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The low-temperature magnetic excitations of the two-dimensional spin-5
2 square-lattice Heisenberg antifer-

romagnet Rb2MnF4 have been probed using pulsed inelastic neutron scattering. In addition to dominant sharp
peaks identified with one-magnon excitations, a relatively weak continuum scattering is also observed at higher
energies. This is attributed to neutron scattering by pairs of magnons and the observed intensities are consistent
with predictions of spin wave theory.
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I. INTRODUCTION

Rb2MnF4 is a near-ideal two-dimensional spin-5
2 Heisen-

berg antiferromagnet on a square lattice �2DHASL� and has
been extensively studied experimentally1–4 to test theoretical
predictions for this canonical 2D quantum Hamiltonian.
Neutron scattering experiments observe sharp one-magnon
excitations at low temperatures which could be well de-
scribed by linear spin wave theory.4 However, spin wave
theory predicts that neutrons can also scatter from pairs of
magnons leading to a broad scattering continuum at higher
energies. Such processes are longitudinally polarized with
respect to the ordered spin direction and correspond physi-
cally to the simultaneous creation of two magnons with op-
posite spin Sz= ±1 �total �Sz=0 process�. The overall scat-
tering weight of the two-magnon continuum relative to one-
magnon processes is related to the relative strength of the
zero-point longitudinal quantum fluctuations in the ground
state, which reduce the amount of ordered spin moment by
�S compared to the full spin value S. Very sensitive experi-
ments are required to search for two-magnon continuum
scattering since for spin-5

2 the two-magnon scattering inten-
sity integrated over energy and wave vector is expected to be
only of the order 6% of the integrated one-magnon intensity.

Another probe of two-magnon processes is light or Ra-
man scattering and experiments on several 2DHAFSL sys-
tems have been made. Measurements in the S=1 system
K2NiF4 �Refs. 5 and 6� were found to be in excellent agree-
ment with calculations based on interacting spin wave
theory. Similar experiments on the cuprates �S= 1

2
� have,

however, shown a clear discrepancy between the observed

line shape and calculations based on spin wave theory for
pure 2DHAFSL.7 The discrepancy is believed to arise from
the presence of the four-spin cyclic exchange terms,8,9 which
are also used to explain the observed spin wave dispersion
along the antiferromagnetic zone boundary in La2CuO4 �Ref.
10�.

Neutron scattering �unlike Raman scattering which has
inherent momentum constraints� can in principle access the
full wave vector and energy dependence of the two-magnon
scattering. Raman and neutron scattering offer complemen-
tary information in that neutron intensities are related to two-
operator correlation functions, whereas Raman is related to
four-operator terms.

So far, two-magnon continuum scattering has been ob-
served in the 3D material CoF2,11,12 but little has been done
to quantitatively measure the two-magnon scattering using
neutrons in 2DHAFSL systems; the only other experiments
we are aware of are on the spin-1

2 material
Cu�DCOO�24D2O �CFTD�.13 The large quantum corrections
in S= 1

2 systems make it important to measure the two-
magnon scattering in Rb2MnF4 with S= 5

2 where quantum
fluctuations are expected to be smaller and to test the extent
to which spin wave theory can describe the results.

The purpose of this paper is threefold. Firstly we wished
to measure the spin waves with the MAPS spectrometer at
ISIS to investigate whether high-quality measurements of the
dispersion relation could be made with a neutron time-of-
flight spectrometer as compared with earlier triple-axis
measurements.4 Secondly we wished to study the spin wave
energy along the antiferromagnetic zone boundary to search
for evidence of four-spin interactions, second neighbor ex-
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change interactions, or quantum corrections to linear spin
wave theory. Thirdly we wished to look for the two-magnon
scattering continuum predicted by spin wave theory but lack-
ing experimental evidence.

The rest of the paper is organized as follows. In Sec. II we
review the spin wave theory predictions for one- and two-
magnon scattering. Details of the experiment are given in
Sec. III, followed in Sec. IV by results for the main disper-
sion relation with particular attention to wave vectors on the
antiferromagnetic zone boundary. Section V reports on the
observation of two-magnon scattering. The results are sum-
marized in a final Sec. VI.

II. DYNAMICAL CORRELATIONS

Rb2MnF4 crystallizes in the tetragonal K2NiF4 structure
with space group I4/mmm and lattice parameters a=b
=4.215 Å, c=13.77 Å. The magnetic ions are Mn2+ with a
spin-only moment of S= 5

2 , arranged in a square lattice in the
basal plane, with antiferromagnetic superexchange couplings
between nearest neighbors mediated by intervening F− ions.
The interplane coupling is a factor of 10−4 of the intraplane
coupling.14 This almost perfect two-dimensionality arises be-
cause MnF2 magnetic layers have a large separation along
the c-axis filled by two nonmagnetic RbF sheets, and further-
more the magnetic couplings along c are frustrated because
each Mn2+ ion is equidistant to four antiferromagnetically
coupled spins in the layers below and above, further weak-
ening the effect of the interplane couplings.

Antiferromagnetic order with moments along the c-axis
occurs below TN=38.4 K. Earlier studies2 proposed that the
observed ordering at finite temperature can be well ac-
counted for by a small anisotropy �z=0.0048�10� in the
Hamiltonian, ultimately originating from dipolar interac-
tions, i.e.,

Ĥ = J�
�ii��

�Si
xSi�

x + Si
ySi�

y + �1 + �z�Si
zSi�

z � , �1�

where J=0.6544�14� meV �Ref. 4� is the exchange energy
for nearest-neighbor spins on the square lattice and �ii�� in-
dicates that each interacting spin pair is counted once in the
summation. �x ,y ,z� are along the crystallographic �a ,b ,c�
axes. For this Hamiltonian the magnon dispersion relation in
linear spin wave theory is4

�Q = 4JS��1 + �z�2 − �Q
2 �1/2, �2�

where �Q=cos ��Qk+Qh�cos ��−Qk+Qh� and �Qh ,Qk ,Ql�
are components of the crystal momentum Q given in rlu
units of �2� /a ,2� /b ,2� /c�. Often a multiplicative factor,
Zc= �1+0.157/2S� is included in the dispersion relation to
account for corrections to lowest order spin wave theory. For
S= 5

2 , Zc=1.0314, and we neglect this correction as it can be
readily incorporated into the exchange constant.

Neutron scattering measures the dynamical correlation
functions given by

S���Q,�� =
1

2��N
�

−�

�

dte−i�t�
ii�

eiQ�ri−ri���Si�
� �0�Si

��t�� ,

�3�

where N is the total number of spins and the sum runs over
all sites i and i� in the lattice. One-magnon events occur in
the spin correlations transverse to the ordered spin direction
z. In the noninteracting spin wave approximation the trans-
verse correlations at T=0 K are given by15

Sxx�Q,�� = Syy�Q,�� = 1
2 �S − �S��uQ + vQ�2���� − ��Q� ,

�4�

where uQ=cosh 	, vQ=sinh 	, and tanh 2	=−�Q / �1+�z�.
Here �S=S− �Sz� is the spin reduction due to zero-point fluc-
tuations calculated as �1/N��QvQ

2 where the sum extends
over Q’s in the full Brillouin zone. �S=0.197 for the isotro-
pic Heisenberg model and 0.167 for the anisotropy �z appro-
priate for Rb2MnF4.

The finite spin reduction allows for the presence of longi-
tudinal fluctuations, which can be described in terms of two-
magnon scattering events. In the noninteracting spin wave
approximation the longitudinal correlations at T=0 K are15

Szz�Q,��inelastic =
1

N
�

Q1,Q2

f�Q1,Q2���Q − Q1 + Q2�


���� − ��Q1
− ��Q2

� , �5�

where f�Q1 ,Q2�= 1
2 �uQ1

vQ2
−uQ2

vQ1
�2 is the structure factor

for creating two magnons at wave vectors Q1 and Q2. In the
summation, one of the two magnons �say Q1� is restricted to
the first Brillouin zone. The above equation gives the inelas-
tic part of the longitudinal correlations; the elastic part is
simply the Bragg peak contribution �S−�S�2�������Q
−QAF−��, where QAF= �0.5,0.5� is the antiferromagnetic or-
dering wave vector and � is a vector of the reciprocal lattice.

An understanding of how the scattering cross section is
distributed between the elastic, one- and two-magnon chan-
nels can be obtained by comparing the integrated scattered
intensities. The total intensity integrated over energy and av-
eraged over the Brillouin zone is given by the well-known
sum rule 	S�Q ,��dQd����=S�S+1�. Similar expressions
can be derived for the individual scattering components, by
integrating over the expressions for the elastic, one-magnon
Eq. �4�, and two-magnon Eq. �5� components. The results are
summarized in Table I.

TABLE I. The total sum rules for the different components of
the scattering, evaluated for S= 5

2 and �S=0.167.

Component Integrated intensity

S�Q ,�� S�S+1�=8.75

Szz�Q ,��elastic �S−�S�2=5.443

Sxx�Q ,��+Syy�Q ,�� �S−�S��2�S+1�=3.112

Szz�Q ,��inelastic �S��S+1�=0.195
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The inelastic neutron scattering intensity from one- and
two-magnon excitations is proportional to

�2 − pz�Sxx�Q,�� + pzS
zz�Q,��inelastic, �6�

where pz=1− Q̂z
2 is the polarization factor for longitudinal

scattering and Q̂z is the directional cosine of the wave vector
Q with respect to the c-axis. The proportionality factor be-
tween Eq. �6� and neutron scattering intensity includes the
magnetic form factor squared F�Q�2 of Mn2+ ions.

III. EXPERIMENTAL DETAILS

The magnetic scattering was measured from a 13.4 g
single crystal of Rb2MnF4 using the MAPS spectrometer at
the ISIS pulsed neutron source in the UK. The sample was
enclosed in an aluminum can containing helium exchange
gas and measurements reported here were made at the base
temperature of 9.5 K. MAPS is a direct geometry time-of-
flight instrument, equipped with a 16 m2 array of position
sensitive detectors, divided into nearly 4
104 separate de-
tector elements. This allows collection of the inelastic scat-
tering intensity in a highly pixelated 3D volume in the 4D
�Qh ,Qk ,Ql ,�� space, from which one can extract the inten-
sity plot in a certain plane or along a certain direction as
illustrated in Figs. 1�b� and 1�c�. We describe the data in
terms of the two in-plane wave vectors �Qh ,Qk� and energy
�� as the magnetism is two-dimensional and the interlayer
component Ql only enters the magnetic scattering through
the magnetic form factor F�Q� and the polarization factor pz

with respect to the ordered spin direction �see Eq. �6��.
An incident neutron energy of 24.92 meV was selected to

map the inelastic scattering over the whole dynamic range of
one- and two-magnon scattering processes which extended
up to 13 meV. A Fermi chopper spinning at 300 Hz gave an
energy resolution of 0.75±0.01 meV �FWHM� on the elastic

line. Measurements were made with the two-dimensional
magnetic layers arranged perpendicular to the incident neu-
tron beam �orientation 1, c 
ki, a horizontal� and tilted by an
angle �=45° with respect to the incident beam direction �ori-

entation 2, �c ,ˆki�=�� to collect complementary data with
different longitudinal polarization pz at the same two-
dimensional wave vector and energy �Qh ,Qk ,��. Typical
counting times for one crystal orientations were 20 h at an
average proton current of 170 �A. To increase statistics the
data were folded along symmetry-equivalent axes as illus-
trated in Fig. 2, fourfold in the c-axis along ki setup, and
twofold in the rotated configuration. The low angle detector
bank 2	
30° provided coverage over most of the first Bril-
louin zone.

IV. SPIN WAVE DISPERSION RELATION

The magnon dispersion relation was determined from fits
to energy scans at constant wave vector �Qh ,Qk� and typical
data are shown in Fig. 3. The scattering is dominated by a
sharp one-magnon excitation and solid lines show fits to Eq.
�4�, where the delta function ����−��Q� is replaced by a
resolution broadened Gaussian peak. The extracted spin
wave dispersion along symmetry directions in the Brillouin
zone is shown in Fig. 4. Data at the lowest energies are
limited because of the difficulty in resolving the one-magnon
peak from the elastic incoherent scattering. The solid line
shows a fit to the dispersion relation in Eq. �2� with a fitted
exchange J=0.648±0.003 meV and fixed anisotropy �z
=0.0048, in agreement with the previous estimates of J
=0.6544±0.0014 meV obtained from triple-axis neutron
measurements.4

Linear spin wave theory, Eq. �2�, predicts no dispersion
along the antiferromagnetic zone boundary �central panel in
Fig. 4�, therefore an observed dispersion along this direction

FIG. 1. �Color online� �a� The one-magnon dispersion surface as a function of two-dimensional wave vector �Qh ,Qk� and energy � �color
shading is intensity in neutron scattering�. Dashed lines in the basal plane and at maximum energy ��=4JS mark the antiferromagnetic zone
boundaries. The basal plane also shows constant-energy contours �solid lines�. �b� The constant energy maps of the magnetic scattering at
��=1, 3.5, and 6 meV obtained by taking slices from the 3D �Qh ,Qk ,�� neutron data. �c� The energy scan at constant wave vector
�−0.5,0� along the direction shown by the vertical rectangular column in �b� �cross section of column �Qh
�Qk indicates the wave vector
region over which intensity points were averaged�.
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can give information about failures of the linear spin wave
approximation or extra interactions in the Hamiltonian be-
yond the nearest-neighbor exchange. In the spin-1

2 organic
material CFTD,16, the zone boundary energy was observed to
decrease from �0.25,0.25� to �0.5,0� by 6±1%, and this
agreed with computational work on the S= 1

2 2DHAFSL us-
ing the Ising-limit expansion that predicts a dispersion of
7%.17 The zone-boundary dispersion was therefore attributed
to quantum corrections to linear spin wave theory. A spin
wave calculation extended to order 1 /S2 predicts the same
sign but a much smaller magnitude �2%� of this dispersion18

than the series results, suggesting that higher order correc-
tions would need to be considered to obtain a fully satisfac-
tory theory. In La2CuO4 the observed zone-boundary disper-
sion had the opposite sign, increasing from �0.25,0.25� to
�0.5,0� by 13%.10 This effect was attributed to higher-order
spin exchange terms in the Hamiltonian. La2CuO4 is a Mott
insulator and a more appropriate description of the electronic
states is in terms of a Hubbard model at half-filling, charac-
terized by a kinetic energy gain from hopping, t, and poten-
tial energy cost, U, for two electrons occupying the same
site. At small t electrons are localized, and perturbative ex-
pansion in t /U gives an effective Hamiltonian for the spin
degrees of freedom. The first term in this expansion is the

FIG. 2. �Color online� The folding of data along symmetry-
equivalent directions: �a� fourfold symmetry in the c 
ki setup and
�b� twofold symmetry in the rotated configuration. Data correspond
to intensity at an energy of 5.5±0.5 meV.

FIG. 3. The energy scans at constant �Qh ,Qk� wave vector. The
solid line are fits to Gaussian peaks.

FIG. 4. The dispersion relation along symmetry directions in the
Brillouin zone �bold lines in Fig. 7�b��. Solid line shows a fit to Eq.
�2� with J=0.648 meV.

FIG. 5. The magnon energy for wave vectors along the antifer-
romagnetic zone boundary obtained using narrow �0.04
0.04� cuts
from data collected under two different experimental setups. The
solid line is a fit to the spin wave dispersion relation including
next-nearest neighbor coupling, Eq. �7�.
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nearest-neighbor Heisenberg exchange, and the dominant
next order term is a cyclic exchange coupling four spins at
the corners of each square plaquette. Such a ring exchange
term corresponding to U / t�6 was used to describe the high-
energy magnon dispersion,10 Raman scattering,8 and infrared
absorption experiments19 in La2CuO4.

The spin wave energies along the antiferromagnetic zone-
boundary contour in Rb2MnF4 are shown in a blown-out
scale in Fig. 5. The dispersion along the Qh+Qk=0.5 direc-
tion is very small, of order 1±0.5% between �0.5,0� and
�0.25,0.25�. In extracting peak positions we carefully consid-
ered the effects of wave vector averaging over a box of finite
size �Qh
�Qk around the nominal �Qh ,Qk� values. Since
the dispersion surface has a maximum on the zone boundary,
the effect of a finite wave vector averaging is to produce an
apparently lower peak energy. The effect is more pronounced
around the �0.25,0.25� point since there the dispersion sur-
face has only a one-dimensional maximum, whereas the cor-
ner point �0.5,0� is a local maximum along two directions in
the plane �see Fig. 1�a��. This effect is illustrated in Fig. 6 by
taking cuts of different sizes �Qh
�Qk over a simulated
data set for the one-magnon scattering cross section, Eq. �4�.

FIG. 6. The energy of a one-magnon peak extracted from cuts
through a simulated data set for Eqs. �2� and �4�. Using a large wave
vector averaging range �Qh
�Qk=0.1
0.1 around the nominal
�Qh ,Qk� position introduces an apparent dispersion of 0.9% �filled
circles�, whereas the smaller cut size 0.04
0.04 �open symbols�
reduces this to less than 0.1%.

FIG. 7. �Color online� �a� The two-magnon scattering intensity
Szz�Q ,��inelastic as a function of energy and wave vector along sym-
metry directions in the Brillouin zone �thick solid curve in �b��.
Color represents intensity. The solid line shows the one-magnon
dispersion relation ��Q from Eq. �2�. �b� The two-magnon intensity
as a function of wave vector at constant energy ��
=8.75±1.25 meV. Line shapes at positions labeled A–F are shown
in Fig. 8.

FIG. 8. �Color online� The calculated two-magnon scattering
line shapes at fixed wave vectors, indicated by labels A–F in Fig. 7.
The solid line is Szz�Q ,��inelastic and the dashed lines show the
effects of the instrumental resolution. The dotted lines show the
two-magnon density of states, D�Q ,��, Eq. �8�, divided by a factor
of 10.
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A wave-vector box of size 0.04
0.04 was chosen as a bal-
ance between a minimal apparent peak shift �
0.1% � and
sufficient data pixels in the box for sufficient statistics to
allow quantitative analysis, and the final results are shown in
Fig. 5. Data collected under two sample orientations show a
small dispersion with the higher energy at �0.25,0.25�. The
magnitude of the dispersion is small, 1±0.5% of the zone
boundary energy, a value close to the limit of the experimen-
tal accuracy, which may explain why the two data sets are
not exactly overlapping.

We note that quantum corrections to linear spin wave
theory to order 1 /S2 would predict a dispersion of the same
sign but nearly an order of magnitude smaller, 0.005 meV.18

Earlier triple-axis measurements also observed a dispersion
similar to the one in the present experiments and Cowley et
al.4 proposed that the origin was a next-nearest neighbor an-
tiferromagnetic exchange J� along the square diagonals. The
dispersion relation in this case becomes

��Q = 4JS�
1 + �z +
J�

2J
�Q� �2

− �Q
2 �1/2

, �7�

where �Q=cos ��Qk+Qh�cos ��−Qk+Qh�, �Q� =cos�2��Qh
+Qk��+cos�2��−Qh+Qk��−2. We have fitted this expression
to the dispersion along the zone boundary in Fig. 5 and the
results are J=0.657±0.002 meV, J�=0.006±0.003 meV,
compared to J=0.673±0.028 meV, J�=0.012±0.002 meV
obtained previously.4 The difference in J arises because the
frequencies at the zone boundary are lower in our measure-
ments due possibly to small errors in the absolute energy
calibration in one of the two experiments.

In short the present experiments observe a definite change
in energy along the antiferromagnetic zone boundary. The
effect is small and the data barely produce a reliable estimate
of the effect. Nevertheless, our results do suggest that its
most probable origin is from the next-nearest-neighbor ex-
change constants. We shall, however, neglect this small ef-
fect for most of the remainder of this paper.

FIG. 9. The stages of the fitting procedure. �a�
The energy scan at �0.5,0.15�. �b� and �c� The
low-energy asymmetric line shape of the incoher-
ent scattering is well parametrized by a two
Gaussian line shape. �d� Fitting the same resolu-
tion profile to the one-magnon peak centered at
6.40 meV, the extra scattering on the high-energy
tail cannot be accounted for by resolution effects.
�e� The fits to the combined one- and two-
magnon scattering Eq. �6� including resolution
effects.
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V. TWO-MAGNON CONTINUUM SCATTERING

To estimate the two-magnon scattering intensity predicted
by spin wave theory we evaluated Eq. �5� numerically by
summation over a grid of finely spaced Q1 points over one
Brillouin zone, setting Q2=Q−Q1 and replacing the delta
function in energy with an area-normalized narrow Gaussian.
Figure 7�a� shows an overview plot of the calculated two-
magnon cross section as a function of energy and wave vec-
tor along symmetry directions of the Brillouin zone. Two-
magnon scattering occurs in the form of a continuum at
higher energies above the one-magnon dispersion relation.
The small energy separation Egap�Q� between one- and two-
magnon excitations is a consequence of the small uniaxial
anisotropy �z in the Hamiltonian Eq. �1�, which opens a gap
in the one-magnon spectrum at the zone center ��0
=4JS��z�2+�z�, with two-magnon scattering starting at the
higher energy of 2
��0. Generally the two-magnon inten-
sity is strongest for low energies and wave vectors near the
antiferromagnetic zone center, but here is also where the
one-magnon structure factor is largest. The clearest way to
separate a scattering signal from one- and two-magnon pro-
cesses is at energies above the one-magnon zone boundary,
and Fig. 7�b� shows a plot of the calculated two-magnon
intensity distribution in the Brillouin zone at an energy
8.75±1.25 meV, above the one-magnon cutoff.

Calculated line shapes at representative points in the Bril-
louin zone are shown in Fig. 8. One noticeable feature is the

appearance of strong singular peaks, which become more
prominent upon increasing the numerical accuracy in evalu-
ating Eq. �5�. The singularities are a result of divergencies in
the two-magnon density of states obtained by putting f =1 in
Eq. �5�, i.e.,

D�Q,�� =
1

N
�

Q1,Q2

��Q − Q1 + Q2����� − ��Q1
− ��Q2

�

=
1

N
�
Q1

���� − ��Q1
− ��Q−Q1

� . �8�

Plots of D�Q ,�� are shown by dotted lines in Fig. 8. The
singularities at the high energy boundary present in D�Q ,��
do not show up in Szz�Q ,��inelastic. This is because the struc-
ture factor of those processes in neutron scattering cancels as
both magnons are on the antiferromagnetic zone boundary
contour where vQ1

=vQ2
=0.

It is interesting to consider whether any of the singulari-
ties are a true feature of the two-magnon neutron scattering
or whether they are a consequence of using noninteracting
spin wave theory. Canali and Wallin20 have included first-
order spin wave interactions in calculating Szz�Q ,�� and
their results show that the singularity peaks remain. How-
ever, any treatment of interactions within spin wave theory is
perturbative and so it is possible higher order interactions
may still be important when considering the singularities.
Experimentally, resolution effects would make the singulari-
ties very difficult to observe as shown in Fig. 8 where the
two-magnon line shapes are convoluted with the resolution
in our experiment and the results �dashed lines� show that
any singularity would probably not be visible in our mea-
surements.

To test for the presence of two-magnon scattering in the
data, we extracted energy cuts at fixed wave vectors
�Qh ,Qk�. Because of the inherently weak intensity of the
two-magnon cross section we chose a wave vector averaging
range 0.1
0.1 to have enough data pixels for quantitative
analysis. A typical scan near the antiferromagnetic zone
boundary at �0.5,0.15� is shown in Fig. 9�a�. The inelastic
scattering is dominated by a sharp, one-magnon peak cen-
tered at 6.40±0.02 meV, and additional much weaker scat-
tering is observed in the form of a high-energy continuum
tail extending to at least 9 meV �see Fig. 9�d��, much higher
than the one-magnon zone boundary energy.

Our approach is to fit the data to a line shape containing
both one- and two-magnon components, with their relative
intensity fixed by theory, Eqs. �4�–�6�. The effects of resolu-
tion broadening are also included as discussed below. The
effects of the finite cut size were included by averaging the
predicted intensity over the finite wave-vector size �Qh

�Qk of the cut. The resulting profile was then convolved
with the energy resolution of the spectrometer. This was de-
termined from the observed line shape of the quasi-elastic
peak in Fig. 9�b�. This showed a slightly asymmetric tail at
lower energies �due to the asymmetric neutron pulse shape�
and the whole profile could be well parametrized by a sum of
two Gaussian peaks, one off-centered on the low-energy side
�see Fig. 9�c��. Such a weakly asymmetric line shape also

FIG. 10. �Color online� The comparison between data and pre-
dicted two-magnon scattering at an energy ��=8.75±1.25 meV,
much higher than the one-magnon zone boundary energy. �i� and
�iii� show data in two different experimental configurations and �ii�
and �iv� show the simulated two-magnon scattering intensity includ-
ing the polarization factor, magnetic form factor, an overall scale
factor, and a flat background to compare with data. Boxes labeled
�a�–�f� show the locations of energy scans plotted in Fig. 11. The
dashed square box is the antiferromagnetic zone boundary.
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provided a good description of the observed one-magnon
peak line shape as shown in Fig. 9�d�. The relative positions,
intensities, and widths of those two Gaussians are fixed
while the fitted parameters are the overall width of the one-
magnon peak �to parametrize the variation of the energy
resolution with energy transfer� and an overall scale factor.
Figure 9�e� shows that the whole observed scattering line
shape including the high-energy tail can be well described
when the two-magnon cross section is included.

Figure 10 shows the overall comparison between the ob-
served intensity in the high-energy tails and that expected
from two-magnon scattering. The plot corresponds to inten-
sity averaged over the energy range 7.5 to 10 meV, much
higher than that of the one-magnon zone boundary, where
only two-magnon processes are expected to contribute. There
is good overall agreement between data and calculations,
which include the longitudinal polarization factor pz ex-
pected for two-magnon processes, Eq. �6�.

A number of representative energy scans extracted from
the data near the antiferromagnetic zone boundary where the
two-magnon contribution can most easily be singled out are
shown in Fig. 11. Solid lines show the results of the fitting
procedure described above to the combined one- and two-
magnon scattering line shapes �Eq. �6�� and good agreement
is observed throughout. In those fits the overall scale factor

was allowed to vary for each scan, however very similar fits
are obtained if this scale factor is fixed to a common average
value for all scans and for clarity we only show the two-
magnon component determined in this way �dashed lines�,
practically indistinguishable from the results of the free fits.
As an independent consistency check we have converted the
neutron intensities into absolute units of barn meV−1 sr−1 per
spin, normalizing by the sample mass and by intensities mea-
sured with a vanadium standard; the calculated two-magnon
neutron scattering intensities in absolute units are very close
�within 10%� to the results of the fits, this agreement giving
further support to the identification of the continuum inten-
sities with two-magnon scattering.

The scans shown in Fig. 11 include points where the in-
tensity from two-magnon scattering is predicted to be low, as
well as points where it is predicted to be high, this modula-
tion of intensity being mainly due to the polarization factor
pz in Eq. �6�. For example, scans in Figs. 11�e� and 11�f�
have rather weak high-energy tails and cannot be taken in
isolation to provide evidence of two-magnon scattering, but
are significant when taken in the context of all the scans
shown. The scans in Figs. 11�a�� and 11�b�� show the stron-
gest high-energy signal, since they correspond to the largest
longitudinal polarization factor appropriate for two-magnon
scattering �and lowest polarization factor for transverse one-

FIG. 11. �Color online� The energy scans analyzed with a combined one- and two-magnon cross section Eq. �6� �solid lines�. The dashed
lines show the two-magnon component, with a common overall scale factor for all scans, as used in the simulation in Fig. 10. Scan labels
�a�–�f� �with � for data in orientation 2� refer to locations in the Brillouin zone indicated in Fig. 10. pz is the longitudinal polarization factor
in the middle of the two-magnon continuum region at 8.75 meV. The dotted line in �b�� illustrates the type of disagreement obtained if one
uses the two-magnon intensity observed at the equivalent position �d�� without adjusting for the change in polarization factor.
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magnon scattering�. Another illustration of the polarization
effect is provided by comparing the data in Figs. 11�b�� and
11�d�� collected at equivalent positions in the Brillouin zone:
using the same two-magnon intensity in both scans without
adjusting for the change in polarization factor results in a
large disagreement �dotted line in Fig. 11�b��� with the ob-
served continuum scattering intensity. From this analysis we
conclude that the observed continuum scattering at high en-
ergies is consistent both in magnitude and polarization with
scattering expected from two-magnon processes, neglecting
any interactions between the magnons.

VI. CONCLUSIONS

We have conducted a detailed investigation of the low
temperature dynamical properties of the square-lattice spin-5

2
Heisenberg antiferromagnet Rb2MnF4. The spin wave disper-
sion was measured and a small variation in energy along the

antiferromagnetic zone boundary was found. The energy
change along the zone boundary was too large to be ex-
plained by quantum corrections to linear spin wave theory,
and could be the result of weak next-nearest-neighbor ex-
change interactions �J� /J=1±0.5% �. Furthermore, a low in-
tensity signal was observed around the high-energy tail of
the one-magnon peaks. The line shape and intensity variation
of this signal provides good evidence that it is the result of
scattering by pairs of noninteracting spin waves �two-
magnon scattering�. We conclude that although spin wave
interactions are important in describing the shape of the two-
magnon Raman scattering, they are much less important for
two-magnon neutron scattering.
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