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fcc antiferromagnetic Ising model in a uniform external field solved by mean-field theory
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The fcc antiferromagnetic Ising model with nearest-neighbor interactions in a uniform external field is
studied using a simple mean-field theory, and a phase diagram is presented. Our theory is formulated in the
spirit of a Weiss-like molecular field theory: Four spins forming a basic tetrahedron are allowed to fluctuate
while the surrounding 28 spins take mean-field values. The phase diagram is similar to that obtained in the
Bragg-Williams approximation for chemical ordering of Cu;_,Au, alloys, although apart from the similar
phase diagrams, the two theories give substantially different results. First, all of the detected transitions are
correctly predicted to be first order. Second, we obtain two previously undetected reentrant phases. The
existence of reentrant phases is discussed and we show that this ordering scenario is fully consistent with the
results of the Bragg-Williams approximation which does not contain reentrant phases.
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I. INTRODUCTION

Frustrated magnetism presents one of the most difficult
challenges to our understanding of magnetic order, as exem-
plified by the ongoing controversy regarding spin glass order.
Frustration—the inability to simultaneously satisfy all
interactions—Ileads to nontrivial, highly degenerate ground
states, and it can be very difficult to ascertain the correct
solution to a given model even when extreme approxima-
tions are used, such as mean-field theory. The only nontrivial
frustrated model which has been solved exactly' is the two-
dimensional Ising antiferromagnet on a triangular lattice (t-
IAF) by extension of the celebrated Onsager solution® of the
two-dimensional Ising ferromagnet. The principal result is
that no finite temperature ordering occurs so that the effect of
frustration is to increase the lower critical dimension beyond
two. Since the exact solution to the t-IAF problem is known,
it is a good starting point for testing approximate theories
prior to application to more complex problems. A particu-
larly good mean-field theory, the loopwise (LS) scheme, was
recently used to study the t-IAF by Galam® and gave the
correct solution: The Néel temperature (Ty) is zero as in the
exact solution.

The most natural extension of the mean-field theory of
Galam beyond the t-IAF is to the three-dimensional fcc Ising
antiferromagnet (fcc-IAF). However, for the fcc-IAF the ex-
act solution is, of course, unknown and the form of the phase
diagram in a uniform external field H remains a considerable
problem.* The LS scheme easily accommodates a magnetic
field so that application to the fcc-IAF is useful in providing
a better understanding of the fcc-IAF model. In addition, the
fcc-IAF model provides an important test of the strength and
validity of the LS scheme when applied to frustrated models,
which are more difficult than the t-IAF. We also note that
nearly all calculations of the fcc-IAF model are solutions of
the alloy phase diagram, which cannot yield the magnetic
phase diagram. By contrast, solutions of the magnetic phase
diagram, immediately yield the corresponding alloy phase
diagram, making the calculation of the magnetic problem
more versatile.

1098-0121/2005/72(1)/014455(8)/$23.00

014455-1
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The fcc-IAF model consists of Ising spins which can take
the values S;==1 located at the vertices of an fcc lattice
interacting with nearest-neighbor antiferromagnetic bonds J
=—1. The Hamiltonian in a uniform external field H is

H=-J28S,~H> S, (1)
(i) i

where the summation (i,j) runs over all nearest-neighbor
pairs. The fcc lattice can be built from four interpenetrating
simple cubic (SC) lattices, and the nearest-neighbor spins of
each site in one simple cubic lattice are four spins from each
of the remaining three SC lattices. Due to the symmetry of
the ordered phases of the fcc-IAF, it is easiest to consider the
lattice as being built out of basic tetrahedra which contain
one spin from each of the four SC lattices. The average val-
ues of the spins in each basic tetrahedron are then the sub-
lattice magnetizations: m,=(S) with k=1, 2, 3, and 4 and the
average magnetization is just m:iEkmk.

At zero temperature, minimization of the Hamiltonian
gives the ground states, which are well known.’ In what
follows we consider H=0 since the phase diagram is sym-
metric about H=0. For 0 < H <4 the ground state is denoted
AB (borrowed from the alloy language for Cu,;_,Au, order-
ing) exhibiting antiferromagnetic (AF) order within succes-
sive (100) planes but with no correlation between the
planes:® Any AF plane may have all its spins flipped at zero
energy cost. The ground-state energy/spin, E, in the AB
phase is just —2, and is independent of the field H. For 4
< H <12 the ordering is denoted A;B and successive planes
are ordered AF/FM/AF/FM, etc.—where FM refers to ferro-
magnetic order—again with no correlation between the AF
planes. The ground-state energy/spin is E :—%H . For H
> 12, the ground state is A (the paramagnetic phase for T
>0) with all spins ordered “up” along the field direction, and
the ground-state energy/spin is E=6—H. At zero temperature
(T=0), the critical field H'=4 separates the AB and A;B
phases while the critical field H3= 12 separates the A;B and
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FIG. 1. Schematic phase diagrams for the fcc-IAF model ob-
tained in (a) the Bragg-Williams approximation (Ref. 8), (b) the
quasichemical approximation (Ref. 9), (c) the Kikuchi approxima-
tion (Refs. 16 and 17) and most recent Monte Carlo result (Ref. 4),
and (d) early Monte Carlo result (Ref. 5).

A phases. At the critical fields H' and H> other structures™’
may become ground states, but we do not explore this pos-
sibility here.

For T>0 the phase diagram is much less clear. A variety
of approximate methods and Monte Carlo methods*> have
been used to study the problem. The first treatment of a
simplified version of the fcc-IAF model was given by
Shockley® more than 60 years ago using the Bragg-Williams
approximation to describe the chemical ordering of Cu;_,Au,
alloys. In the magnetic language spin “up” refers to one
chemical species and spin “down” refers to the other such
that the magnetization is proportional to the concentration x
of chemical species. In Shockley’s treatment however, a
clear magnetic analog cannot be deduced since the concen-
tration x is conserved in the alloy problem while in the mag-
netic problem it is not. A schematic phase diagram in the
x-T plane is shown in Fig. 1(a). The principle results are (i)
all transitions are first order except at x=% (H=0), and (ii)
there is a multicritical point at x=1 where the paramagnetic
A phase and ordered AB and A3B phases occur simulta-
neously. In Cu,_,Au,, all of the transitions are first order, in
agreement with Shockley’s treatment, except at x=%, while
the multicritical point does not occur at x:%.

Other methods have been used to study the model with
various disparate solutions. As far as mean-field theory is
concerned, all attempts meet failure. The pair approximation
yields no finite temperature ordering.!® The Bethe scheme'!
for fcc lattices, sometimes erroneously considered equivalent
to the pair approximation in giving no ordering.> does yield
finite 7 ordering.'>!3 However, as shown by Galam,'* the
Bethe scheme violates the intrinsic symmetry of the lattice
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and cannot therefore be considered a valid solution for cubic
lattices. Renormalization-group calculations yield no finite 7
order in the AB phase, but do find finite 7 order in the A;B
phase.’> The quasichemical method yields finite 7 order in
both phases, yet there is a gap between phases where no
finite 7 order occurs’ as shown in Fig. 1(b). A more sophis-
ticated approximation,'? the Kikuchi approximations in both
the tetrahedral'®!7 and the tetrahedral-octahedral'® approxi-
mations, yields first-order transitions, and the multicritical
point occurs at finite temperature and finite field [shown
schematically in Fig. 1(c)]. However, increasingly accurate
approximations move the multicritical point to lower tem-
peratures and fields, possibly even to the 7=0 ground-state
value Hcl_=4 [Fig. 1(d)]. For many years this result seemed
quite satisfactory since the best available Monte Carlo phase
diagram,® shown in Fig. 1(d), placed the multicritical points
at H3.=4 at T=0. However, using larger system sizes it ap-
pears that the older result is likely a finite-size effect, and the
Monte Carlo results now agree* with the phase diagram
given in Fig. 1(c), placing the multicritical point at finite T
and H. On the other hand the Monte Carlo results contain
hysteresis, which can severely complicate the determination
of the phase diagram.

Our treatment of the problem here is within the frame-
work of mean-field theory. The Hamiltonian, Eq. (1), is sim-
plified so that a fraction f: =% of the spins fluctuate while the
others do not. We evaluate the partition function, and calcu-
late averages, with the states of the system weighted accord-
ing to their Boltzmann weights. A further simplification of
the problem is made by only considering the A, AB, and A3;B
states since only these states are found in the Monte Carlo
results*> and the Kikuchi method.'®!” While states such as
A3B are found to split into A,BC—three sublattice magneti-
zations, one of which is shared by two sublattices—at low
temperatures in the Bragg-Williams approximation® and
could in principle appear here, the emergence of such states
cannot change the overall structure of the phase diagram we
have found.

II. SETTING UP THE MEAN-FIELD THEORY

Any mean-field theory (MFT) begins with replacing the
Hamiltonian of the full problem with some suitable approxi-
mation. In the LS scheme proposed by Galam™'* half of the
spins fluctuate while the other half take mean-field values.
The method was devised since it was realized that Bethe’s
mean-field theory violated the intrinsic symmetry of the lat-
tice, and that this violation may result in incorrect solutions.
Here, as Galam states,’> we do not propose that a correct
MFT will give the correct transition temperatures or critical
exponents, but that the theory should yield solutions which
are consistent with the lower critical dimension of the prob-
lem. Simple Weiss MFT in this sense fails since finite tem-
perature transitions occur in all dimensions greater than zero
while Bethe’s MFT yields the correct lower critical dimen-
sion in ferromagnetic, frustration-free, models. However, it
cannot be a valid solution to any problem with cubic
symmetry. '

To apply the LS scheme to the fcc-IAF, it is necessary to
alter slightly the prescription given by Galam where the lat-

014455-2



fcc ANTIFERROMAGNETIC ISING MODEL IN A...

FC'\Sa_ v S 5%4
& N
' s : I ls d
IC\ 1 f\SZ 2 M1 f>|2
NN N/ _ N/
4 A3 AS 4
o
| |
2148 ASe 2
OO0

FIG. 2. Division of a square lattice into (a) loopwise scheme
(LS) of Galam and (b) theory presented here. Fluctuating spins in
loop k,sf, are surrounded by dashed lines while m; denote mean-
field spins.

tice is decomposed into two sublattices, one of which fluc-
tuates while the other takes mean-field values. First, consider
the square lattice illustrated in Fig. 2(a). In the LS scheme, it
is clear that if one wishes to decompose the lattice into k
loops, there are mean field spins m; which couple to fluctu-
ating spins S]]f in different loops. Therefore, the Hamiltonian

will contain terms like mz(S’,‘+S’j’) with k#k’. In Galam’s
work, these terms are not strictly neglected: Spins in differ-

ent loops are treated identically and Sf:Sff’. Therefore, when
the summation over states is taken in order to evaluate the
partition function the set of spins in different loops are al-
ways in the same state. If instead we take the summation
over all states, then the problem is equivalent to a two-
dimensional Ising model in a magnetic field and the problem
has actually become harder to solve. To overcome this diffi-
culty we consider a fluctuating set of spins surrounded by
mean-field spins so that there are no m; which couple to
fluctuating spins Sf’ with k # k' as shown in Fig. 2(b). Then,
within the mean-field approximation, the full summation
over all states can be carried out.

In our application of this MFT we have chosen to decom-
pose the lattice of linear dimensions L, containing N=4L?
spins, into M blocks of 32 spins such that the lattice now
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FIG. 3. Division of the fcc lattice into fluctuating spins S; and
mean-field spins m; for the MFT presented here. The cell contains
32 sites, four of which fluctuate. Fluctuating spins S; form a tetra-
hedron at the center of the cell. Dashed line shows the fcc unit cell.

consists of M=N/32 blocks. The central four spins forming a
basic tetrahedron are allowed to fluctuate, while the sur-
rounding 28 spins take mean-field values, illustrated in Fig.
3. Since we have M blocks and each block has 16 states, the
summation over all states contains 16" states. The Hamil-
tonian is now a sum of block Hamiltonians H,. Each H, can
be considered to be the sum of three parts:

(i) The interaction between neighboring fluctuating spins
and the fluctuating spins with the field, Hffs,

J
Hi_S:— E[SI(S2+S3+S4) +S2(S3 +S4+Sl) +S3(S4+Sl

+S2)+S4(S1+52+S3)]—H(S|+52+S3+S4), (2)

(ii) the interaction between mean-field spins m; and the fluc-
tuating spins S;, H} ",

Hk_m =- 5[][51(”12 +m3+ m4) + Sz(m3 +my+ ml)

+S3(my +my +my) + Sy(my +my +ms)], 3)

and (iii) the interaction between neighboring mean-field

spins m; and between the m; and the field, H}"™",

m—m J
He " == 555[’”1(’"2 +my+my) +my(ms +my +my)

+ ms(my + my + my) + my(m; + my, +ms)]
—TH(m, + my + ms +my), 4)

where §;=3 and d3=25 account for the coupling between S
—m and m—m, respectively. The mean-field Hamiltonian is

H — 2 (Hi—s + Hi—m + HZl_m) ) (5)
k

With the modified mean-field Hamiltonian [Eq. (5)] it is
now possible to calculate the partition function, as well as
many important averages. The partition function for the infi-
nite lattice, with B8=1/kgzT, is now
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z=3 e_'BH=< D e—BH)M=<zk)M, (6)
S

Si=x1 ].(:+1
i=%

where Z; is the partition function for a single block k, and
¢ means a summation over the fluctuating spins forming

the tetrahedron at the center of block . Average values of a
thermodynamic quantity X are calculated in the usual way

> X(5)P(s)

Xy=———,
> P(s)

(™)

where X, is a sum over all states and P(s) is the probability
of any given state of the system s. For instance, the sublattice
magnetizations are

=53 ste )

==l

1

(Sh=—( 2 ste ), (8)
2\ sty

where in the second line it is clear that the average value of

a spin in block k& only depends upon the fluctuating spins in

block k, as well as the mean-field magnetizations. Thus, by

constructing our blocks such that there are no m values that

couple to both a Sf and a Sfl, with k# k', average values
such as (Sf) depend only on the fluctuating spins in block k.
Symmetry is then restored by demanding self-consistency,
i.e., m;=(§;). Other average values can also be calculated
quite easily, once the four sublattice magnetizations m; have
been determined.

III. SOLVING THE MEAN-FIELD THEORY

To solve the problem we need to calculate the partition
function [Eq. (6)] as well as the four spin averages (S;). The
partition function is

Z = [X"AY* + AOY ) + A2BY? + ATOCY 2
+X*AD1Z™, 9)
where we have used the following abbreviations:

A= X1XoX3Xy, (10)
B:x‘f+x§+x§+xi, (11)
C = (xpxp03)" + (xpx0000) + (xpx30)* + (xpx3xy)*, (12)

D = (xp20)* + (xpag) + (xpx)* + (rpxs)® + (epx)® + (eaxy)?,
(13)

and x;=exp(Kd&m;), X=exp(K),Y=exp(BH), and K=J/2.
The term Z;"™ is a common factor occurring in the partition

function that does not depend explicitly upon the state of the
st
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Z" = exp[2K Ss(mmy + myms + mymy + moms + momy
+m3m4)+7,3H(m1+m2+m3+m4)]. (14)

The spin average is also straightforward, if tedious. The
result is:

mm

Z
(s = ZL{xlz[Aﬁy“ —AY ]+ AB-2x]Y2 - A7[C
k

—2A% Y2+ XA D - 2x}(B - x))]}. (15)

Equation (15) allows us to locate the zero-field transitions
temperatures for both the AB solution of the antiferromag-
netic model (/=-1) and the FM solution of the ferromag-
netic model (J=+1). For the ferromagnetic model an expan-
sion in m, with m;=my=my=my=m, yields the following
equation:

36Bc(e®Pc+ 1) = %P + 4 + 3¢72Pc, (16)

with B =kpTc. Taking kz=1 we get T¢=11.7189..., only
slightly improved from the Weiss MFT result T-=12 and,
not unexpectedly, still quite far from the estimate'* T
=9.7943. For the antiferromagnetic model ordering AB we
have m;=m,=-m3=—my=m, and a small m expansion yields

24By(e*PN + 1) = 6PV + 8 + 27PN, (17)

and we get Ty=3.5025..., a large reduction compared to T-
for the ferromagnetic model, but still quite far from the
Monte Carlo estimate® Ty=1.76. Also note that one immedi-
ately gets the high-temperature paramagnetic limit (S;)=0 as
B—0 for any finite H.

Lastly, the energy/spin can be written as the sum of two
contributions,

()= 5 () + (5, (18)

where the first depends upon the state of the fluctuating spins
and the second does not. The second term (E™) is easy to
calculate since all of the dependence on P(s) cancels through
division by Z, and
(E™) == J8g(mmy + myms + mymy + moms + mony + msmy)
—7H(m1+m2+m3+m4). (19)
The first term (ES) like (S;), depends upon P(s), and is thus
more complex to calculate. The result is

z"
E'y=""—
E)="%

[— X"2ACY4(6J + 4H + 12J 8;m)
k

— X"2A7SY4(6J — 4H — 12J 8;m)
- A2Y2<B(2H +480m) + 25,J(2 m,.x;‘>)

+ A—ZY—2<A-4C(2H +468Jm) + 25,J<Z mixi—4)>

L

+ X—4A—2<21D -5 (E mi(2x} (B - x{) - D)))] ’

(20)
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FIG. 4. Solutions to Egs. (22) and (23) for T=Ty in the A3;B
phase for H=6. The crossing point [ is the paramagnetic A solu-
tion, and the crossing point O is the ordered A3B solution. Inset
shows same plot for 7<<Ty, which shows [J the paramagnetic so-
lution, O the A3B ordered state, and @ the alternate ordered A;B
state which has a free energy intermediate to both [] and O.

where we have abbreviated m=i(m1+m2+m3 +my).

The problem now involves restoring the symmetry ini-
tially lost by allowing a fraction of the spins to fluctuate
while the rest do not. This requires solving Eq. (15) subject
to the constraint that m;=(S;) for the various ordered states.
For the AB state we have m;=m,=m, and my=my=mp, and
permutations. Note that Eq. (15) is invariant with respect to
which permutation is used. Thus for the AB phase we must
solve simultaneously two transcendental equations. For the
A3B phase we have m;=m,=m3=my, and m,=myp, again re-
quiring the simultaneous solution of two transcendental
equations. For each of the phases AB and A;B, there is al-
ways a solution corresponding to m,=mp; the paramagnetic
solution. Ordered solutions appear in much the same way as
in the Weiss molecular field result.

Once we have obtained both the paramagnetic solution
and the ordered solutions, the stable solution is that which
minimizes the free energy. Thus, for every solution which is
found in each ordered phase we need to calculate the free
energy/site from the relation

In(Z2) =— ——In(Z,). 21
(@) ==z e

F=-

Since the free energy is also given by F=E—-TS, and we can
calculate the energy/site from Eq. (18), the entropy/site S
follows immediately. Indeed, from explicitly calculating Z at
zero temperature assuming perfectly ordered AB, A3B, and
A states (i.e., all m;==1), one recovers the energy/site given
in the introduction, since F=FE when T=0.
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FIG. 5. Some interesting thermodynamic quantities in the or-
dered A3B phase for H=6. The sublattice magnetizations m, and mp
are shown in (a). In (b) we show, from top to bottom, the entropy/
site, energy/site, and free energy/site.

IV. SOLVING THE TRANSCENDENTAL EQUATIONS

To find solutions in the ordered AB and AsB phases we
must solve two transcendental equations simultaneously. For
the A;B phase we have (S,)=(S,)=(S3)=m, and (S;)=my.
Eq. (15) then gives two transcendental equations

my= M23B(mAamB’B’H)7 (22)

mpg= M?;3B(mA’mB’B’H)’ (23)

to be solved self-consistently. In Fig. 4 we have plotted the
solutions of Egs. (22) and (23) for T=Ty and T<Ty for H
=6. For T> Ty there is one paramagnetic solution with my,
=mpg. For T<T) there are three solutions, one paramagnetic
solution and two ordered solutions. The ordered solutions are
not related by time-reversal symmetry for H# 0. As can be
seen from the solutions of Eqs. (22) and (23) at T=Ty,
shown in Fig. 4, there is a finite jump in the sublattice mag-
netizations at Ty. In Fig. 5 we have plotted (i) the sublattice
magnetizations for the paramagnetic and antiferromagnetic
states and (ii) the energy/site [Eq. (18)] in both A and A;B
states, the free energy/site [Eq. (21)] and the entropy/site
[S=(E-F)/T].

In the case of the AB phase we have (S)=(S,)=m, and
(S3)=(S,)=myg. Equation (15) then gives the two transcen-
dental equations

my = M4E(my,mp, B.H), (24)

014455-5
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FIG. 6. Solutions to Egs. (24) and (25) for T<Ty in the AB
phase for H=2. The crossing point [ is the paramagnetic A solu-
tion, and the crossing points O are the two ordered AB solutions.
Inset shows same plot for 7> Ty, which shows only paramagnetic
A solutions.

mp= MgB(mA’mB’B7H)’ (25)

which must be solved self-consistently. In Fig. 6 we have
plotted the solutions of Egs. (24) and (25) for T>Ty and T
< Ty for H=2, and the intersections give the sublattice mag-
netizations in the AB state. For T> T, there is one solution,
my=mp, which is the paramagnetic solution. For T<<Ty
there are three solutions corresponding to two ordered AB
phases, related via time-reversal symmetry, as well as the
paramagnetic phase. The sublattice magnetization of the AB
solution is continuous, unlike that of the A;B phase. In Fig. 7
we have plotted (i) the sublattice magnetizations for the para-
magnetic and antiferromagnetic states and (ii) the energy/site
[Eq. (18)] in both A and AB states, the free energy/site [Eq.
(21)] and the entropy/site [S=(E—-F)/T].

V. PHASE DIAGRAM

Using the free energies of the paramagnetic A phase and
the ordered AB and A;B phases, a phase diagram is readily
constructed. The H-T phase diagram is shown in Fig. 8. The
corresponding x-7° phase diagram, as will be shown, is
equivalent to the one illustrated in Fig. 1(a) and so is quali-
tatively identical to the Bragg-Williams phase diagram.

At T=0, the ordered states are AB for 0= H < Hi and A;B
for H' <H<H?, with H'=4 and H>=12. For H>H_ the T
=0 state is A with all m;=+1. The phase diagram for 7=0
confirms our expectations given in the introduction.

For T>0 the H-T phase diagram is more complex. The
multicritical point where A, AB, and A;B orders coexist is at
H=0 and Ty=3.5025 and the transition is first order since
dF/dT is discontinuous. For all H>0,AB order, if it occurs

PHYSICAL REVIEW B 72, 014455 (2005)

,S(x10)

FIG. 7. Some interesting thermodynamic quantities in the or-
dered AB phase for H=2. The sublattice magnetizations m, and mpg
are shown in (a). In (b) we show, from top to bottom, the entropy/
site, energy/site, and free energy/site. Note that the phase shown
here becomes the solution of lowest free energy at Ty=3.342...,
below the temperature where ordered AB solutions first appear.

12.6

14

FIG. 8. Phase diagram of the fcc-IAF model studied here in the
H-T plane. Closed symbols represent reentrant solutions. Inset
shows detail around the reentrant phase near sz 12, which is simi-
lar to the reentrant phase near H'=4.
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FIG. 9. Main plot shows magnetization vs temperature for fields
H, in steps of AH=0.2, from 13 to 11 from top to bottom. For H
>12 all magnetizations approach the 7=0 ground state A phase
with m=1. For 4<<H <12 all magnetizations approach the A;B
ground state with my=+1 and mg=—1. At H=12, the ordered state
is A3B with my=+1 and mp=0. In the inset we show the trajectory
x(T) in the corresponding alloy phase diagram, and the dashed line
shows the alloy phase boundary.

at all, always does so with T%F <T3**. The transition from
the paramagnetic A state to the ordered A;B state is first
order, as there is both a jump in the sublattice magnetization
at T’,?,3B and dF/dT is discontinuous. The ordered AB state is
always entered upon decreasing temperature from an ordered
A3B state. The transition to the AB state, however, occurs at
a temperature below that where ordered AB solutions first
occur. We locate T:,B as the point where the free energy of
the AB state becomes less than the free energy of the AsB
state. The transition from A;B to AB state is also first order
since there is again a jump in the sublattice magnetization
and dF/dT is discontinuous.

In two rather narrow regimes, H' < H<4.05 and H><H
<12.35, reentrant behavior occurs. For Hi <H<4.05, upon
decreasing T from the paramagnetic A state, the following
sequence of transitions occurs: A —A3;B—AB—A3B. For
Hf <H<12.35, upon decreasing 7 from the paramagnetic A
state, the following sequence of transitions occurs: A
— A3B— A. This, perhaps surprising, occurrence of reentrant
phases is actually in full agreement with the x-7 phase dia-
gram of Shockley shown in Fig. 1(a).

To understand the reentrant phases, consider the magneti-
zation at constant H,my(T), in the vicinity of the reentrant
phase near Hg: 12 as shown in Fig. 9 (a similar explanation
is found for the reentrant phase near Hcl.). Upon entering the
A;B phase with decreasing T for H<<12 the magnetization
jumps downward and approaches the ordered As;B ground
state with m=3 (my=—mg=+1) at T=0. At H=12 the A;B
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order is different: The T=0 A3;B ground state with m=%
(my=+1 and myz=0) becomes degenerate with the ordered
A (my=+1) and the ordered A3;B (my=+1 and mg=-1)
ground states. However, the entropy of the A;B state with
mzi is highest, since (Sz)=(x1)=0 with equal probability,
and is therefore the state selected to order. At H=12, cooling
within the paramagnetic A state causes the magnetization to
first increase and then jump downward at 7y, approaching
mzi at T=0. For 12<<H <12.35, upon cooling, the magne-
tization first jumps downward at Ty, looking for the interme-
diate H=12 A;B ground state with m:%. However, at some
lower temperature 7, ordered solutions no longer occur and
the magnetization jumps back upward, rejoining the para-
magnetic A solution which is the ground state for H>12. For
H>12.35, only paramagnetic solutions occur and the mag-
netization smoothly approaches m=1 at T=0.

In the corresponding alloy problem the my(T) vs T curves
(Fig. 9) appear as trajectories in the x-T plane (inset to Fig.
9) with

x(T) = %[m(T) +1]. (26)

The phase transitions in the x-7 plane are then the loci of
points [x(Ty),Ty]. The x-T alloy phase diagram which cor-
responds to the H-T magnetic phase diagram (with reentrant
phases as shown in Fig. 8) is derived in the inset of Fig. 9
near x=1. Treating the alloy problem using a nonconserved
order parameter, as we have done here, results in a x-T phase
diagram which shares the same features as the Bragg-
Williams phase diagram [Fig. 1(a)] with a conserved order
parameter. In particular the 7=0 critical concentrations
analogous to H and H? are found to be x;:% and x>=1 as in
Shockley’s Bragg-Williams treatment. It would therefore ap-
pear that the LS scheme is, in some sense, equivalent to the
Bragg-Williams approximation when only four spins are al-
lowed to fluctuate. It should be noted that if one treats the
alloy problem with a conserved order parameter x, and thus
also m, it is not possible to know the trajectory my(T) in the
magnetic problem. Therefore, the H-T phase diagram cannot
be fully reconstructed from the x-T phase diagram.

VI. DISCUSSION

The most important result of our work is the occurrence
of two reentrant phases in the H-T plane. It is certainly of
interest to know whether the fcc-IAF model possesses reen-
trance when studied without resorting to approximations.
Very little analytic work has been done in the vicinity of the
T=0 critical fields Hl and H? apart from studies of the alloy
problem. However, as we have shown, the absence of reen-
trance in the x-7 phase diagram does not allow for a conclu-
sion with regards to the absence or presence of reentrance in
the H-T phase diagram. The early Monte Carlo work of
Binder’ did not find reentrance near either Hz, or Hf. On the
other hand, more recent work from Binder and co-workers,*
which focused on the multicritical point where A, AB, and
A3B phases coexist, found significant problems with the ear-
lier work [compare Figs. 1(c) and 1(d)], and it remains a
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possibility that future Monte Carlo calculations will confirm
the reentrance we have found.

The possibility that reentrance may actually occur in the
fcc-IAF model is supported by the observation of reentrance
in simpler, but related, IAF models. The simple cubic IAF
(sc-IAF) and body-centered cubic IAF (bcc-IAF) are also
known to display reentrant phases near their critical fields,
although the results depend on the technique used to study
the models.'” While the consensus is that the sc-IAF model
does not contain a reentrant phase, a great deal of evidence
exists in support of a reentrant phase for the bcc-IAF
model,” including Monte Carlo calculations?® and series
expansions.”! The difference in the behavior of the sc-IAF
and bee-TIAF models is attributed to an increase in the lattice
coordination number, with reentrance appearing in the bcc
case (z=38) but not in the sc case (z=6). Since the fcc-IAF
model has z=12, the simple trend suggests that the reen-
trance we have observed is not an artifact of the LS scheme
we use, but a real feature of the fcc-IAF model.

The range of fields over which reentrance is observed in
the bee-IAF is reduced by about an order of magnitude in the
Monte Carlo results from the mean-field predictions. If reen-
trance occurs in the fcc-IAF as well, then we should expect a
similar reduction from our mean-field predictions, making
the range of fields where reentrance occurs quite small. Re-
entrance in our study is limited to a ~2% window around Hi_
and a ~3% window around H?, so in a Monte Carlo calcu-
lation we expect the window to be of the order 0.2% (4
<H<4.008) and 0.3% (12<H<12.035), respectively,
making the reentrant phases extremely difficult to observe,
especially when the behavior is unexpected. Therefore, a
dedicated Monte Carlo study focused on the immediate vi-
cinity of Hcl, and Hf would be necessary to confirm the reen-
trant phases we have found in our study of the fcc-IAF
model.
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VII. CONCLUSIONS

We have studied the fcc-IAF model using a MFT which,
for the first time, shows qualitatively correct behavior, unlike
two-spin MFT and the Bethe ansatz. However, our MFT dis-
agrees with the accepted result that the multicritical point
where the A, AB, and A;B phases meet occurs at finite tem-
peratures and field. In contrast, our method agrees with the
Bragg-Williams approximation in this respect. It is important
to note that our result and the Bragg-Williams result come
about by completely different approximation methods: Our
result is obtained by calculating the partition function and
related averages in the spirit of a microscopic statistical me-
chanical formalism, while the Bragg-Williams result (as well
as the Kikuchi result) is obtained by approximating the free-
energy functional with no fluctuating degrees of freedom.

In addition, we have found that our model contains reen-
trance in the H-T phase diagram. However, our x-T phase
diagram is equivalent to Shockley’s and therefore does not
contain any reentrance. This serves to highlight why the
study of the magnetic problem, while often more difficult
than the alloy problem, is inherently more versatile as it en-
compasses both the alloy and magnetic problems. Further-
more, since the method we use becomes exact as the number
of fluctuating spins is increased to infinite, it will be interest-
ing to see how the phase diagram changes when a larger
cluster of fluctuating spins is included in the calculation.
However, the next order of approximation consistent with the
symmetry of the lattice requires 32 fluctuating spins, and
would require considerably more effort than that required
here. The occurrence of reentrant phases in the fcc-IAF
model with magnetic field certainly deserves further atten-
tion. Given the simplicity of the model, it presents a simple
place to look for the conditions necessary for reentrance to
occur.
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