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We analyze high-temperature series expansions of the two- and four-point correlation functions in the
three-dimensional Euclidean lattice scalar field theory with quartic self-coupling, which have been recently
extended through 25th order for the simple-cubic and body-centered-cubic lattices. We conclude that the length
of the present series is sufficient for a fairly accurate description of the critical behavior of the model and
confirm the validity of universality, scaling, and hyperscaling. In the case of the body-centered-cubic lattice, we
determine the value of the quartic self-coupling for which the leading corrections to scaling approximately
vanish and correspondingly the universal critical parameters can be determined with high accuracy. In particu-
lar, for the susceptibility and the correlation-length exponents we find �=1.2373�2� and �=0.6301�2�. For the
four-point renormalized coupling we find g=23.56�3�. In the case of the simple-cubic lattice our results are
consistent with earlier estimates.
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I. INTRODUCTION

High-temperature �HT� expansions for scalar spin models
with bilinear nearest-neighbor interaction and general single-
spin measure, on two- and three-dimensional bipartite lat-
tices, have been extended1–6 in the last few decades from
order K10 to K25. Here K=J /kT denotes the usual HT expan-
sion variable, with k the Boltzmann constant, T the tempera-
ture, and J some energy scale characterizing the next-
neighbor interaction. The main observables expanded
include the susceptibility �2, the second moment of the
correlation-function �2, and the zero-momentum four-point
function �4. The linked-cluster method used in these calcu-
lations expresses the series coefficients in a closed form as
polynomials in the �normalized� moments of the single-spin
measure, thus making the analysis of a broad class of models
possible. This fact entails two related benefits. First, it en-
ables one to explore the extent of the Ising universality class
to which these models should generally belong. Second, one
can take advantage of the nonuniversality of the amplitudes
of the corrections to scaling in the critical behavior to obtain
very accurate estimates of universal critical parameters, such
as exponents and scaling functions, by focusing the numeri-
cal analysis on those particular spin models, within the given
universality class, which show vanishing �or quite small�
leading corrections to scaling �LCS�. This prescription,
which can be effective only with rather long series, was sug-
gested in Refs. 7 and 8 and extensively tested by a 21-term
HT series on the body-centered-cubic lattice, for various
single-spin measures.

In the initial studies, however, the available series were
simply too short. In Ref. 2 an analysis of the critical proper-
ties of the lattice �4 Euclidean field theory in two-, three-
and four-dimensional space, using tenth-order HT series,
suggested a complicated and puzzling critical behavior in the
3-D case, which showed failures of universality and hyper-
scaling and cast doubt on the validity of key mathematical
assumptions9 �see, however, Ref. 10� in the application of the

renormalization group to the critical phenomena. This analy-
sis was historically important in raising questions which
could be answered only by numerical investigation of spe-
cific models and was a strong incentive to further extend the
HT series and to repeat and improve simulation studies. The
anomalous features observed in Ref. 2 were not confirmed
by the successive studies3,8,11 and were finally ascribed to the
shortness of the series analyzed. Therefore over a decade ago
the problem was considered as settled.

We have recently extended, through order K25, the HT
expansions of the moments of the correlation function and,
through order K23, the expansion of the zero-momentum
four-point correlation function for a general scalar model de-
fined on three-dimensional bipartite lattices �such as the
simple-cubic �sc� and the body-centered-cubic �bcc� lattices�.
These expansions have already proved useful for accurately
displaying the properties of critical scaling and universality
of the spin-S Ising model5,12 and have also produced high-
precision estimates of critical exponents and universal com-
binations of critical amplitudes, based on the prescriptions of
Refs. 7 and 8. Also following the lead of the same authors,7,8

analogous expansions, independently obtained6 for the sc lat-
tice case, through order 25 for �2 and �2 and through order
21 for �4, were used to study the lattice �3

4 model in a neigh-
borhood of a particular value of the self-coupling for which
the LCS are negligible. It remains to show that the present
HT expansions are also adequate for an extensive and accu-
rate study of the scalar field model for two different lattices
and on the whole range of the self-coupling. From our study
we conclude that the present HT series are sufficiently long
that, by properly resumming them, our analysis can reach an
accuracy comparable to or higher than the most extensive
Monte Carlo simulations. Moreover, we show that also in the
case of the bcc lattice, we can approximately determine a
value of the quartic self-coupling such that the LCS vanish,
and thereby we can obtain7,8 very accurate estimates of the
universal critical parameters in complete agreement with the
other cited recent computations.5,6
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In the following paragraphs we shall first recall the defi-
nitions of the quantities whose HT expansions are studied.
We shall then very briefly comment on the results of the
series analysis. We shall map out the phase diagram of the
model and exhibit its universality properties along the criti-
cal line, such as the independence of the critical exponents �
and � on the self-coupling of the field and on the lattice
structure. Then, we shall give evidence that the critical renor-
malized coupling constant is universal and nonzero, thus
verifying the validity of hyperscaling. Finally we shall report
our best estimates of the critical exponents � and � and of the
renormalized four-point coupling from the analysis of the
model with minimal LCS on the bcc lattice. The figures sum-
marizing our results are among the main motivations of this
study, since some of them qualitatively differ from the analo-
gous ones appearing in Ref. 2.

II. THE MODEL

The lattice �3
4 model is defined by the Hamiltonian

KH��� = − K�
�i,j	

�i� j + �
i

��i
2 + g0��i

2 − 1�2� . �1�

Here i and j are integer-component �multi�indices denoting
the sites of a three-dimensional lattice and the first sum ex-
tends to all nearest-neighbor sites.

This Hamiltonian is obtained from the lattice discretiza-
tion of the Euclidean action of the continuum real field ��x�
in 2+1 dimensions:

S =
 �1

2
�����2 +

1

2
m2�2 +

�

4!
�4�dx �2�

after setting �=
2K�, m2= ��1−2g0� /K�−6 and �=6g0 /K2.
We will analyze the HT expansion of the moments of the

two-point connected correlation function ��i� j	c and of the
zero-momentum connected four-point correlation-function
�4�K ,g0�=�i,j,k��0�i� j�k	c.

The susceptibility is defined by the zeroth-order moment
of ��0�i	c

�2�K,g0� = �
i

��0�i	c. �3�

Its behavior, as K tends from below to the critical value
Kc�g0�, is expected to be

�2�K,g0� = A�g0�	�g0�−��g0��1 + a�g0�	
�g0� + ¯ � , �4�

where A�g0� is the critical amplitude of the susceptibility,
	�g0�=1−K /Kc�g0� is called the reduced �inverse� tempera-
ture, ��g0� is the critical exponent of the susceptibility, a�g0�
is the amplitude of the LCS, and 
�g0� is the exponent of the
LCS.

The square of the correlation length is expressed in terms
of the ratio of the second moment of the correlation function
�2�K ,g0�=�ii

2��0�i	c and of the susceptibility as

�2�K,g0� =
�2�K,g0�
6�2�K,g0�

�5�

and is expected to show the critical behavior

�2�K,g0� = B�g0�	�g0�−2��g0��1 + b�g0�	
�g0� + ¯ � , �6�

where ��g0� is the critical exponent of the correlation length.
The critical renormalized coupling constant g�g0� is ex-

pressed in terms of �4�K ,g0�, �2�K ,g0�, and �2�K ,g0� as the
value of the quantity

g�K,g0� =
− v�4�K,g0�

�3/2�K,g0��2
2�K,g0�

, �7�

when K tends from below to Kc�g0�. Here v denotes the
volume per lattice site. We have v=1 for the sc lattice and
v=4/3
3 for the bcc lattice. The expected critical behavior
of g�K ,g0� is

g�K,g0� = g�g0�	�g0���g0�+3��g0�−2�4�g0��1 + c�g0�	
�g0� + ¯ � ,

�8�

where �4�g0� is the gap exponent. If ��g0�+3��g0�
−2�4�g0�=0, we say that hyperscaling holds and the critical
renormalized coupling g�g0� is the finite positive13 critical
limit of g�K ,g0�. Of course, the exponents ��g0�, ��g0�,
�4�g0�, and 
�g0� and the critical renormalized coupling
g�g0�, as determined from the analysis of the HT series, will
appear to be independent of g0, if universality is valid along
the critical line.

III. NUMERICAL RESULTS

A. The phase diagrams

In Figs. 1 and 2 we have mapped out the phase diagrams
of the �3

4 model on the sc and the bcc lattices, respectively.
There are two phases separated by a line K=Kc�g0� of
second-order critical points. In the disordered phase, below
the critical line, the reflection symmetry �→−� is unbroken.

FIG. 1. Phase diagram of �3
4 on the sc lattice. The critical line

K=K�g0� is plotted vs. G1=g0 / �g0+1�.
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For g0=0 the model reduces to the Gaussian model and we
have Kc�0�=2/q=1/3 on the sc lattice �Kc�0�=2/q=1/4 on
the bcc lattice�, where q is the lattice coordination number.
For g0→
 the model reduces to the usual spin-1 /2 Ising
model and we have Kc�
�=0.221 655�2� on the sc lattice
�Kc�
�=0.157 372 5�10� on the bcc lattice� as indicated in
our general study5 of the spin-S Ising model. In Table I we
have reported numerical estimates of Kc�g0� for a few values
of 0�g0�
 in the sc and bcc lattice cases. These estimates
are obtained by the following simple procedure. Using the
susceptibility expansion, for each value of g0, we form the
sequence �Kc

�n��g0�� of Zinn-Justin modified-ratio approxi-
mants �MRA�7,14 of the critical point. We observe that these
sequences approach smoothly their expected asymptotic
behavior5

Kc
�n��g0� = Kc�g0��1 − C��,
�a�g0�/n1+
�g0� + o�1/n1+
�g0��� ,

�9�

where a�g0� and 
�g0� are, respectively, the amplitude and
the exponent of the LCS appearing in Eq. �4� and C�� ,
� is
a positive constant5 depending on the values of ��g0� and

�g0�. We expect that the exponent 
�g0� be universal,
namely independent of g0 and, indeed, to a good approxima-
tion, the asymptotic behavior of the MRA sequences is con-
sistent with the value 
=0.517�4� suggested by a recent si-
multaneous study15 of a set of models in the Ising
universality class. Since, for all values of g0, the contribu-
tions of the higher-order terms in Eq. �9� appear to be
small, particularly so in the bcc lattice case, we shall assume
that the MRA sequences �Kc

�n��g0�� can be extrapolated to
infinite length n of the series simply by fitting the highest-
order �alternate� approximants to the first two terms of the

asymptotic expansion �9�. The values of Kc�g0� determined
by this prescription are quite stable, both under small
variations of 
 and of the fitting procedure, such as including
in the fit higher-order terms of the expansion �9�. Our con-
clusion is that at least five decimal figures of the result are
reliable. These estimates are then refined by comparing the
results of the extrapolations with the determination of
Kc�g0� from first-, second- and third-order differential
approximants�DA�14,16 and finally error bars are inferred
which are likely to be only upper bounds. As expected, these
uncertainties, which reflect the differences between the esti-
mates by extrapolated MRA sequences and by DAs, depend
strongly on the size of the corrections to scaling and there-
fore on the value of g0, but of course they are generally
invisible on the scale of Figs. 1 and 2.

B. The critical exponents

In Figs. 3 and 4, referring to the sc and the bcc lattices,
respectively, we have plotted our estimates of the exponent

FIG. 2. Phase diagram of �3
4 on the bcc lattice. The critical line

K=K�g0� is plotted vs. G1=g0 / �g0+1�.

TABLE I. Kc�g0� for a few values of g0 in the case of the sc and
bcc lattices.

g0 Kc
sc�g0� Kc

bcc�g0�

0.000 0.333 333 3 0.250 000

0.010 0.340 55�1� 0.254 71�1�
0.050 0.359 40�1� 0.267 24�1�
0.100 0.373 40�1� 0.276 55�1�
0.150 0.382 38�1� 0.282 42�1�
0.200 0.388 42�1� 0.286 27�1�
0.250 0.392 50�1� 0.288 76�1�
0.300 0.395 17�1� 0.290 29�1�
0.350 0.396 782�4� 0.291 08�1�
0.400 0.397 585�3� 0.291 31�1�
0.500 0.397 397�3� 0.290 55�1�
0.650 0.394 135�3� 0.287 39�1�
0.760 0.390 343�3� 0.284 131�4�
0.900 0.384 503�3� 0.279 835�3�
1.060 0.377 035�2� 0.273 875�3�
1.100 0.375 096�2� 0.271 844�2�
1.140 0.373 137�3� 0.270 306�2�
1.300 0.365 220�3� 0.264 137�2�
1.600 0.350 584�3� 0.252 883�1�
1.800 0.341 319�3� 0.245 830�1�
1.850 0.339 085�3� 0.244 135 7�5�
2.000 0.332 596�3� 0.239 230�1�
3.000 0.297 990�3� 0.213 328�1�
4.100 0.274 459�3� 0.195 919�1�
5.000 0.262 538�3� 0.187 155�2�
6.400 0.251 303�3� 0.178 926�2�

10.000 0.238 853�4� 0.169 848�2�
15.000 0.232 587�4� 0.165 296�2�
45.000 0.225 112�4� 0.159 875�2�
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of the susceptibility ��g0� vs. G1=g0 / �g0+1�. Also in this
case, using the susceptibility HT expansion, for each value of
g0, we can form the sequences ���n��g0�� of MRAs of the
exponent ��g0� and compare them to their expected
asymptotic expansion5

��n��g0� = ��g0� − D��,
�a�g0�/n
�g0� + o�1/n
�g0�� . �10�

Here D�� ,
� is a positive constant5 depending on ��g0� and

�g0� and a�g0� is the amplitude of the LCS in Eq. �4�. We
can observe that also these MRA sequences are smooth, but
a simple minded extrapolation based on a fit of the sequences
���n��g0�� to the first two terms of the asymptotic expansion
�10� cannot lead to very accurate estimates of ��g0�, because,
even at the present order of expansion, the contribution of
higher-order corrections is not sufficiently small. In Figs. 3
and 4, we have represented by solid lines the estimates ��g0�
obtained from the MRAs ��17��g0�, ��21��g0�, and ��25��g0�,
which use the susceptibility series only up to the orders 17,
21, and 25, respectively. These estimates show a rapid cross-
over from the Gaussian value ��0�=1 to a behavior which,
for g0�0, tends to become independent of g0 and to ap-
proach the dashed line in the figure indicating the central
value �=1.2371 of our estimate in Ref. 5 for the Ising uni-
versality class. If we include higher correction terms in the
asymptotic expansion �10�, somewhat more accurate esti-
mates of ��g0� can be obtained. The simplest possibility is to

introduce a single effective higher correction O�1/ns� with
g0-independent exponent s. Choosing the value s=4, we ob-
tain the estimates represented by the dotted curve. The accu-
racy of the approximation can be further improved at the
expense of the simplicity of the fitting procedure, but here it
is sufficient to indicate only the qualitative trend. In the same
figures, we have also reported estimates of ��g0� obtained by
simple first-order unbiased DAs using all available series co-

FIG. 4. The same as in Fig. 3, but for the bcc lattice.

FIG. 5. The amplitude a�g0� of the leading correction to scaling
in �4� vs. G1=g0 / �g0+1�, as obtained from a fit to the asymptotic
expansion �9� supplemented by a single higher-order correction
O�1/n6+
� in the bcc lattice case.

FIG. 3. The susceptibility exponent ��g0� as a function of
G1=g0 / �g0+1� for the sc lattice. The continuous curves represent
the estimates obtained by the MRAs of orders 17, 21, and 25, re-
spectively. The dashed curve indicates the central value of our es-
timate �Ref. 5� of � for the Ising universality class. The dotted curve
shows the results of an extrapolation of the MRA sequences by a fit
to the asymptotic expansion �10� supplemented by a single addi-
tional higher order correction O�1/n4�. The triangles show esti-
mates of ��g0� by unbiased first-order DAs.
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efficients. In order to keep the figures readable, these data are
restricted to a smaller range of values of g0 of particular
interest. Completely analogous results are obtained starting
with the HT series for the correlation-length squared �2 to
determine the critical exponent � but, for brevity, they will
not be reported here.

C. Leading corrections to scaling and accurate estimates

In Fig. 5 we have plotted vs. g0, the amplitude a�g0� of
the LCS in �4�, as obtained by fitting the MRA sequence
�Kc

�n��g0�� to the asymptotic expansion �9� in the bcc lattice
case. Of course, the determination of a�g0� is much more
sensitive than Kc�g0� to the inclusion of higher-order correc-
tions in the fit to the expansion �9�. The most convincing
results are obtained when a single additional correction
O�1/n6+
� is included. This three-parameter fit changes the
results of the two-parameter fit for Kc�g0� only within the
estimated uncertainties and does not alter the qualitative
structure of a�g0�, but only brings its evaluation into closer
agreement with the corresponding estimate of a�g0� from a
similarly improved fit to Eq. �10� and with the values of a�
�
obtained in earlier works.3,5 The uncertainty of the final re-

sults should not exceed 5%–10%. In the case of the sc lattice,
the behavior of a�g0� is similar, but a�g0� cannot be deter-
mined with comparable accuracy by this straightforward
method because it is even more sensitive to the presence of
higher-order corrections in �9�. The important fact is, how-
ever, that, in both the sc and the bcc lattice cases, when g0
increases from 0 to 
, the amplitude a�g0� of the LCS in Eq.
�4� varies from positive to negative values. In the sc lattice
case a�g0� vanishes at ĝ0

sc�1.10�2�. We recall that the above
cited numerical analysis of the �3

4 HT series on the sc lattice6

was indeed performed precisely at g0=1.10. In the bcc lattice
case we find that the zero of a�g0� occurs at ĝ0

bcc�1.85�5�. In
Ref. 6 ĝ0

sc had been determined by an appropriate Monte
Carlo simulation. In our approach no preliminary Monte
Carlo simulation is needed to determine ĝ0

bcc, since, knowing
the structure of the function a�g0�, our study of the model on
the whole range of values of g0 directly gives a sufficiently
accurate indication. For g0 in a neighborhood of the zero of
the LCS amplitude, we can observe that the various approxi-
mations of ��g0�, shown in Figs. 3 and 4, tend to coincide
and come nearest to our earlier estimate5 for the spin S Ising
model: �=1.2371�1� shown in the figure by a dashed line.
Equation �10� and the measured behavior of a�g0� simply
explain why, for g0� ĝ0

sc �or g0� ĝ0
bcc in the bcc lattice case�,

TABLE II. The HT expansions of the susceptibility �2, the second moment of the correlation function �2, and the zero-momentum
four-point function �4 at g0=1.85 on the bcc lattice.

Order �2 �2 �4

0 0.607 989 217 187 788 034 965 0.000 000 000 000 000 000 000 −0.530 149 722 377 688 222 012

1 2.957 207 105 732 954 317 729 2.957 207 105 732 954 317 729 −10.314 410 070 423 482 079 15

2 13.094 299 007 411 010 484 93 28.767 200 532 427 891 489 65 −116.861 966 354 011 135 934 3

3 57.793 235 691 488 110 468 67 197.714 417 550 647 733 790 2 −1037.709 279 795 438 675 000

4 248.217 922 950 611 561 565 1 1185.408 945 561 549 742 349 −7930.113 134 914 392 838 073

5 1064.858 590 911 481 926 754 6551.599 918 767 001 108 148 −54 882.228 300 207 536 464 24

6 4512.534 104 619 384 245 591 34 421.021 315 133 593 395 22 −353 349.351 394 343 652 961 6

7 19 111.259 511 559 953 208 31 174 321.717 203 564 550 926 9 −2 155 038.392 864 457 644 076

8 80 383.219 481 734 788 004 67 859 681.096 255 125 245 363 7 −12 593 879.170 232 762 669 10

9 337 958.277 647 198 316 812 7 4 151 521.352 493 417 270 411 −71 122 511.167 490 721 434 98

10 1 414 677.216 907 545 784 892 19 721 977.308 240 405 664 87 −390 463 929.572 442 747 952 6

11 5 919 934.511 772 996 630 729 92 423 661.550 596 365 661 34 −2 093 673 545.070 737 911 244

12 24 698 142.582 260 792 997 01 428 322 758.435 417 967 997 2 −11 002 848 880.383 865 245 75

13 103 016 201.643 607 322 343 6 1 966 128 942.161 860 887 810 −56 833 474 652.325 228 433 81

14 428 735 652.964 013 824 808 4 8 952 466 557.867 528 601 072 −289 181 057 575.143 246 457 5

15 1 783 970 290.009 394 230 477 40 476 319 807.178 661 887 75 −1 452 144 744 869.861 166 239

16 7 410 672 453.259 276 817 146 181 885 433 500.913 180 229 6 −7 207 354 502 435.721 114 810

17 30 779 127 150.295 103 731 62 812 879 825 813.359 874 423 9 −35 401 801 340 419.050 978 54

18 127 668 343 287.704 088 852 2 3 615 487 616 835.276 408 009 −172 273 869 711 328.586 515 2

19 529 480 497 190.951 194 230 4 16 011 252 152 185.131 508 69 −831 302 587 175 201.555 232 9

20 2 193 593 476 094.224 975 766 70 632 026 759 664.657 402 19 −3 980 914 502 340 770.007 282

21 9 086 796 325 630.050 694 943 310 488 939 709 344.326 094 0 −18 931 663 273 718 966.908 98

22 37 608 562 966 496.064 399 66 1 360 524 482 339 925.373 685 −89 460 744 874 166 538.460 43

23 155 638 849 919 474.903 498 3 5 944 225 695 917 982.872 040 −420 283 001 120 399 961.613 9

24 643 624 490 532 272.253 215 9 25 901 506 033 628 787.278 95

25 2 661 386 657 660 504.869 714 112 585 550 276 346 019.871 7
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the MRAs of Figs. 3 and 4 approach their constant limiting
value from below and otherwise from above. Of course, the
same mode of approach to the limit can be observed for the
estimates obtained from DAs, when varying the number of
HT series coefficients used in the approximants; however, for
clarity we have reported in the figures only the highest-order
results.

We can now take advantage of our estimate of ĝ0
bcc to

compute some universal critical parameters of the �3
4 model

on the bcc lattice with approximately vanishing LCS. The
HT series coefficients of �2, �2, and �4 on the bcc lattice, for
g0= ĝ0

bcc, are reported in Table II. �The corresponding expan-
sions in the sc lattice case, for g0= ĝ0

sc, can be found in Ref.
6.� Very accurate estimates are thus obtained for the critical
exponents and the critical renormalized coupling. In particu-
lar, using first- and second-order DAs �either unbiased or
biased with the critical value Kc�ĝ0

bcc�=0.244 135 7�5��, we
find �=1.2373�2�, �=0.6301�2�, and g=23.56�3� in good
agreement with our previous estimates5 and with the results
of Ref. 6. Our estimated errors account also for the �3%
uncertainty in the estimate of ĝ0

bcc.
Since our HT series for g�K ,g0� is two terms longer,

we have also repeated the analysis of Ref. 6 with our sc
lattice series computed at ĝ0

sc=1.10. The final estimates,
�=1.2372�2�, �=0.6301�2�, and g=23.56�4�, evaluated at
Kc�ĝ0

sc�=0.375 097�1�, are consistent both with our results
for the bcc lattice and with those of Ref. 6.

D. The renormalized coupling

In Figs. 6 and 7, which refer to the sc and the bcc lattices,

respectively, we have plotted the renormalized four-point
coupling constant g��2 ,g0� vs. X4=�2 / ��2+4� for several
fixed values of g0. For fixed g0 and �2→
, all curves appear
to tend to a g0- and lattice-independent limiting value
g�
 ,g0� which is consistent with our estimate in Ref. 5 of the
critical renormalized coupling in the Ising universality class
g=23.52�5� indicated in the figure by the dashed line. This

FIG. 6. The renormalized coupling g��2 ,g0� as a function of
X4=�2 / ��2+4� for several fixed values of the �4 self-coupling g0

on the sc lattice. The values of g0 increase from the lowest curve up.
The dashed line represents the central value of our estimate
g=23.52�5�, obtained in Ref. 5, of the renormalized coupling in the
Ising universality class.

FIG. 7. The same as in Fig. 6, but for the bcc lattice.

FIG. 8. The renormalized coupling g��2 ,g0� as a function of
G1=g0 / �g0+1� for several values of the correlation length square
�2 on the sc lattice. The values of �2 are indicated beside the corre-
sponding curves. The dashed line represents the central value of our
estimate g=23.52�5�, obtained in Ref. 5, of the renormalized cou-
pling in the Ising universality class.
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fact suggests that the critical renormalized coupling is uni-
versal with respect to the self-coupling g0 and to the structure
of the lattice and moreover that it is nonzero �so that hyper-
scaling is valid�. The curves in Figs. 6 and 7 are obtained in
a most straightforward way from the highest-order nondefec-
tive “simplified differential approximants” �SDA�17 biased
with the values of 
 and Kc�g0�. Completely equivalent re-
sults are obtained also, slightly more laboriously, using ordi-
nary biased DAs instead of SDAs. The estimated width of

the error bars is comparable to the thickness of the lines.
Also for g��2 ,g0�, we can observe that, as g0 varies from 0 to

, the amplitude c�g0� of the LCS in �8�, which is negative
for small g0, changes sign at ĝ0, as it should, because the
ratio c�g0� /a�g0� is expected to be universal. Correspond-
ingly, as shown clearly by these figures, the curves tend to
their common limiting value from below if g0� ĝ0 and oth-
erwise from above.

Figures 8 and 9, for the sc and the bcc lattices, respec-
tively, offer a different view of the same data. Here the renor-
malized coupling g��2 ,g0� is plotted vs. G1=g0 / �g0+1� for
several fixed values of �2. All curves are monotonically in-
creasing in g0 and show a rapid crossover from the Gaussian
value g��2 ,0�=0 to a shape increasingly flatter as �2 becomes
large. For g0� ĝ0, as �2→
, the sequence of curves tends
from below to the constant g�
 ,g0�; for g0� ĝ0 the same
value is approached from above. We have already stressed
that this pattern of behavior simply reflects the fact that
the amplitude c�g0� of the LCS in g�K ,g0� is negative for
g0� ĝ0 and positive for g0� ĝ0. Here we should also recall
that in a similar plot reported in Ref. 2 �only the case of the
bcc lattice case is discussed in that study� the curves show
quite a different structure for �2�64. In particular, the curves
g��2 ,g0� in Ref. 2 are not monotonic in g0 and their limiting
behavior as �2→
 does not appear to be universal and non-
zero. We can see no reason for these anomalous features
other than the insufficient length of the ten-term HT series
used in the analysis of Ref. 2.

One more view of the same data is presented in Figs. 10
and 11, for the sc and the bcc lattices, respectively, showing

contour plots of g��2 ,g0� in the �̂2=�2 / ��2+1�, ĝ0=g0 / �g0

+1� plane. Also these figures are qualitatively different from
the corresponding ones of Ref. 2 which show a spurious
saddle point structure and suggest a failure of universality.
Nothing like that can be inferred from our updated figures.

FIG. 9. The same as in Fig. 8, but for the bcc lattice.

FIG. 10. Contour plot of the renormalized coupling
g=g��2 ,g0� in the G4, X4 plane for the sc lattice. Here
G4=g0 / �g0+4� and X4=�2 / ��2+4�. The values of g��2 ,g0� are
shown beside the corresponding level curves.

FIG. 11. The same as in Fig. 10, but for the bcc lattice.
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E. Conclusions

In conclusion, we have analyzed HT expansions for a
one-parameter family of continuous spin models which inter-
polate between the Gaussian and the spin-1 /2 Ising models.
In the case of the bcc lattice, we have taken advantage of the
parameter dependence of the amplitudes of the LCS to im-
prove the accuracy in the determination of some universal
critical quantities. Moreover, we have shown that, in the light

of our extended series, all puzzling and unexpected features
which emerged from the old HT analysis of Ref. 2 can only
be ascribed to numerical inaccuracies deriving from the use
of too short series.
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