
Frustration of decoherence in open quantum systems

E. Novais,1,2 A. H. Castro Neto,1 L. Borda,3,4 I. Affleck,5 and G. Zarand3

1Department of Physics, Boston University, Boston, Massachusetts 02215, USA
2Department of Physics, Duke University, Durham, North Carolina 27708, USA

3Research Group of the Hungarian Academy of Sciences and Theoretical Physics Department, TU Budapest, H-1521, Hungary
4Sektion Physik and Center for Nanoscience, LMU München, 80333 München, Theresienstrasse 37, Germany

5Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
�Received 22 February 2005; published 8 July 2005�

We study a model of frustration of decoherence in an open quantum system. Contrary to other dissipative
Ohmic impurity models, such as the Kondo model or the dissipative two-level system, the impurity model
discussed here never presents overdamped dynamics even for strong coupling to the environment. We show
that this unusual effect has its origins in the quantum-mechanical nature of the coupling between the quantum
impurity and the environment. We study the problem using analytic and numerical renormalization group
methods and obtain expressions for the frequency and temperature dependence of the impurity susceptibility in
different regimes.
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I. INTRODUCTION

In physics there is a large class of problems that can be
described in terms of a single quantum-mechanical degree of
freedom interacting with an environment. Examples range
from magnetic impurities in metals, superconductors, and
magnets, macroscopic quantum tunneling in superconducting
interference devices �SQUIDS� and molecular magnets,1 to
qubits in quantum computers.2 The common thread between
all these problems is the dramatic effect that the dissipation
has on the quantum dynamics of the impurity.3 In particular,
one of the most important effects of an environment on a
quantum system is decoherence, that is, the destruction of
quantum-mechanical effects. Decoherence is the unavoidable
consequence of the fact that no system in nature is really
isolated.

Impurity problems can be often reduced to an effective
one-dimensional boundary problem that allows the use of
powerful nonperturbative theoretical techniques. The Kondo
model is probably one of the best known impurity problems
and has been studied with a large number of theoretical tools,
from the exact solution via Bethe ansatz,4 numerical renor-
malization group,5 to conformal field theory.6 The Kondo
problem represents a universality class of open quantum sys-
tems where dissipation and decoherence play a fundamental
role. In its anisotropic form, the Kondo effect can be mapped
via dimensional reduction and abelian bosonization to the
ohmic dissipative two-level system �DTLS� problem.7 The
Kondo effect can be thought as a situation where decoher-
ence is extreme, in the sense that the spin is completely
screened by the environmental excitations in the formation
of the so-called Kondo singlet. Moreover, impurities can be
used as probes for the understanding of the environment it-
self and in some cases can even determine the properties of
the environment in a self-consistent manner. This occurs in
the case of the dynamical mean-field theories �DMFT� where
the solution of a many-body problem reduces to the solution
of a self-consistent impurity problem.8 Furthermore, systems
where the competition between different phases of matter

lead to the appearance of magnetic inhomogeneities �such as
in the case of Griffiths-McCoy singularities in heavy-fermion
alloys� can many times be reduced to effective impurity
problems.9

In this paper we are going to describe a model for open
quantum systems that cannot be described within the Kondo
universality class. This model describes an effect that we call
frustration of decoherence where decoherence is reduced by
a pure quantum-mechanical effect. It is important, therefore,
that one understands the physics behind the standard model
of dissipation described by the Kondo or the DTLS and how
it relates to the problem of decoherence. Since the connec-
tion between the Kondo problem and decoherence is not
commonly discussed in the literature we will review some of
the key features of the DTLS and its connection with the
problem of decoherence.

The DTLS can be described as a single spin half S
= �S1 ,S2 ,S3�, coupled to a set of independent harmonic oscil-
lators via the Hamiltonian �we use units such that �=1=kB�:

HDTLS = �S3 +
i�

�2L
S1�

k�0

�k�ak − ak
†� + �

k
vkak

†ak, �1�

where � is the tunnel splitting between the eigenvalues of S1,
� is the coupling to an environment of bosons with one-
dimensional momentum k, and energy dispersion �k=vk �v
is the velocity of the excitations that we set to unity, v=1,
from now on� and creation and annihilation operators ak

† and
ak, respectively �L is the linear size of the system�. The op-
erators obey canonical commutation relations

�ak,ak�
† � = �k,k�,

�Si,Sj� = i�ijkSk, �2�

where �ijk is the Levi-Civita antisymmetric tensor. In this
model one assumes a cutoff energy �, where � is some
nonuniversal quantity that is associated with microscopic
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properties of the bath �� is usually proportional to the in-
verse of the lattice spacing a�.

The physics described by Hamiltonian �1� can be summa-

rized as follows. When S� is decoupled from the environment
��=0� one has an isolated spin problem in the presence of a
“magnetic field” proportional to �. If at certain time t=0 the
spin is prepared in an eigenstate of S1, the “magnetic field”
induces transitions between the eigenstates of S1 and the ex-
pectation value of the operator S1, namely, �S1�t��, oscillates
harmonically with frequency �. There is no release mecha-
nism for the energy in the spin. By switching on a small
coupling to the bath of oscillators, the harmonic oscillations
of �S1�t�� become underdamped due to the dissipation.
Second-order perturbation theory indicates that the behavior
of the system depends on a dimensionless coupling 	
=�2 /8
. For 	�1/2 there are two main effects:10 the slow
modes of the bath, that cannot follow the motion of the spin,
lead to damping and therefore to an exponential decay of
�S1�t��; the fast modes of the bath, that can follow the motion
of the spin, lead to a new renormalized oscillation frequency
�R��. For 	�1/2 there is a crossover to an overdamped
regime where oscillations disappear �effectively �R→0� and
only exponential decay occurs. Finally, at 	=1 there is a true
quantum “phase transition,” where the the impurity spin be-
comes localized in one of the eigenstates of S1. In the Kondo
language the change from delocalized to localized is equiva-
lent to a Kosterlitz-Thouless �KT� transition between the
Kondo problem with ferromagnetic coupling �that has a trip-
let ground state� and the Kondo problem with antiferromag-
netic coupling �with a singlet as ground state�.

One of the most illuminating ways to describe the KT
transition is via a perturbative renormalization group �RG�
calculation in leading order in � /��1. The RG proceeds in
two steps. In the first step one reduces the cutoff energy of
the bosonic bath from � to �−d� by tracing out high energy
degrees of freedom. In a second step the dimensionless cou-
pling constants 	 and h=� /� are rescaled to the new cutoff
leading to the RG equations7

d	

dl
= − h2	 , �3a�

dh

dl
= �1 − 	�h , �3b�

where dl=d� /�. Thus, for 	�1 the system scales under the
RG to weak coupling �h�l�→0�, and at low energies the
tunneling splitting ��l� scales towards zero leading to local-
ization. Conversely, for 	�1 the couplings scales towards
strong coupling �h→
� indicating that RG breaks down.
The renormalization scheme fails at a certain energy scale
�that is, the value of l= l* for which h�l*�	1�. This charac-
teristic scale is called the Kondo temperature that can be
obtained directly from Eq. �3� as TK	��� /��1/�1−	�. In the
Kondo problem, for frequencies and temperatures below TK
there is no reminiscence of the original impurity spin. This is
an extreme example of decoherence.

Although the RG equations clearly captures the
asymptotic behavior of the spin dynamics, in order to ob-
serve the crossover from underdamping to overdamping, one
has to look at the frequency and temperature dependence of
the spin correlation functions. This is even more important in
the context of decoherence, since we are interested in mea-
suring observables associated with the local degrees of free-
dom, not with the environment. In a spin problem, a particu-
lar apropos object is the impurity transverse susceptibility
that is given by

����� = − i

0


 dt

2

ei�t��S1�t�,S1�0��� . �4�

The imaginary part of ����, �����, is a measure of the
amount of energy that is dissipated from the spin into the
environment. In the absence of coupling to the environment
��=0 in Eq. �1�� we have ���������−�� indicating the spin
“oscillates” freely with frequency �. When ��0 two differ-
ent effects occur in the frequency behavior of ����� /�: �1�
instead of a Dirac delta function one finds a broadened peak
and ����� /� becomes finite at �=0, indicating that the
oscillations become damped; �2� the maxima moves
from � to a renormalized value �R due to “dressing” of
the spin by fast environmental modes. In the DTLS, the
value of ������ /���→0 and its width �� are set by the
TK: ������ /���→0�1/TK

2 and ���TK. In particular, in the
overdamped regime �	�1/2� the peak in ����� at finite
frequency vanishes completely leaving a smooth function
centered around �=0.11

In this paper we are going to study a model that can be
considered a generalization of the DTLS �1�:

H = �
k�0

k�ak
†ak + bk

†bk� + �S3 +
i

�2L
�
k�0

�k��1S1�ak − ak
†�

+ �2S2�bk − bk
†�
 , �5�

where there are two independent dissipative baths labeled by
operators ak and bk with couplings �1 and �2. Notice that Eq.
�5� reduces to the DTLS, Eq. �1�, when one of the couplings
�1 or �2 vanishes. At first sight, the only apparent difference
between Eqs. �5� and �1� is the existence of an additional
bosonic bath coupled to a third spin component. Thus, na-
ively one would expect an enhancement of decoherence in
comparison with the DTLS since more heat baths are
present. This naive argument fails to grasp that both baths are
“competing” with each other for the “ordering” of the impu-
rity. While the coupling �1 “tries” to localize the spin in an
eigenstate of S1, the coupling �2 also “tries” to localize the
spin in an eigenstate of S2. However, we see from Eq. �2�
that the operators S1 and S2 do not commute with each other
and therefore one cannot find a common eigenstate for the
spin to localize in. This purely quantum-mechanical effect
leads to a less decoherent environment. We will show that
when �1,2=� and � /��1 the spin dynamics is always in the
underdamped regime, regardless of the bare value of the cou-
pling constants. In our previous publication we called this
state of affairs the “quantum frustration of decoherence.”12
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The Hamiltonian �5� was originally obtained in the study
of an spin-1 /2-impurity embedded in an environment of
large spin S in d=3 dimensions.12 The mapping between
these two problems is given in Appendix A. The magnetic
environment has two effects in the dynamics of the impurity.
The molecular fields produced by the environmental spins
favor the alignment of the impurity spin along the ordering
direction giving rise to a “magnetic field” proportional to �.
The transverse magnetic fluctuations �spin waves� produce
quantum fluctuations that tend to misalign the impurity spin
leading to couplings proportional to �1,2 and therefore to
dissipation. In an ordered antiferromagnetic spin environ-
ment the low-energy, long-wavelength excitations, are two
massless Goldstone modes �two transverse magnon excita-
tions� that couple to the two different components of the spin
as in Eq. �5�. The problem of impurities in magnetic media,
especially in the paramagnetic phase, has received a lot of
attention in the context of quantum phase transitions.13,14 As
we are going to show in what follows, the effect of quantum
frustration occurs at finite energies or frequencies and there-
fore before the asymptotic regime is reached �very low fre-
quencies� and the impurity spin fully aligns with the envi-
ronmental spins. Thus, as in the case of the Kondo problem,
quantum frustration is a crossover phenomenon that cannot
be obtained in “asymptopia.” We should stress, however, that
the phenomenon of quantum frustration is more general than
its origin would imply. As in the case of the Kondo effect, it
represents a universality class of impurity problems where
decoherence is reduced by pure quantum-mechanical effects.

As mentioned above, impurity problems can be treated by
powerful theoretical techniques when reduced to one-
dimensional models with a boundary. It is convenient, there-
fore, to rewrite Eq. �5� in a real space representation

H = 

−


+


dx �
a=1,2

��x�a�x��2 + �S3 − �8
	1�x�1�0�S1

− �8
	2�x�2�0�S2, �6�

where �1,2�x� are one-dimensional chiral bosonic fields �that
is, left movers only� associated with the bosonic modes ak
�bk� and we have defined 	1,2=�1,2

2 /8
. We are ultimately
interested in the general problem of decoherence described
by Eqs. �5� and �6� and the mechanism of quantum frustra-
tion associated with this model.

The paper is organized as follows. We derive the main RG
equations in Sec. II and show that the dissipative model dis-
cussed here is always coherent and shows scaling at strong
coupling. In Sec. III we study the impurity susceptibility
using numerical renormalization group and analytical RG via
the Callan-Symansky equations. Section IV contains a dis-
cussion of the problem of frustration of decoherence and also
our conclusions. There are various appendixes where the de-
tails of the calculations have been included.

II. RENORMALIZATION GROUP

Notice that, according to the RG equations �3�, the KT
transition occurs at a finite value of the coupling constant 	
and therefore cannot be obtained directly from perturbation

theory. Instead, one has to use a rotated basis of states, ob-
tained from a unitary trasnformation, where the problem be-
comes perturbative. This can be accomplished in our case by
defining two unitary transformations

U1 = ei�
/2�S2ei�8
	1�1�x=0�S3, �7a�

U2 = ei�
/2�S1ei�8
	2�2�x=0�S3, �7b�

that rotate the impurity spin around the S3 direction by angles
that depend on the field configurations and around S2 �S1� by

 /2. Notice that U1 �U2� generates a nonperturbative rota-
tion in terms of the coupling 	1 �	2�.

Let us consider the problem after rotation by U1. By ap-
plying U1 to the Hamiltonian �6�, we obtain

U1
†HU1 = H0 +

1

2
��A1

+ + i�8
	2B1
+ + H.c.� , �8�

where H0 is the free bosonic Hamiltonian �the first term on
the left-hand side of Eq. �6��. We have defined two vertex
operators

A1
± = e�i�8
	1�1�x=0�S±, �9a�

B1
± = �x�2�x = 0�e�i�8
	1�1�x=0�S±, �9b�

where S±=S1± iS2 are the standard raising �lowering� opera-
tors.

As in the case of a generalized Coulomb gas problem,15,16

the partition function of the problem Z can be obtained in the
basis that diagonalizes S3 �S3�s3�= ± 1

2 �s3�� as

Z = �
�Sz



 D�1,2�x,��e−S0��1,2�x,����
j

��

2
��A1

mj�� j�

+ imj
�8
	2B1

mj�� j�� , �10�

where S0 is the action for the free boson fields, �� is the time
step in the imaginary time direction, and mj =s3�� j +���
−s3�� j� is either +1 for a kink or −1 for an antikink at time � j

of a given spin history in imaginary time. The partition func-
tion given in Eq. �10� is the starting point of the RG analysis.

We can define the Fourier transforms of the vertex opera-
tors, A1���=�d� exp�i��
A1��� and bosonic fields
�1,2�k ,��=�dx�d��1,2�x ,��exp�i�kx−���
, and divide the
fields into slow modes, say A1,����, with �� ,k��� and fast
modes, say A1,���� with �� ,k���. We then integrate the
fast modes within a shell �� �k ,����+d�, to obtain the
renormalization of the slow fields due to the fast modes. In
this procedure the renormalization of the slow modes is
given by averages over the fast modes. It is straightforward
to show that

�A1
±����� = A1,�

± ���e−	1dl, �11a�

�B1
±����� = B1,�

± ���e−�1+	1�dl, �11b�

where d� /�=dl and �P�� indicates the average of the op-
erator P over the fast modes. Substituting Eq. �11� into Eq.
�10� and rescaling the fields in order to obtain the same par-
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tition function with slow modes only, we find that the cou-
plings have to change with l according to �see Appendix B�:

d	2

dl
= − 2	1	2, �12a�

dh

dl
= �1 − 	1�h , �12b�

which define the RG equations for 	2 and h but not for 	1.
The RG equation for 	1 is obtained in second order in h. In
the language defined by Anderson-Yuval-Hamann,16 it corre-
sponds to the renormalization in 	1 due to a “close pair” of
flip and antiflip that is removed from a spin history in a
particular RG step. One can show that a new operator, which
is not present in the original problem is generated under this
procedure.17 This operator reads

C � 1 − i�2
	1h2���1�0,��S3���dl�� . �13�

This term can be reexponentiated into the action �10�, and
then integrated by parts in �. The final result is equivalent to
a redefinition of the vertex operators

A1
± = e�i�8
	1�1−�1/2�h2dl��1�0�S±, �14a�

B1
± = �x�2�0�e�i�8
	1�1−�1/2�h2dl��1�0�S±, �14b�

immediately implying the RG equation for 	1 �Ref. 18�

d	1

dl
= − h2	1. �15�

Equations �12�–�15� were derived by a perturbative treat-
ment in powers of 	2 and h and are valid up to second order
in these coupling with 	1 being arbitrary. If instead we apply
the unitary transformation Eq. �7b� a similar set of equations
can be derived for 	1 and h small with 	2 being arbitrary.
Notice that the only change in the RG equations is the inter-
change between 	1 and 	2 in Eqs. �12a�–�15�. In fact, given
the form of the Hamiltonian �5� it is easy to see that the RG
equations must be symmetric under the interchange of 	1
and 	2. Thus, it is straightforward to see that by symmetry
the RG equations are

d	1

dl
= − 2	1	2 − 	1h2, �16a�

d	2

dl
= − 2	2	1 − 	2h2, �16b�

dh

dl
= �1 − 	1 − 	2�h . �16c�

The symmetrization process is just a simple way to obtain
the next order corrections to the RG equations. Strictly
speaking, the RG equations �16� are valid up to second order
in h, when either both 	1 and 	2 are of the same order and
small, or when one of them small and the other is arbitrary.
However, the terms of the form 	1	2 could also be directly
obtained from a diagrammatic technique.19 Notice that in the

highly anisotropic case, say 	2=0 �	1=0�, we identify 	1

=	 �	2=	� so that Eq. �16a� �Eq. �16b�� reduces to Eq. �3a�
and Eq. �16c� becomes �3b�. As expected, our problem maps
into the DTLS and one obtains a KT transition at 	1=1
�	2=1�. The RG flow associated with Eq. �16� in the 	1

versus 	2 plane for fixed h is shown in Fig. 1.
In the fully symmetric case where 	1=	2=	 one finds a

very different physics. Indeed, from Eq. �16�, one gets

d	

dl
= − 2	2 − 	h2, �17a�

dh

dl
= �1 − 2	�h . �17b�

As one can see from Fig. 1 there is no KT transition in this
case. The couplings 	1 and 	2 always flow to zero while h
scales towards strong coupling. In the DTLS language the
spin never localizes in an eigenstate of S1 or S2 being always
in an eigenstate of S3. Hence, in the isotropic case, no matter
how large the couplings to the environment the spin is al-
ways coherent. This is the phenomenon of quantum frustra-
tion of decoherence.

We can obtain a more quantitative analysis of the RG
scale in some particular limits. As noticed before the RG
breaks down at a scale l*=ln��0 /TA� �where �0 is the initial
cut-off of the problem� when h�l*�	1. TA is the crossover
energy scale from weak to strong coupling �the equivalent of
the Kondo temperature�. It is easy to see that the value of TA
depends on the bare value of 	�l=0�. If 	�0��h�0� the flow
is essentially the same as the usual KT flow and one can
disregard the flow of 	�l� in order to find

TA 	 �� �

�0
�2	�0�/�1−2	�0��

�18�

which is a valid result even when 2	�0�ln��0 /���O�1� al-
though its derivation requires 	�0��1. If, on the other hand,
	�0��h�0� then the 	2 term dominates and the flow of 	�l�
and we must take into account the l dependence of 	�l� in
solving for the flow of h�l� to strong coupling. This leads to

FIG. 1. Renormalization group flow given by Eq. �16� in the 	1

versus 	2 plane.
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TA 	 ��1 + 2	�0�ln��0/���−1. �19�

Observe that Eqs. �18� and �19� are identical when
2	�0�ln��0 /���1 but give a very different result when
2	�0�ln��0 /���O�1�. We immediately notice that the 	2

term in the RG destroys the KT transition. Unlike the Kondo
problem the system retains coherence even at large coupling
and is never overdamped. This is a quantum-mechanical ef-
fect and comes from the fact that the spin operators do not
commute. While the S1 operator in Eq. �5� wants to orient the
impurity spin in its direction, the same happens for the S2
operator. In a classical system �large S� the spin would orient
in a finite angle in the XY plane. However, for a finite S
impurity this is not possible and the impurity coupling is
effectively quantum frustrated reducing the effective cou-
pling to the environment. Another interesting feature of the
RG flow is that for h�l�→0 we find

	* = 	�l*� =
	�0�

1 + 2	�0�l* 	
1

2ln��0/TA�
, �20�

when 2	�0�l*�1, 	�l� is essentially independent of 	�0� at
energy scale TA. While TA gives the crossover energy scale
between weak and strong coupling, 	* provides information
about the dissipation rate �−1 of the impurity dynamics. Our
results indicate that for 	�0�l* sufficiently large, �−1 is inde-
pendent of the initial coupling to the bosonic baths.

In Fig. 2 we depict the RG flow in the 	 versus h plane.
As discussed above, we can see that asymptotically �that is,
large l� 	�l� renormalizes to zero while h�l� becomes large.
An interesting feature of this RG, as we pointed out above, is
that for large values of 	�0� �large coupling to the environ-
ment� and intermediate values of l the renormalization of
h�l� becomes independent of 	�0�. This indicates that there is

a single variable that determines the RG flow at intermediate
energy scales. The fact that only one coupling determines the
RG flow indicates that there must be scaling in the physical
properties with the renormalized value of h. In the next sec-
tion we will discuss how the RG results reflect on the behav-
ior of the transverse susceptibility.

III. IMPURITY SUSCEPTIBILITY

In the previous section we discusse the RG calculation in
the weak coupling limit. The RG indicates that for large val-
ues of the couplings nothing new should happen. Neverthe-
less, given the perturbative nature of our analysis, this con-
clusion may not be warranted. Our conclusions can be put on
firmer ground with the use of numerical renormalization
group �NRG�.5 In NRG we do not look at the renormaliza-
tion of the couplings, as we did in the previous section, but at
the behavior of the susceptibility itself. Thus, in the first part
of this section we study the behavior of the susceptibility as
a function of the frequency at T=0 with NRG. In the second
part of this section, based on the perturbative RG of the
previous section and the NRG, we obtain analytic expres-
sions for the transverse susceptibility in various regimes. We
show that these two methods provide full support for the RG
equations obtained in the previous section.

A. Numerical renormalization group (NRG)

In order to learn more about the model we have per-
formed numerical renormalization group �NRG�
calculations5 on the Hamiltonian �5�. Although NRG has re-
cently been extended to bosonic models,20 we follow a more
traditional approach and transform Eq. �5� into a fermionic
problem. However, the bosonic baths �1 and �2 being
Ohmic, we can also represent them as the spin density fluc-
tuations of two fermion fields �1 and �2,

HF =
�

2
�3 + �

k,�,i=1,2
vFkcik�

† cik� +
1

2
g1S1�1

†�1�1

+
1

2
g2S2�2

†�2�2, �21�

where vF is the Fermi velocity and �i�=�kcik� are the local
fermion operators. Notice that we have two different set of
fermions �labeled by i=1,2� that couple by x and y compo-
nent of their “spin” to the corresponding components of the
impurity spin.

In order for Eq. �21� to be a faithful representation of Eq.
�5� one has to map the bosonic couplings 	1,2 into the fer-
mionic couplings g1,2. As in the case of the Kondo problem16

the bosonic couplings are related to the electronic couplings
through the electronic phase shifts �1 and �2:

	i = 2� 1



�i�2

. �22�

Here the phase shifts can be determined directly from the
NRG spectrum. The price what one has to pay for this sim-
plicity is that the entire parameter space of the fermionic
model 0�gi�
 covers only a smaller regime of the original

FIG. 2. Renormalization group flow given by Eq. �17� in the 	
versus h plane.
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model 0�	i�1 and therefore the localization transition is
beyond the boundaries of the method. The phase shifts are
given with a very good accuracy by

�i = atan�f��NRG�gi� , �23�

where �NRG is the parameter of the logarithmic discretization
used in NRG and f��NRG� is a numerically determinable
factor close to unity. For the numerical work we used
�NRG=2 and we find f��NRG=2�=1.03 �see Fig. 3�.

In Fig. 4 we show the results for ��� ��� /� �normalized to
its value at �=0� as a function of � /TA �where TA is the
crossover energy—see previous section� in the case when
	1=	2=	 �g1=g2� as one varies 	. Notice that, in agreement
with the RG calculation, the susceptibility retains a peak
even for strong coupling indicating that the spin remains
coherent. Furthermore, as the coupling increases the suscep-
tibility curves collapse into a universal curve showing that at
large couplings to the environment the susceptibility can be
written in a scaling form

��� ��,	,h� = �0f� �

TA�	,h�� , �24�

where �0=����� ��=0,	 ,h� and f�x� is a universal function
so that f�x→0�=x and f�x→
�	1/x. These results are in
agreement with our earlier conclusions based on the RG cal-
culation.

To compare results for our model with that of the single
bath DTLS, we have calculated ��� ��� for 	1=0.59 and 	2

=0 and compared with the case where 	1=	2=0.59. The
result is shown in Fig. 5. Notice that in the DTLS case there
is no trace of the peak in the susceptibility indicating that the
relaxation of the spin is completely overdamped. However,
in the isotropic case one finds a well defined peak even when
the coupling to the environment is large, indicating that the
spin still keeps memory of the tunneling splitting, even when
strongly interacting with the bath. This is a clear demonstra-
tion of the effect of frustration of decoherence.

B. Analytic results

The RG results of Sec. II show that the transverse cou-
plings of the impurity to the environment always flow to 	
→0 indicating that a perturbative approach should give a
sensible result. When 	=0 the ground state of the problem is
an eigenstate of S3 and therefore the transverse susceptibility
has a Dirac delta peak at �=�, that is, zero relaxation rate
�−1=0. In order to obtain a finite relaxation one makes use of
the Bloch equations22 for the expectation values of the spin
operators Mi= �Si�:

dM�

dt
=

�

2
M� � z� −

M1x� + M2y�

T2
−

M3z�

T1
,

where 1/T2 is the transverse and 1/T1 is the longitudinal
relaxation rates. It is straightforward to write a second order
differential equation for M1�t�:

d2M1

dt2 +
2

T2

dM1

dt
+ ��2

4
+

1

T2
2�M1 = 0,

implying that the transverse correlation function has the form

FIG. 3. �Color online� The phase shift �and therefore the bosonic
coupling� extracted from the NRG finite size spectra as a function
of the fermionic coupling.

FIG. 4. �Color online� ��� ��� /� as a function of � /TA.

FIG. 5. �Color online� ��� ��� /� as a function of � /�.
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��� ���
�

�
2/T2

��2 − �2/4 − 1/T2
2�2 + 4�2/T2

2 . �25�

In Appendix C 3 we derive these results using a random
phase approximation �RPA� and improve on them by replac-
ing the bare values of the parameters by their renormalized
RG value

��� ���
�

=
�arctan�TA���−1TA/�

��2 − �TA�2 − 1/�2�2 + 4�2/�2 , �26�

where

�−1 	



2
�	*�2TA. �27�

Notice that Eq. �26� reduces to a Dirac delta function at �
=� as 	�0�→0, as expected. We find that this approximation
is good for ��TA and also describes well the NRG results
for all ���0 when �0�TA��0	*. In the zero frequency
limit �26� reduces to

��� �� = 0� 	 �	*�2�/�TA�2 + O��	*�4� �28�

and the Kramers-Kronig relation immediately leads to real
part of the susceptibility

��� �� 	 0� = 
/�8TA�1 + �	*�4�arctan�1/�	*�2�


	 1/�4TA� + O��	*�2� . �29�

Although the RPA result gives good results in certain re-
gimes it fails in the asymptotic cases. In those regimes a new
approach has to be developed. For that purpose we will use
the criteria of renormalizability of the theory in order to cal-
culate the susceptibility. If we knew the exact � functions of
the theory

�i��	
� =
d	i

dl
, �30�

one could, in principle, integrate the exact RG flow in order
to obtain the exact result. However, we only have access to
the perturbative result �16� that indicates that there is no
other fixed points in the problem. The question is whether
these results are valid in other regimes.

Let us consider some limiting cases of the problem at
hand. First, consider the special situation where 	�0�
=	1�0�=	2�0� and there is no magnetic field �=0 �h�0�
=0�. In this case the Hamiltonian of the problem can be
written, from Eq. �6�, as

Heff =
 dx �
	=1,2

��x�	�x��2 − �8
	�x�1�0�S1

− �8
	�x�2�0�S2. �31�

From the renormalization group equations, Eqs. �17�, we find

��	� =
d	

dl
= − 2	2 + O�	3� . �32�

At finite temperature T�� the RG flow is cutoff by the
temperature and we can write dl	−dT /T and use the tem-

perature as the cutoff. We can solve Eq. �32� for 	 as a
function of T at once:

	�T� 	
	0

1 + 2	0 ln��0/T�
. �33�

When T→0 one finds

	�T� 	
1

2 ln��0/T�
, �34�

which is independent of 	�0� in agreement with Eq. �20�.
We first consider the susceptibility at finite T and zero

frequency

��T,�,	0� =
1

4T
g�T/�,	0� , �35�

where g�x� is a dimensionless function. Since the theory is
renormalizable, the susceptibility should obey the Callan-
Symanzik �CS� equation21

��
�

��
+ ��	�

�

�	
+ 2��	��g�	,T/�� = 0, �36�

where ��	� is the anomalous dimension associated with the
operator �1. Equation �36� expresses the fact that a change in
the cutoff � can be exactly compensated for by a change in
the bare coupling 	 together with a rescaling of the suscep-
tibility. The most general solution of Eq. �36� is

g�	,T/�� = exp�

	0

	�T�

�2��	�/��	��d	�h�	�T�� , �37�

where h�x� is an arbitrary function of the renormalized cou-
pling. We can rewrite Eq. �37� in a slightly different form:

g�T� = exp�

	0

1

�2��	�/��	��d	���	�T�� , �38�

where we have introduce a new function ��	� and used the
fact that

exp�

1

	�T�

�2��	�/��	��d	�
is by itself some �in general unknown� function of 	�T� and
we have absorbed this term into the function h�	�T��. Hence
a nonzero anomalous dimension implies some residual ex-
plicit dependence of g�T�, and hence ��T�, on the bare cou-
pling 	0 in addition to its implicit dependence on 	0 through
the renormalized coupling. Notice from Eq. �34� that 	�T�
becomes small at low T and therefore one can expand
��	�T�� in a power series in 	�T�. In this case, replacing Eq.
�38� into �35� we find

��T� =
1

4T
exp�


	0

1

�2��	�/��	��d	��
n

bn	n�T� ,

�39�

where bn are the coefficients of the expansion of ��	�.
Equation �39� is formally exact. However, one does not
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know the anomalous dimension a priori. One way to go
about this is to compare the exact result �39� with the pertur-
bative result obtained in leading order in 	0. In Appendix C
we show that perturbation theory gives

��T� =
1

4T
�1 + 2	0 ln�T/�0� + O�	0

2�
 . �40�

Replacing Eq. �34� in Eq. �39� and comparing with Eq. �40�
we find that b0=0, b1=1, and



	0

1

�2��	�/��	�d	� 	 − ln�	0� . �41�

The coefficient of 2 in front of the second term in Eq. �40� is
crucial. Note that what fixes the definition of 	 is the RG
equation �32�. Since ��	�	−2	2, we see that

��	� = − 	 + O�	3� , �42�

is the value of the anomalous dimension in leading order in
	. Therefore, we have concluded that

��T� 	
1

8T	0 ln��0/T�
, �43�

when T→0. This result is expected to be true even at very
low T when 	0 ln�� /T��1. Suppose that the bare coupling,
	0 is not small. What can we say from the RG in this case?
As long as we consider very low T where 	�T��1 so that
��	�T��		�T�, we have

��T� 	 exp�

	0

1

�2��	�/��	��� 1

8T ln��0/T�
. �44�

The first factor is some unknown function of the bare cou-
pling but the T dependence is the same as before.

Now consider the susceptibility at T=0 but finite fre-
quency. Once again, thanks to the renormalizability of the
theory ����� obeys the same CS equation with the same �
function and the same anomalous dimension ��	�. This
anomalous dimension is a property of the spin operator �1
and must be the same for either finite T and �=0 or finite �
and T=0. Therefore, following the earlier discussion it must
have the form

����,�,	0� = exp�

	0

1

�2��	�/��	��� 1

�
F�	���� . �45�

The function F�	���� is not necessarily the same as ��	�T��
and, in general, is unknown. However, the first factor, giving
the explicit dependence on 	0 in a perturbative expansion,
should be exactly the same as in the previous calculation of
	�T�. Thus, if 	0�1, we must have

����,�,	0� =
1

�	0
F�	���� . �46�

Again, we perform ordinary perturbation theory for ����� in
powers of 	0 and improve the perturbative result with the
RG by matching it to Eq. �46� by expanding in powers of
	���. Since we already know ��	� and ��	�, the result must
have a rather restricted form to be a solution of the CS equa-

tion. The susceptibility at finite frequency is given by Eq.
�C5�:

����,�,	0� 	
1

�
�	0 − 4	0

2 ln��0/�� + O�	0
3�� . �47�

This result is consistent with the RG form of Eq. �46� if we
assume that

F�	���� 	 	2��� ,

		0
2 − 4	0

3 ln��0/�� . �48�

Having found the function F�	���� at small 	��� we can
now invoke the RG. In particular, for small bare coupling
and small � we have

����� 	
1

4	0� ln2��0/��
. �49�

Even if the bare coupling is not small, but we go to small
enough � so that 	����1, the RG implies that

����� 	 exp�

	0

1

2��	�/��	�d	� 1

4� ln2��0/��
, �50�

where the first term in an unknown function of the bare cou-
pling constant. Thus, Eqs. �44� and �49� give the temperature
and frequency behavior of the susceptibility for 	*�1, TA
��0	*, and in the frequency and temperature range TA��,
T��0. When these conditions are satisfied the ratio

����,T = 0�
��T�

=
2T

�

ln��0/T�
ln2��0/��

�51�

is universal.

IV. DISCUSSION AND CONCLUSIONS

Decoherence can be defined as the unavoidable evolution
of the total state of the system and the environment towards
an entangled state. This is a dynamical definition of decoher-
ence, and clearly shows the conceptual difference between
dissipation �that involves the transfer of energy from the sub-
system to the environment� and decoherence. An important
concept in the study of decoherence is the notion of a pre-
ferred basis: every time that a system interacts with an envi-
ronment, a set of states is naturally selected by the form of
the interaction. The text book example is given by the ex-
actly solvable model23,24

Hdeco = �
k�0

kak
†ak + i

�1

�2L
S1�

k�0

�k�ak − ak
†� .

Although this model does not have any dissipative mecha-
nism, the two level system experience strong decoherence.
Suppose that the system is prepared at time t=0 as a direct
product of the bath and the two level system

��t = 0� = �bath�t = 0� � �S��t = 0� ,

where �bath and �S� are, respectively, the density matrices of
bath and the two level system. A natural basis choice for the
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two level system is S1. If we further suppose that the two
level system is prepared in a state of S2, then at t=0 the
reduced density matrix

�R�t = 0� = trbath��bath�t = 0� � �S��t = 0�� ,

has off-diagonal matrix elements indicating that the system is
coherent. As the system evolves in time the off-diagonal el-

ements decay very fast due to the entanglement of S� and the
bath degrees of freedom. As t→
 only the diagonal ele-
ments of the reduced density matrix of the system remain,
and we say that the system “decoheres” to the preferred basis
of S1.

With this example in mind is now simple to understand
the effects that we described in this manuscript. Consider the
Hamiltonian �5�. In this case it is no longer possible to define
a preferred basis for the two level system. The entanglement

of S� with each one of the baths is suppressed by the other,
and as a result the decoherence phenomena is frustrated. This
physical picture shows the true meaning of our results, the
“quantum frustration” is the lack of a preferred basis for the
system of interest.

The quantum frustration of decoherence can be also un-
derstood as a result of a version of Coleman’s or Mermin-
Wagner’s theorem.26 When 	1=	2 there is a U�1� symmetry
in impurity problem. Hence, one has an effective
�1+1�-dimensional field theory with U�1� symmetry so this
symmetry cannot be spontaneously broken even at T=0. In
fact, because one has a single boundary degree of freedom,
one can also think of the problem as an almost
�0+1�-dimensional field theory. So it is a rather remarkable
fact that even the Z2 symmetry which remains when 	2=0
can be spontaneously broken, as in the case of the DTLS.
The U�1� symmetry would have to be spontaneously broken
in a phase in which the spin is localized in an eigenstate of
either S1 or S2. Quantum mechanics prevents that from hap-
pening.

One can ask how generic this result really is. For quantum
frustration to occur the coupling constants with all the baths
must be identical. This can be achieved when the role of the
two baths is played by two Goldstone modes, resulting from
the spontaneous breaking of a continuous symmetry, such
that the residual unbroken symmetry rotates the two Gold-
stone modes into each other. When the couplings are not
exactly equal quantum frustration occurs up to a certain en-
ergy scale below which one of the heat baths takes over and
one obtains the standard decoherence problem in dissipative
Ohmic systems. In terms of Fig. 1 it means that the
asymptotic flow is the one for either 	1=0 or 	2=0. In sum-
mary, quantum frustration of decoherence is a general phe-
nomena. It has clear implications to the quantum/classical
transition and measure theory. Moreover it is potentially im-
portant to the development of technologies where decoher-
ence is a fundamental issue as in the case of quantum com-
munication and quantum computation.

In summary, we have studied a model of quantum frustra-
tion of decoherence in open systems. Contrary to standard
dissipative models with ohmic dissipation, the noncommuta-
tive nature of spin operators lead to a frustration of decoher-

ence. We have shown that while in a DTLS the spin dynam-
ics becomes overdamped at large couplings with a heat bath,
in a system with quantum frustration it is always under-
damped and the system keeps the memory of its quantum
nature. Using perturbative RG calculations we have shown
that at large couplings with the bath the transverse spin sus-
ceptibility shows scaling with a characteristic energy scale
TA, the analogous of the Kondo temperature in the DTLS,
that separates the region of strong to weak coupling. We have
supported our claims with NRG calculations and have calcu-
lated the frequency and temperature dependence of the trans-
verse susceptibility using the renormalizability of the theory.
Our results may be applicable to a large class of problems
where decoherence plays a fundamental role.
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APPENDIX A: IMPURITY SPIN IN A MAGNETICALLY
ORDERED ENVIRONMENT

In this appendix we will show how quantum frustration
can arise in the context of a magnetic impurity in a magnetic
environment.12 Let us consider a magnetic environment de-
scribe by the quantum Heisenberg Hamiltonian in the pres-
ence of an impurity

H = J�
�i,j�

s�i · s� j + �S� · s�0, �A1�

where J is the magnetic exchange between nearest-neighbor

spins s�i located on a lattice site R� i in d dimensions, � is the
coupling between the environmental spins, and an impurity

spin S� located at the origin of the coordinate system. In what
follows we will consider the antiferromagnetic case of J
�0 although the ferromagnetic case �J�0� can be studied in
an analogous way.

The partition function of the problem in spin coherent
state path integral can be written as25

Z =
 DN� ��N� 2 − 1� 
 Dn���n�2 − 1�e−iSB�N� �−S�N� ,n��,

where N� represents the impurity spin and n��r�� the environ-
mental spin field, SB is the Berry’s phase,

S =
 d�dr�� 1

2g
����n���,r���2 + c2��n���,r���2�

+ ���r��n���,r�� · N� ���� , �A2�

is the action of the problem where g=c2 /�s is the coupling
constant �c=2�dJas is the spin-wave velocity and �s
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=Js2a2−d is the spin stiffness, a is the lattice spacing, and s is
the value of the environmental spin�.

Assume that the O�3� symmetry of the model is sponta-
neously broken so that the field n� orders. In this case we can
write

n���,r�� 	 ��1��,r��,�2��,r��,1� , �A3�

where �1,2 are small fluctuating fields corresponding to the
two Goldstone modes of the antiferromagnet. A possibility
that is not considered in this work is associated with the
formation of a spin texture around the impurity spin. In a
classical spin system a spin texture can be formed in the bulk
spins due to the presence of strong and/or anisotropic inter-
actions. The spin texture can follow the impurity as it tunnels
invalidating the methods used here �an instanton calculation
is required to take into account the collective nature of the
texture�. The results in this appendix are only valid if no spin
texture is formed around the magnetic impurity.

In the ordered phase the Berry’s phase term is unimpor-
tant and can be dropped. Using Eq. �A3� the action �A2�
reads

S 	 �
	=1,2


 d�dr�� 1

2g
�����	��,r���2 + c2���	��,r���2


+ ���r���	��,r�� · N	��� + �N3���� . �A4�

We see that the action for the fields �1,2 is quadratic and
therefore these fields can be traced out of the problem ex-
actly. In this case the effective action for the impurity spin
becomes in Fourier space

Seff 	
g�2

2 �
	=1,2


 d�dk�
N	���N	�− ��

�2 + c2k2 + �
 d�N3��� .

As we should expect from the spherical symmetry of the
problem, the angular dependence in k� can be integrated and
we finally obtain

Seff 	
	2

��d − 1� �
	=1,2



−


+


d��

0




dq
qd−1

�2 + q2�N	���N	�− ��

+ �
 d�N3��� , �A5�

where q=ck and

	2 =
g��d − 1��2

2d+2
�d−2�/2��d/2�cd ,

where ��x� is a gamma function. Integrating Eq. �A5� over q
and Fourier transforming back the frequencies to imaginary
time we find

Seff 	 	2 �
	=1,2


 d�
 d��
N	���N	����

�� − ���d−1 + �
 d�N3��� ,

�A6�

which shows that the impurity interact in imaginary time
through a long-range interaction that decays as 1/�d−1.

The action �A6� can be simplified by introducing a
Hubbard-Stratanovich field that splits the interaction term.
This can be done with the introduction of one-dimensional
bosonic fields defined as

�	�x,�� =
T

�2L
�
q�0

�
�n

eiqx+i�n�

�q
�	

*�q,�n� +
e−iqx+i�n�

�q
�	�q,�n� ,

L→
 is the size of the one-dimensional line. Using these
new fields the action �A6� can be written as

Seff = �
	=1,2

T�
q�0

�
�n

�i�n + q��	
*�q,�n��	�q,− �n�

+ 	�q��d−1�/2��	
*�q,�n�N	��n� + �	�q,�n�N	�− �n��

+ �
 d�N3��� . �A7�

It is easy to see that the trace over the bosonic fields repro-
duces Eq. �A6�. It is straightforward to see that in d=3 the
above action reduces to Eq. �6�.

APPENDIX B: RG EQUATIONS

In this appendix we will derive the RG equations �12�.
From Eq. �9a� we have

�A1
±�� = �e�i�8
	1��1,��x=0�+�1,��x=0��S±��

= A1,�
± �e�i�8
	1�1,��x=0��� = A1,�

± e−	1dl

	 A1,�
± �1 − 	1dl� . �B1�

Substituting Eq. �B1� in �10� one obtains a term of the form

��edl�e−	1dlA1,�
mj = ����l + dl�A1,�

mj , �B2�

where we have used that, by rescaling �→� /b �with b
=edl	1+dl� one has �→b�. Hence,

��l + dl� = ��l��1 + �1 − 	1�dl� , �B3�

and defining the dimensionless coupling h�l�=��l� /�, one
obtains Eq. �12b�.

Analogously, from Eq. �9b� we have

�B1
±�� = B1,�

± e−dl�e�i�8
	1�1�x=0��� = B1,�
± e−�1+	1�dl

	 B1,�
± �1 − �1 + 	1�dl� , �B4�

where we have used that �x→b−1�x since k→k /b. Replacing
Eq. �B4� into the second term in the right-hand side of Eq.
�10�:

���	2e−	1dlB1,�
mj �� j� = ���	2�l + dl�B1,�

mj , �B5�

and hence we write

	2�l + dl� = 	2�l�e−2	1dl 	 	2�l��1 − 2	1dl� , �B6�

leading to Eq. �12a�.

APPENDIX C: PERTURBATION THEORY

In this appendix we show how to derive the perturbative
expansion for the transverse susceptibility
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S��� = �T�S1���S1�0�� .

1. Static susceptibility �=0 and h=0

First, let us consider the case of arbitrary 	2 but small 	1
�the case of arbitrary 	1 and 	2�1 is completely analogous�.
This regime can be obtained by using Eq. �7�:

H̄2 = U2
−1HeffU2 = H0 − �2
	1�x�1e−i�8
	2�2�0�S+ + H.c.

In this rotated basis, S��� has a simple form

S��� =
1

4
�T��A2

+��� + A2
−�����A2

+�0� + A2
−�0��� ,

where

A2
±��� = e�i�8
	2�2�0,��S±��� .

The leading order terms in an expansion in powers of 	1 at
T=0 can be immediately obtained from the bosonic propa-
gator

S��� 	
1

4
�D��−2	2 + O�	1	2� , �C1�

where D is a short time cut-off. We can use the standard
conformal transformation to promote this result to a finite
temperature expression

S��� 	
1

4
� D

T

sin�
T���−2	2

+ O�	1	2� .

Expanding the above expression for 	2�1 gives

S��� 	
1

4
�1 − 2	2 ln� D

T

sin�
�T�� + O�	1	2,	2

2�� .

To this order, the susceptibility can be calculated immedi-
ately:

��T� = 

0

1/T

d�S���

	
1

4T
�1 −

2	2

T
ln� D

2
T
� + O�	1	2,	2

2�� . �C2�

For completeness, let us re-obtain this result by a direct
perturbative calculation in second order in 	2:

S��� 	 8
	2

�

1/T

d�1

0

�

d�2��T��2��1��1����2��2��1�0��

− �T��1����1�0���T��2��1��2��2���

��T���2��1���2��2��

= −

	2

8



�

1/T

d�1

0

�

d�2���2��1���2��2�� .

Using the finite temperature propagator

���2��1���2��2�� =
1

4


1

� 1


T
sin�
T��2 − �1���2 ,

we obtain

S��� 	 −
	2

4



�+�1/D�

1/T

d�1

0

�

d�2
1

� 1


T
sin�
T��2 − �1���2

	
	2

2
�ln�
T

D
� − ln�sin�
T���� + O�	1	2,	2

2� ,

in agreement with Eq. �C2�.

2. Dynamic susceptibility �Å0 at T=0 and h=0

The finite frequency calculation is a little more tedious
than the previous one. We would like to obtain the correla-
tion function in fourth order in the coupling constants. From
Eq. �C1� we already know part of the result

S��� =
1

4
−

1

2
	2 ln�D�� +

1

2
	2

2 ln2�D�� + O�	1	2,	2
3� . �C3�

The remaining contribution to the correlation function is a
term proportional to 	1	2. A convenient way to derive this
contribution is to use Eq. �7a� and compute the result to all
orders in 	1 but for 	2�1. In second order in 	2 we need to
calculate

�S��� =
1

4
+ 2
	2
 d�1d�2�T�S3���B1

+��1�B1
−��2�S3�0��

− 
	2
 d�1d�2�T�B1
+��1�B1

−��2�� .

From this point, it is straightforward to obtain the correlation
function and the susceptibility at finite frequency

�S��� =
1

4
−

	2

4D2	1

1

�1 + 2	1�	1� 1

� 1

D
�2	1

−
1

���2	1� ,

���i�n � 0� =
	2

2

�1 + 2	1�2	1D2	1��n�1−2	1

����1 − 2	1�sin�
	1�
 .

Expanding for 	1�1 and 	1 ln�D / ��n���1 we find

���i�n � 0� =

	1	2

��n� ��C − 1� + ln��n

D
�� , �C4�

where C	0.57772 is the Euler-gamma constant. The suscep-
tibility in fourth order in the coupling constants is the sum of
Eq. �C4� and the Fourier transform of Eq. �C3�,

��i�n� =
1

4
���n� +


	2

2

1

��n��1 − 2�	2 + 	1�ln� D

��n�� + 2C	2

+ 2�C − 1�	1 + O�	2
2,	1

2�� . �C5�
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3. Asymptotic regime of h\�

We represent the spin variables in Eq. �31� in terms of two
spinless fermions:

S1 = �a†b + b†a�/2,

S2 = − i�a†b − b†a�/2,

S3 = �a†a − b†b�/2

and add to the action an imaginary chemical potential i�0
= i
T /2. Working with this formalism we can use Wick’s
theorem and the standard diagrammatic technique. The ac-
tion is rewritten as

S = S0��1,�2� +
 d�a*������ − z�a��� + b*������ + z*�b���

+ �2
��	1�x�1�0,�� − i�	2�x�2�0,���a � ���b��� + H.c.,

where z= i�0+ �h /2�. We define the following propagators:

Ga
�0��i�n� =

− 1

i�n − z
,

Gb
�0��i�n� =

− 1

i�n + z* ,

D1,2
�0��i�n � 0� = −

��n�
2


arctan� D

��n�� ,

for the fields a���, b���, and the boundary field �1,2�0,��.
From the propagators we immediately derive the zeroth

order part of the susceptibility

�0�i�n� =
T

4 �
pn

Ga
�0��i�n + ipn�Gb

�0��ipn� + Gb
�0��i�n + ipn�

�Ga
�0��ipn� =

1

4
� 1

i�n + h
−

1

i�n − h
� =

1

2

h

�n
2 + h2 .

A simple perturbative calculation will fail to capture the
physics and the correct behavior of the susceptibility. Fol-
lowing the standard prescription we will sum the infinite
series of bubble diagrams in the RPA. Let us first consider
the second order bubble diagrams. From the definition of the
propagators and assuming ��n��D, we obtain

��1�i�n � 0� = −

	1

2

h2

��n
2 + h2�2 ��n� = − 2
	1��0�i�n��2��n� ,

��2�i�n � 0� =

	2

2

�n
2

��n
2 + h2�2 ��n�

= 2
	2��0�i�n��2��n

h
�2

��n� .

The bubble diagrams in fourth and sixth order can be
calculated in a straightforward way:

�RPA
�4� �i�n�

��0�i�n��3 = 4
2�n
2�	1

2 − 	2��n

h
�2

�2	1 + 	2�� ,

�RPA
�6� �i�n�

��0�i�n��4 = − 8
3��n�3�	1
3 − 	2��n

h
�2

�3	1
2 + 2	1	2 + 	2

2�

+ 	1	2
2��n

h
�4� .

For h�	2�n, we can simplify these results and sum the
geometric series

�RPA�i�n� 	
�0�i�n�

1 + 2
	1��n���0��i�n�
,

	
�h/2�

h2 + �n
2 + 
h	1��n�

.

The zero temperature susceptibility in the RPA approxima-
tion �for low frequencies and high magnetic fields� is ob-
tained by the analytical continuation

�RPA� ���
�

	



2

	1
2h

��2 − h2�2 + 
2h	1
2�2 .

If we define the decoherence time

T2
−1 =




2
h	1

2, �C6�

we can identify the functional form obtained in Eq. �25�,

�RPA� ���
�

	
h/T2

��2 − h2�2 + 4�2/T2
2 ,

that leads to Eq. �26� if one replaces

h → TA,

	1 → 	*,

T2
−1 → �−1 =




2
TA�	*�2. �C7�
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