1↑
b nl2↓

b �RVB�MF

= �RVB�nl1↑
b �RVB�MF�RVB�nl2↓

b �RVB�MF

+ �RVB�bl1↑
† bl2↓

† �RVB�MF�RVB�bl1↑bl2↓�RVB�MF.

�A2�

The essence of this approximation is that for a dilute concen-
tration of holes, the hole-hole correlation induced by the
background spin RVB pairing can be neglected, since the
average separation between holes sets the upper bound for
the size of the RVB pair wave function. For the sake of
clarity, we shall invoke this approximation in determining
h�lh�� and Z�h

�lh� below. In principle, these effects can be
incorporated without affecting our results qualitatively.

Now, consider the hopping term �9�, which is rewritten as

Ht = − t �
�ij��

�eiAij
s −i�ij

0 −i�Aij
h
��hi

†bi���hjbj�
† � + H.c. �A3�

It can be interpreted as describing the hopping of a holon-
spinon composite hi

†bi� under the influence of the gauge field
Aij

s −�ij
0 −�Aij

h in the RVB background �RVB�; bi� represents
the spinon backflow accompanying the hopping of the holon
hi

†.
The ↑ and ↓ spinons are paired in the RVB background

�RVB�, and it costs finite energy to break up an RVB pair at
finite doping. Correspondingly, �Aij

s �=0 and ��Aij
s �2� remains

small in Eq. �A3� because Aij
s depicts fictitious ±� fluxoids

bound to �= ±1 spins. We point out that this condition could
fail both, at very low doping ���xc �Ref. 26��, where a spin
ordered phase exists, and at large doping ���xRVB�, where
the RVB pairing disappears and Aij

s fluctuates strongly. In
both limits, we expect different phases.

Neglecting Aij
s and the hard core repulsion among holons,

one may simply choose

h�l1,l2, . . . ,lNh
� = const. �A4�

as if the holons are in a Bose condensed state. Consistent
with this picture of holon condensation, Aij

h can indeed be
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treated as describing a constant flux �� per plaquette. We
recall that such an approximation �cf. Eq. �32�� was made in
determining the RVB amplitudes, Wij.

We can now determine Z
h
�lh� by minimizing

��G�Ht��G�MF/ ��G ��G�MF. Upon invoking the approxima-
tions detailed above, we get

��G�Ht��G�MF

��G��G�MF
� − t̃�

h=1

Nh

�
�ij�

e−i�ij
0 −i�hAij

h
Z�h

* �i�Z�h
�j� ,

�A5�

where

t̃ = 	 n̄b

2
+

��s�2

2n̄b 
t, n̄b = 1 − � . �A6�

By optimizing the hopping energy under the condition
�i�Z�h

�i��2=1, we get the hopping energy

��G�Ht��G�MF/��G��G�MF = − 4th�N , �A7�

with th�0 being the maximal eigenvalue of the eigenequa-
tion

�− th�Z�h
�i� = −

t̃

4 �
j=nn�i�

e−i�ij
0 −i�hAij

h
Z�h

�j� , �A8�

and Z�h
, its eigenwavefunction.

From Eq. �A6� we see that t̃ has two contributions: the
first term, proportional to �1−�� /2, is the probability that the
hole hops between nn sites, in a background of uncorrelated
spins; the second term, proportional to ��s�2, is the enhance-
ment from RVB assisted hopping—the initial state �before
hole hopping� and the final state have a nonvanishing overlap
owing to the RVB pairing in the spin background. Note that
t̃� t at small � as n̄b�1, �s�1. The effective hopping inte-
gral th can be obtained from Eq. �A8�, for a fixed hole con-
centration and under the approximation �32�. The numerical
results are shown in Fig. 4.

Finally, we note that the eigenvalues of �A8� would form
a Hofstadter spectrum, if the gauge field Aij

h were treated at a
mean field level, as a uniform flux �32�. However, the density
of the backflow spinons is tied to that of the holons and so
the fluctuations in Aij

h due to fluctuations in the holon density
are self consistently related to the density fluctuations of the
spinon backflow. Thus, Eq. �A8� resembles an anyon
�semion� system in the bosonic representation with a spin
index.27 The mean field approximation is usually no longer
valid in determining its excitation spectrum. This is a non-
trivial issue. Nevertheless, since we shall be only interested
in its ground state, which is a condensate with a uniform
density distribution, all we need to know is that there is a
renormalized constant th for the effective holon hopping
term, estimated as the maximal eigenvalue at the mean-field
level in Eq. �A8�. The wave packet Z��i� is determined as a
linear combination of the wave packets of a cyclotron radius
ac=a /��� in accord with Eq. �32� and is made maximally
uniform in space, in order to accommodate the condensation
of the holes.

APPENDIX B: EFFECTIVE THEORY

In the bosonic RVB mean field theory, the holon many-
body wave function h has been assumed to satisfy the ideal
Bose condensation condition �48� at T=0. As we noted in the
paper, two effects are omitted in Eq. �48�, viz., the hard core
correlation among holons and the fluctuations of the link
field Aij

s . The latter effect should become important when
excited spinons are present. Furthermore, h will also be-
come nontrivial in the presence of an external electromag-
netic field.

A general form of the wave function h in Eq. �47� under
the influence of Aij

s , and in the presence of an external elec-
tromagnetic field Aij

e , can be determined by the following
effective hopping term

Hh = − th�
�ij�

eiAij
s +iAij

e
hi

†hj + H.c. �B1�

If the hard core condition of the holon field is neglected, and
if Aij

e �0, Eq. �B1� leads to the Bose condensation solution
�48� in the ground state. Note that Hh is a gauge model
consistent with the gauge invariance �15� in the original
Hamiltonian. Hh also respects the spin rotational symmetry
as one can easily check that �Hh ,S�=0, where S is the total
spin operator. Furthermore, in the absence of Aij

e , the time
reversal symmetry of Hh can also be shown, by noting that
Aij

s →−Aij
s under the flip of the spins.

The effective hopping integral th appears in Eq. �B1� as a
renormalized t, which is decided by the spinon backflow ac-
cording to Eq. �49�. Here the spinons do not directly see the
gauge field Aij

s and the external electromagnetic field Aij
e ,

because they satisfy a different gauge transformation �16� in
Eq. �49�. Thus, the spinons are truly charge neutral and only
carry S=1/2 in the phase string formalism, in contrast to,
say, the slave boson gauge theories where both holons and
spinons are coupled to the same external electromagnetic
field through the Ioffe-Larkin rule.

An effective Hamiltonian Hstring based on Hh and Hs can
be written down as

Hstring = Hh + Hs. �B2�

Such an effective Hamiltonian has been derived earlier,17 and
is the basic low energy effective model for the doping and
temperature regimes underpinned by the bosonic RVB order
parameter �s�0 in the phase diagram of Fig. 2.

We remark that Hstring in Eq. �B2� is obtained under the
assumption that the spinon backflow accompanying the hop-
ping of the holons only provides a renormalized hopping
integral th. Here th is determined at the mean field level, as
the minimal eigenvalue of Eq. �49�. However, in principle,
the internal excitations of the spinon backflow can effec-
tively reduce th according to Eq. �49� and thus increase the
kinetic energy of Hstring. This should be taken into account
when the high energy part of the charge degrees of freedom
are studied. Finally, we point out that the holon and its
spinon backflow is actually bound together, as previously
shown20 by including the residual interactions of the t-J
model beyond the effective Hamiltonian. Such a twisted hole
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as a bound holon-spinon pair emerges naturally in the
present wavefunction approach given in the main text.

APPENDIX C: TIME REVERSAL AND SPIN ROTATIONAL
SYMMETRIES OF THE PSEUDOGAP

GROUND STATE (54)

1. Time reversal symmetry

The time reversal relation for an S=1/2 single-particle
wave function is

��
T = ��−�

* . �C1�

Correspondingly, in second quantized language, the time re-
versal of the electron operators read

Tci�
† T−1 = �ci−�

† , �C2�

Tci�T−1 = �ci−�. �C3�

It is easy to check that

TSiT
−1 = − Si. �C4�

Then the time reversal of the RVB state �RVB� is given by

T�RVB� = const.�
�s�

�RVB
* ��1,�2, . . . ,�N�

���1�2 ¯ �N�c1−�1

† c2−�2

†
¯ cN−�N

† �0�

= const.�
�s�

�RVB
* �− �1,− �2, . . . ,− �N�

�c1�1

† c2�2

†
¯ cN�N

† �0� = �RVB� �C5�

by noting that �1�2¯�N= �−1�N/2 in a bipartite lattice, and

�RVB
* �− �1,− �2, . . . ,− �N� = �

pair
�
�ij�

�− 1�i�− 1�Wij
*

= �
pair

�
�ij�

�− 1�i�− 1�Wji

= �
pair

�
�ij�

�− 1� jWji

= �RVB��1,�2, . . . ,�N� .

�C6�

Furthermore, by using

Te−i�̂i�T−1 = ei�1/2��−�i
s−�i

0−��i
h����N̂h�− ��i

= e−i�̂i−�e−i�i
0
�− 1�N̂h�− 1�i

according to Eq. �5� and c̃i�=e−i�̂i�ci�, one finds that

Tc̃i�T−1 = �c̃i−�e−i�i
0
�− 1�N̂h�− 1�i. �C7�

Finally, the time reversal of the ground state ��G� is given by

T��G� = T	�
l

Z↑�l�c̃l↑
Nh
↑	�

l�

Z↓�l��c̃l�↓
Nh
↓
T−1T�RVB�

= 	�
l

Z↑
*�l�c̃l↓e

−i�l
0
�− 1�N̂h�− 1�l
Nh

↑

�	− �
l�

Z↓
*�l��c̃l�↑e

−i�
l�
0
�− 1�N̂h�− 1�l�
Nh

↓

�RVB�

= �− 1�Nh
↓
�− 1�Nh�Nh−1�/2	�

l

Z↓�l�c̃l↓
Nh
↑

�	�
l�

Z↑�l��c̃l�↑
Nh
↓
�RVB� = ��G�

at Nh
↑=Nh

↓=Nh /2 �or Sz=0�. In obtaining the third line, con-
dition �62� is used.

Thus, we have proved the time reversal symmetry of the
pseudogap ground state �54�, for Sz=0.

2. Spin rotational symmetry

The condition for a state with SU�2� spin rotational sym-
metry is

S2��� = 0 �C8�

or equivalently,

Sz��� = 0, �C9�

S±��� = 0. �C10�

Here S is the total spin and S±=Sx± iSy, where Sx, Sy, and Sz

are the three components of S. In the following we shall
consider ��G� with Sz=0, and show that S±��G�=0.

By noting that, for i� l,

Si
+e−i1/2�l

s
= e−i1/2�l

s
Si

+ei	l�i� �C11�

Si
+ei��/2��l

h
= ei�/2�l

h
Si

+ �C12�

we have

Si
+c̃l� = Si

+e−i�̂l�cl� = ei	l�i�c̃l�Si
+�1 − �il� �C13�

and

S+c̃l� = c̃l��
i�l

Si
+ei	l�i�. �C14�

Then according to Eqs. �52� and �48�,

S+��G� = S+�
lh�

�
h

Z�h
�lh�c̃lh�h

�RVB�

= �
lh�

�
h

Z�h
�lh�c̃lh�h	�

i�lh

Si
+ei�lh�i	lh

�i��RVB�
 .

�C15�

In terms of Eqs. �55� and �56�, one has
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�RVB� = �
�s�

�RVB��1,�2, . . . ,�N�c1�1

† c2�2

†
¯ cN�N

† �0�

� const.�
�s�

�
pair

�
�ij�

�− 1�iWij� . . . ,i↑, j↓, . . . � ,

�C16�

where each spin configuration �1 ,�2 , . . . ,�N� is partitioned
in pairs denoted by �ij�, with i and j belonging to different
sublattices connected by �−1�iWij in Eq. �C16�. For each pair
of �ij� and �ji�, the rest of �RVB� remains the same �the
nature of RVB pairing� and thus needs not to be considered.
Then we find

Iij � �Si
+ei�lh�i	lh

�i� + Sj
+ei�lh�j	lh

�j����− 1�iWij� . . . ,i↑, j↓, . . . �

+ �− 1� jWji� . . . ,i↓, j↑, . . . ��

= ��− 1� jei�lh�i	lh
�i�Wji + �− 1�iei�lh�j	lh

�j�Wij�

�� . . . ,i↑, j↑, . . . � = ei/2��lh�i	lh
�i�+�lh�j	lh

�j���− 1� j�Wjie
iAij

h

− Wije
−iAij

h
�� . . . ,i↑, j↑, . . . � �C17�

where in obtaining the last line, 	lh
�i�−	lh

�j�=	i�lh�−	 j�lh�
has been used.

In the ground state, the holes are uniformly distributed in
space due to the ODLRO, which ensures Eq. �32�. We shall
show �see below� that under the condition �32� one has the
following relation:

Wij = �Wij�eiAij
h

�C18�

up to a pure gauge transformation. Since �Wij�= �Wji�, then
one has

Iij = 0 �C19�

for any given set of RVB pair �ij� in Eq. �C16�.
Note that one should be careful about the case that a pair

of sites �ij� may be occupied by holes. Obviously there is no
contribution in Eq. �C15� if two sites are both occupied by
holes, or by a hole and an up spin. If only one of them is
occupied by a hole and the other is by a down spin, then two
configurations, with the hole at site i / j and a down spin at
site j / i, will have the same amplitude but opposite signs
similar to the case in Eq. �C17�. Since the twisted holes are
Bose condensed, smearing out the charge distribution one
still finds a cancellation with vanishing contribution to Eq.
�C15�. Therefore, generally one has

S+��G� = 0. �C20�

Proof of (C18) under the condensation condition (32):
According to the definition �37�, Wij is determined by Eq.
�35�, which is rewritten as

�
j=NN�i�

e−iAji
h
wm�j� = �m� wm�i� �C21�

with wm�wm↑�i� and �m� �−�m /Js, with a gauge choice

Ai,i+x̂
h = 0, �C22�

Ai,i+ŷ
h = ����ix �C23�

for Eq. �32� under the “holon” condensation condition. Since
the system is translational invariant in the ŷ-direction, we
may express wm�i� as wm�i�=eimyiygm�ix�=eimyiygmx,my

�ix�,
with the eigenfunction �C21� becomes

gm�ix − 1� + gm�ix + 1� + 2 cos���ix − my�gm�ix� = �m� gm�ix� ,

�C24�

where my =2�n /L, n=0,1 , . . . ,L−1. If the doping concen-
tration � satisfies ��L=2k� �k�Z�, the periodical boundary
condition can be chosen �the Hofstadter case�. The more gen-
eral case can always be infinitesimally approached from the
Hofstadter case.

In terms of Eq. �C24�, we have the following identities:

gmx,my
�ix + 1� = gmx,my−���ix�ei�m �C25�

and

�mx,my
� = �mx,my−��� , �C26�

where �m depends on the choice of the phase of gm. Using
the above identities, we obtain

gmx,my
�ix + �x� = gmx,my−���x

�ix�ei�n=1
�x �m+�n−1�x̂. �C27�

Substitute the above solution into Wij,

Wij = − �
m

vm

um
wm�i�wm

* �j�

= − �
m

vm

um
eimy�iy−jy�gmx,my

�ix�gmx,my

* �jx� .

Then

Wi+�,j+� = − �
m

vm

um
eimy�iy−jy�gmx,my

�ix + �x�gmx,my

* �jx + �x�

= − �
m

vm

um
eimy�iy−jy�gmx,my−���x

�ix�gmx,my−���x

* �jx�

= − �
m

vm

um
ei�my+���x��iy−jy�gmx,my

�ix�gmx,my

* �jx�

= ei���x�iy−jy�Wij ,

and it is straightforward to show

�
loop

Wij = �
loop

�Wij� · ei�loopAij
h
, �C28�

on a loop �i→ j→ j+�→ i+�→ i�. One can always choose a
proper gauge such that Eq. �C18� holds on any link �i , j�.
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