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We present calculations of the lattice thermal conductivity of silicon that incorporate several commonly used
empirical models of the interatomic potential. Second- and third-order force constants obtained from these
potentials are used as inputs to an exact iterative solution of the inelastic phonon Boltzmann equation, which
includes the anharmonic three-phonon scattering as well as isotopic defect and boundary scattering. Compari-
son of the calculated lattice thermal conductivity with the experiment shows that none of these potentials
provides satisfactory agreement. Calculations of the mode Grüneisen parameters and the linear thermal expan-
sion coefficient help elucidate the reasons for this. We also examine a set of parameters for one of these
empirical potentials that produces improved agreement with both the measured lattice thermal conductivity and
the thermal expansion data.
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I. INTRODUCTION

In recent years there has been intense interest in develop-
ing accurate microscopic descriptions of the properties of
materials. Toward this end, numerous empirical interatomic
potentials have been developed and studied extensively. Sili-
con is an ideal test material for the development of these
potentials because of the considerable amount of experimen-
tal data available, and because of its inherent scientific and
technological importance. Empirical interatomic potentials
have been used to study a host of physical properties, includ-
ing liquid and amorphous phases,1–5 point defects,5–10 and
lattice dynamics11–13 of bulk Si.

An important test of empirical interatomic potentials is
how well they can capture the physics of structures far from
the fitting data used to construct them. Recent work13,14 high-
lighted the relevance of the Grüneisen parameters in devel-
oping interatomic potentials. These parameters probe both
the harmonic and the anharmonic forces and their interrela-
tionship in a material and so go beyond the second-order
elastic constants and phonon dispersions commonly ex-
tracted from empirical interatomic potentials.

The lattice thermal conductivity � provides another im-
portant and more complex probe of the harmonic and anhar-
monic forces in crystalline materials. The anharmonicity of
the interatomic potential in solids causes scattering between
lattice vibrational waves, as was noted some time ago by
Peierls.15 He introduced the concept of “umklapp”
processes,16 in which the phonon momentum in a scattering
process is changed by a reciprocal lattice vector.

Anharmonic umklapp scattering is an intrinsic resistive
process that typically dominates the room temperature lattice
thermal conductivity in crystalline materials above a few
tens of degrees.16 The strength of this anharmonic scattering
depends on the phase space available for a phonon to scatter
with two others, and on the phonon-phonon scattering matrix
elements. Both of these in turn depend on the phonon fre-
quencies and eigenmodes determined from the second-order

interatomic potential force constants, and the scattering ma-
trix elements also depend on the third-order force constants.

The standard approach to describing phonon thermal
transport in solids is through the Boltzmann equation.16–20

We are interested in treating realistic systems where normal
and umklapp scattering processes involving phonons
throughout the Brillouin zone are accurately represented. A
proper treatment of the umklapp processes is essential to any
complete theory of thermal transport since these processes
provide the thermal resistance. In particular, the commonly
invoked elastic continuum approximation for the lattice18 is
inadequate since umklapp processes are fundamentally in-
consistent with the basic long-phonon-wavelength assump-
tion of this approximation and since the important nonlin-
earities in the phonon dispersions cannot be accurately
represented. Similarly, the relaxation time approximation17,18

is not justified because the inelastic nature of the dominant
phonon-phonon scattering precludes the definition of a relax-
ation time.

Significant progress was made in solving exactly the lin-
earized phonon Boltzmann equation using an iterative
scheme.19 This work addressed the thermal conductivity of
rare-gas solids where the interatomic forces can be repre-
sented by pairwise central potentials depending only on the
distance between any two atoms. Subsequent work applied
this central-potential theory to silicon and germanium.20 Co-
valently bonded semiconductors such as silicon and germa-
nium are characterized by central and noncentral forces, as is
reflected in the forms of the numerous empirical interatomic
potentials proposed. One paper21 included the noncentral
forces in an approximate way to calculate the lattice thermal
conductivity of bulk Si. More recently, an iterative approach
was used22 to solve the phonon Boltzmann equation for the
lattice thermal conductivity of Si/Ge based superlattices, in-
corporating both central and noncentral forces fully within
the context of a Keating model.23 Here, the Keating param-
eters were fit to the bulk phonon dispersions and bulk ther-
mal conductivity. The Keating model was designed to de-
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scribe small distortions of the lattice atoms from their
equilibrium positions, but it does not describe well other
physical features such as defects or amorphous phases. It is
therefore of interest to determine whether empirical inter-
atomic potentials, which have demonstrated success in this
latter regime, can accurately describe the lattice thermal con-
ductivity of silicon.

In this paper, we present a full inelastic phonon Boltz-
mann equation approach for the lattice thermal conductivity
of silicon. Second- and third-order force constants obtained
from several empirical interatomic potentials1,5,10 are used as
inputs to an iterative solution of the inelastic phonon Boltz-
mann equation that incorporates three-phonon scattering pro-
cesses, as well as isotopic defect and boundary scattering.
Section II develops the theory used to calculate the thermal
conductivity. Section III presents the forms of the inter-
atomic potentials used. In Sec. IV, the calculated thermal
conductivity from each model potential is presented and
compared to the experiment.

II. THEORY

We consider a bulk crystal consisting of silicon atoms on
a diamond lattice and treat transport along a cubic axis di-
rection. The lowest-order anharmonic scattering process in-
volves three phonons.16 Conservation of energy and quasi-
momentum require

� j�q� ± � j��q�� = � j��q��, q ± q� = q� + K , �1�

where q, j, and � j�q� are the phonon momentum, branch
index, and frequency, and K is a reciprocal lattice vector that
is zero for normal processes and nonzero for umklapp pro-
cesses.

The phonon frequencies and eigenmodes can be found by
diagonalizing the dynamical matrix

D��
����q� =

1

�M�M��
�
��

����0�,�����eiq·R��. �2�

Here, the ����0� ,����� are the second-order force con-
stants, R� is a lattice vector in the �th unit cell, � specifies an
atom in this cell whose mass is M�, and � and � are Carte-
sian components.

We take a small temperature gradient, �T, to perturb the
phonon distribution function n�=n�

0 +n�
1 with n�

1 =
−��n�

0 /������, where �� is the phonon energy, n�
0 �n0����

is the equilibrium phonon-distribution function, and �� mea-
sures its deviation from equilibrium. Here, we have used the
shorthand � in place of �j ,q�. The linearized phonon Boltz-
mann equation is16,20

kBTv� · � T
�n�

0

�T
= �

����
�W�����

+ ���� − ��� − ���

+
1

2
W�����

− ���� + ��� − ����
+ �

��

W���
imp���� − ��� − n�

0�n�
0 + 1���

1

	bs .

�3�

Here, v� is the velocity of the phonon in mode �. Momentum
conservation requires that q�=q±q�+K so that the sum over
�� becomes a sum over the phonon branch index, j�. The
three-phonon scattering rates are

W�����
± =




4N

n�
0�n��

0 +
1

2
±

1

2
	�n��

0 + 1�

��������

�±��,��,���
2

����� ± ��� − ���� . �4�

N is the number of unit cells, and the � function ensures
energy conservation. The three-phonon scattering matrix el-
ements, �±�� ,�� ,���=��j ,−q ; j� , q� ; j� ,q��, measure the
strength of the scattering events and are given by

��j,q; j�,q�; j�,q�� = �
�

�
����

�
����

�
���

�����0�,����,�����

�eiq�·R��e
iq�·R��

e��
j �q�e���

j� �q��e���
j� �q��

�M�M��M��

.

�5�

�����0� ,���� ,�����is the third-order force constant, and the
e’s are phonon eigenvectors. The scattering rate from isoto-
pic impurities is18,20

W���
imp =




2
g2�����n�

0�n��
0 + 1��

�


ê��
* · ê���


2����� − ��� ,

�6�

where g2 is the mass-variance parameter.24–26 The final term
in Eq. �3� accounts for phonon scattering from the sample
boundary through a relaxation time,

	bs =
Lef f

vave
, �7�

where Lef f is an effective phonon mean free path,25,27 and

vave = �1

3
� 2

vT
+

1

vL
	�−1

�8�

is an average of the transverse acoustic �TA� and longitudinal
acoustic �LA� phonon velocities.

The phonon Boltzmann equation is solved here with an
iterative procedure similar to that used previously.19,20 We
define ��=��F����T /�x��; putting it into Eq. �3� and rear-
ranging, we obtain the three equations

F�� = F��
0 +

1

Q�
� �

����
�W�����

+ �F��� − F����

+
1

2
W�����

− �F��� + F����� + �
��

W���
impF���� �9�

for �=x ,y ,z, where
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Q� = �
����

�W�����
+ +

1

2
W�����

− 	 + �
��

W���
imp +

n�
0�n�

0 + 1�
	bs ,

�10�

and

F��
0 =

��n0�n0 + 1�v��

TQ�

. �11�

To initiate the iterative procedure, the second term on the
right-hand side of Eq. �9� is set to zero. For a given mode,
�j ,q�, and the other two phonon branches, j� and j� fixed,
there is a six-dimensional space of q� and q� that can form a
scattering event. Momentum and energy conservation in Eq.
�1� give four constraint equations that leave a two-
dimensional surface in the Brillouin zone of allowed q�. For
each �j ,q , j� , j��, we select qx� and qy� from the quadrature
grid needed to evaluate Q� and determine the qz� that satisfies
the conservation equations. The resulting set
j ,q ; j� ,q� ; j� ,q�� is used in the summation to evaluate Q�.
Thus, F��

0 is the zeroth-order solution of the Boltzmann
equation. Plugging this into the right-hand side of Eq. �9�
yields the first-order solution, F�,�

1 . Since q� and q� are off
the quadrature grid, the values of F��,�

n and F��,�
n are obtained

by interpolation of F values taken from surrounding on-grid
points. The sequence is taken to converge when for large-
enough n, F��

n+1�F��
n . We typically find that �50 iterations is

sufficient.
The heat current in the �th direction from a temperature

gradient along �, J�=�������T /�x��, defines the phonon
thermal conductivity tensor

��� =
1

�2
�3�
j
� dqCj�q�v j��q�v j��q�	 j��q� , �12�

where Cj�q�= �� j�q��2 /kBT2�n0j�q��n0j�q�+1� is the contri-
bution per mode �j ,q� to the specific heat, and 	 j��q�
=TFj��q� / �� j�q�v j��q��. The cubic symmetry is verified nu-
merically by assuring that �zz=�xx=�yy and that �xy =�yz

=�zx=0.

III. EMPIRICAL INTERATOMIC POTENTIALS

We consider three commonly used empirical interatomic
potentials: the Stillinger-Weber �SW� potential,1 the Tersoff
potential,5 and the environment-dependent �ED� interatomic
potential.9,10 These potentials give the total energy of a group
of atoms as a function of their coordinates. The SW and ED
potentials for the total configuration energy E=�iEi consist
of sums of two-body and three-body terms1,10,28

Ei = �
i,j

i�j

V2�rij� + �
i,j,k

i�j�k

V3�rij,rik� , �13�

with rij and rik the distance between atoms i and j, and i and
k, respectively.

Here, the two-body term has the form V2�r�=A�Br−p

−��exp�� / �r−ac��. The SW potential scales the energy and

length to the observed atomization energy and lattice spacing
for Si in the diamond structure; it also takes the parameters �
and � to be unity. The parameter ac gives a cutoff that causes
the potential to go to zero smoothly between the first- and
second-nearest neighbors.

The three-body term is a product of three terms

V3�rij,rik� = h�rij�h�rik�g��ijk� , �14�

with

h�r� = exp� �

r − ac
	 , �15�

and

g��� = ����1 − e−Q�cos � + 1/3�2
� + �Q�cos � + 1/3�2� ,

�16�

and �ijk being the angle between rij and rik. For the SW
potential, �=0, and �=Q=1. For the ED potential, �=1. The
SW potential is specified by the six parameters
A ,B , p ,ac ,� ,��,1 and the ED potential is specified by the
nine parameters A ,B , p ,� ,ac ,� ,� ,� ,Q�.10

The Tersoff potential is modeled by two-body repulsive
and attractive terms5

Ei = �
j�i

fc�rij��fR�rij� + bijfA�rij�� . �17�

Here, fR�r�=A exp�−�1r� and fA�r�=−B exp�−�2r�. The co-
efficient of the attractive term describing many-body interac-
tions is

bij = �1 + �n�ij
n �−1/2n,

�ij = �
k��i,j�

fc�rik�g��ijk�exp��3
3�rij − rik�3� ,

g��� = 1 +
c2

d2 −
c2

d2 + �h − cos ��2 , �18�

and the sum in Eq. �18� is over the remaining three nearest-
neighbor atoms to atom i. fc�r� is a cutoff function that is
one at the equilibrium configuration but becomes zero at a
point between the first- and second-nearest neighbors. The
Tersoff potential is specified by the 10 parameters
A ,B ,�1 ,�2 ,�3 ,� ,c ,d ,h ,n�. The nonzero force constants
obtained from these three potentials extend out to the
second-nearest neighbors.

The second- and third-order force constants
����0� ,�����and �����0� ,���� ,�����are obtained by sym-
bolic differentiation of the interatomic potentials and evalu-
ation of these at the equilibrium configuration for the dia-
mond lattice with Si lattice parameter a=5.43 Å. The 4
nearest-neighbor atoms and 12 second-nearest-neighbor at-
oms give 16 3�3 second-order force-constant matrices with
a total of 16�32=144 elements. Only six of these elements
are independent.11 The third-order force constants involve
three atoms and total 162�33=6912 elements for first- and
second-nearest-neighbor contributions. For the SW and ED
models there are 18 independent third-order force-constant
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elements, while the Tersoff potential yields 26.
The second- and third-order force constants obtained

from these potentials satisfy the translational invariance
constraints29

�
����

������,����� = 0 �
����

�������,����,����� = 0,

along with cyclic permutations of the indices. In addition,
rotational invariance requires that

�
����

�������,����,�����X������� + ������������

+ ������������

is equal to its permutation in � and �. Here, is the �th com-
ponent of the vector locating the �th atom in the �th unit
cell.

Using the second-order force constants, the phonon dis-
persion and eigenmodes are calculated by diagonalizing the
dynamical matrix, Eq. �2�. From these the isotopic impurity
scattering rates and the boundary-scattering relaxation time
are obtained from Eqs. �6�–�8�. The third-order force con-
stants are then used to calculate the three-phonon scattering
strengths and corresponding scattering rates, from Eqs. �4�
and �5�.

IV. RESULTS AND DISCUSSION

For each empircal interatomic potential �EIP� the phonon
Boltzmann equation was solved iteratively.19,20 On each it-
eration the nonequilibrium distribution function was deter-
mined, and the thermal conductivity was calculated from Eq.
�12�. The iterative procedure was terminated when succes-
sive iterations yielded no change in the thermal conductivity.
The number of discrete wave-vector points q� used to
sample the Brillouin zone was varied to assure convergence.
This convergence procedure is illustrated in Fig. 1 for the
case of isotopically enriched Si using the Tersoff EIP. This
figure shows the calculated thermal conductivity at room
temperature versus the number of iterations for several dif-
ferent numbers of sampling points N. In each case the ther-
mal conductivity approaches a fixed value with increasing
number of iterations. As the number of sampling points in-
creases, this value decreases until it converges for suffi-
ciently large N, as demonstrated for the largest two values,
N=3856 and N=6912, which have almost identical curves.

The lattice thermal conductivity is calculated as a function
of temperature for naturally occurring Si and for isotopically
enriched Si and compared to the data in Ref. 24. The mass
variance values24 g2=2.01�10−4 and g2=2.33�10−6 were
used for these two cases, respectively. The boundary scatter-
ing length, Lef f, is determined only roughly from the sample
length. Qualitative corrections due to the finite length to
thickness ratio and sample smoothness are typically made to
fit the low-temperature data.27 We find values of Lef f
=0.3 cm and Lef f =1 cm give a decent fit and are comparable
with those used previously.24,26,27

Figure 2 shows the calculated lattice thermal conductivity
using the SW interatomic potential as a function of tempera-

ture compared with the data from Ref. 24. The filled circles
and triangles represent data for isotopically enriched Si,
while the plus signs and open circles represent data for natu-
rally occurring Si. The solid �dotted� lines provide the calcu-
lated results for isotopically enriched �naturally occurring�
Si. At the lowest temperatures the thermal conductivity is
dominated by boundary scattering. With increasing tempera-
ture, isotopic impurity scattering becomes significant. In the
vicinity of the peak ��20 K�, the impurity scattering and
phonon-phonon scattering dominate and are of comparable
strength, and for temperatures above 20 K the thermal con-
ductivity is dominated by the phonon-phonon scattering pro-
cess.

At low temperatures the calculated and measured lattice
thermal conductivities are in good agreement. For tempera-

FIG. 1. Calculated room-temperature lattice thermal conductiv-
ity for isotopically enriched Si using the Tersoff EIP as a function of
iteration number for different numbers of sampling points in the
Brillouin zone, N. The line symbols correspond to the following
number of sampling points: N=256 ���; N=2048 ���; N=3856
���; N=6912 ���.

FIG. 2. Calculated lattice thermal conductivity of silicon using
the SW potential as a function of temperature compared to mea-
sured values taken from Ref. 24 as described in the text. Solid line
represents isotopically enriched Si; dotted line represents naturally
occurring Si.
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tures above the peak, the calculated thermal conductivity be-
comes significantly larger than the measured value. At
300 K, the measured values24 are 2.37 W/cm K and
1.5 W/cm K for isotopically enriched Si and naturally occur-
ring Si, respectively. In contrast, the corresponding calcu-
lated results using the SW potential are 9.00 W/cm K and
7.10 W/cm K. Figures 3 and 4 present results obtained using
the Tersoff and ED interatomic potentials. Similar behavior
is seen in both figures with reasonably good fits to the data
for low temperatures and calculated thermal conductivity too
large at temperatures above the peak. The calculated thermal
conductivity at 300 K using the Tersoff and ED potentials
are, respectively, 4.27 W/cm K and 4.09 W/cm K for the
isotopic case, and 3.57 W/cm K and 3.53 W/cm K for the
case of naturally occurring Si.

The discrepancy between calculated and experimental
values at high temperature is highlighted in Figs. 5 and 6 for
isotopically enriched Si and naturally occurring Si, respec-
tively. These figures show results obtained using the SW
�dashed line�, Tersoff �dashed-dotted line�, and ED �solid
line� interatomic potentials plotted against the measured val-

ues. It is evident that in this temperature range the SW results
are roughly four times larger than the measured thermal con-
ductivity, while the Tersoff and ED results are roughly two
times larger than the measured values.

A precise representation of the full phonon dispersions
and modes and of the anharmonic forces is required to cal-
culate accurately the intrinsic lattice thermal conductivity.
This is true for the following reasons: �i� Around room tem-
perature and below, the majority of the heat is carried by the
dispersive acoustic phonons. The acoustic-phonon frequen-
cies and group velocities enter explicitly in the calculation of
the thermal conductivity and so must be described precisely
over the entire Brillouin zone. �ii� Large-q acoustic phonons
are involved in the three-phonon umklapp scattering pro-
cesses that limit the thermal conductivity, so the acoustic-
phonon dispersions near the Brillouin-zone boundary must
be accurately determined. �iii� The higher-lying optic modes
have very low average group velocities and so carry little
heat. Nevertheless, these optic branches contribute signifi-
cantly to the thermal resistance because they provide scatter-

FIG. 3. Same as Fig. 2, but calculated results are obtained using
the Tersoff potential.

FIG. 4. Same as Fig. 2, but calculated results are obtained using
the ED potential.

FIG. 5. Calculated lattice thermal conductivity for isotopically
enriched Si using SW �dashed line�, Tersoff �dashed-dotted line�
and ED �solid line� models in the temperature range between 100 K
and 300 K compared to measured values.

FIG. 6. Same as Fig. 5, but for naturally occurring Si.
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ing channels to heat-carrying acoustic phonons. �iv� Finally,
the anharmonic forces must be properly described since they
enter explicitly in the determination of the strength of the
three-phonon scattering rates.

The poor high-temperature results obtained from these
models reflects inaccurate descriptions of the phonon disper-
sions and the anharmonicity. The Tersoff model provides an
excellent description of the LA mode and a reasonably good
description of the optic modes. The SW and ED models give
reasonably good descriptions of the LA phonon branch, but
the optic branches are too high. At the zone center, the SW
and ED models give optic-phonon energies too large by 15%
and 21%, respectively, compared to the measured values.30

In all three models, the TA phonon frequencies are too high
near the zone boundaries. It is well known that the short-
range ion-ion interactions in these models cannot reproduce
the flatness of the TA modes for large q.31

The overestimated TA phonon frequencies and corre-
sponding group velocities for all three models produce an
increase in the lattice thermal conductivity, as seen in Figs. 5
and 6, through its explicit evaluation in Eq. �12�. The SW
model as well underestimates the phase space for three-
phonon scattering, which decreases the scattering rates and
so further increases the thermal conductivity. For the Tersoff
model, the anharmonic forces are stronger, leading to in-
creased scattering rates and a corresponding decrease in the
thermal conductivity relative to that for the SW model. For
the ED model, the anharmonic forces are weaker than for the
Tersoff model but the phase space available for three-phonon
scattering is increased. As a result the scattering rates for the
two models are quite similar and result in the near overlap of
the thermal conductivities.

It is interesting to note that these empirical interatomic
potentials have also shown discrepancies with the experi-
ment in the context of the mode Grüneisen parameters and
the linear thermal expansion coefficient.13,14 The mode Grü-
neisen parameters are defined through the change in phonon-
mode frequency with crystal volume

� j�q� = −
V

� j�q�
�� j�q�

�V
.

This can be expressed in terms of the phonon dispersions and
modes, and the third-order force constants32

� j�q� = −
1

6� j
2�q���

�
����

�
����

�
���

�����0�,����,�����

�
e��

j* �q�e���
j �q�

�M�M��

eiq·R��r����� �19�

Here, r��� is the �th component of the vector locating the �th
lattice atom in the �th unit cell. In previous theoretical treat-
ments of the lattice thermal conductivity, a mode-averaged
Grüneisen parameter was connected to the three-phonon
scattering rates.33 These calculations were based on a multi-
tude of approximations and so were meant to be only quali-
tative in nature. The mode Grüneisen parameters in fact vary
over a wide range of values, and they depend on the har-
monic and anharmonic parameters in a different fashion than

do the three-phonon scattering strengths, as is evident by
comparing Eq. �19� and �5�. The � j�q� also provide a more
direct measure of the anharmoncity. They are considerably
easier to calculate than the thermal conductivity since they
do not involve the phonon-phonon scattering rates and they
can be determined without solving the phonon Boltzmann
equation. Upon calculating the phonon dispersions and third-
order force constants, the � j�q� can be obtained directly us-
ing Eq. �19�. Alternatively, a simpler evaluation comes from
using the formula preceding Eq. �19�; here the difference in
phonon frequencies calculated for slightly different lattice
constants gives � j�q� immediately.13,14

The linear thermal expansion coefficient, �, is obtained
by a sum of the � j�q� over all modes, weighted by the mode-
specific heat:13,14,32

� =
�T

�2
�3�
j
� dqCj�q�� j�q� , �20�

where �T is the isothermal compressibility. It has been shown
that above 100 K, the linear thermal expansion coefficient
calculated for the Tersoff model is higher than the experi-
ment, while that from the ED model is lower than the
experiment.13 These results reflect stronger anharmonic
forces for the Tersoff model and weaker anharmonic forces
for the ED model, consistent with our conclusions about the
lattice thermal conductivity obtained from these models, as
described earlier.

The unsatisfactory results obtained from the EIPs consid-
ered raises the question of whether a set of parameters for
one of these EIPs can be found that provides a good fit to
both the thermal conductivity and thermal expansion data. To
investigate this, we focus on the Tersoff potential. Two pa-
rameter sets have been introduced previously for this poten-
tial; the set used here already in the thermal conductivity
calculations,5 which we refer to as set C, and an earlier
version,6 which we call set B. The most important feature of
the set-B parameters is that they give TA phonon branches
that are much flatter and lie below the measured TA phonon
frequencies. The resulting group velocities of the heat-
carrying TA phonons are much lower, causing a significant
reduction in the lattice thermal conductivity. In addition, the
reduction in TA phonon frequencies produces a pronounced
decrease in the TA mode Grüneisen parameters. As a conse-
quence of this, the linear thermal expansion coefficient cal-
culated for set B lies far below the measured values.

As sets C and B sandwich both the measured thermal
conductivity and linear expansion coefficient one might hope
that a mixture of these parameter sets could be found that
produces good agreement with the relevant data. We have
found several such sets. The simplest of these that also gives
the best results is obtained by using all of the set B
parameters6 except one; the parameter h=0.0 in set B is
changed to its value in the C parameter set: h=−0.60. Such a
modification has been shown to produce good agreement
with the measured linear thermal expansion coefficient.14 We
refer to this new parameter set as set B*. This change in-
creases the strength of the bond-bending forces, which pro-
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duces an increase in the TA phonon frequencies14,34 com-
pared to those obtained from Set B.

Figures 7 and 8 present the lattice thermal conductivity
for isotopically enriched Si and the linear thermal expansion
coefficient as a function of temperature calculated for sets B,
C, and B* compared to the experimental data of Refs. 24 and
35, respectively. It is evident from the figures that the param-
eter set B �dashed lines� lies far below both the measured
lattice thermal conductivity and the linear thermal expansion
coefficient, while set C �dashed-dotted lines� lies above
them. Set B* �solid lines� provides a much better fit to both
sets of data.

Table I gives some calculated mode Grüneisen parameters
at high-symmetry points for the three parameter sets com-
pared to the measured values from Ref. 36. Note that the TA
mode Grüneisen parameters for set B* at the X and L points
are considerably closer to the experimental values than those
for sets B and C.

While the parameter set B* gives very good agreement
with the lattice thermal conductivity and thermal expansion
data, it does not give the correct bond length or cohesive
energy. Specifically, we find a decrease in the bond length
�and the lattice constant� of Si of about 0.5%, leading to an
increase in the cohesive energy per atom of about 4%. All
other parameter sets we investigated that produced relatively
good agreement with the thermal conductivity and thermal
expansion data suffered from the same deficiency. Presum-
ably, calculations of other materials properties such as defect
energies fit well by the set B and set C data5,6 will also not be
fit as well be set B*. Such an investigation is beyond the
scope of this work.

In conclusion, we have calculated the lattice thermal con-
ductivity of silicon using second- and third-order force con-
stants obtained from Stillinger-Weber, Tersoff, and ED em-
pirical interatomic potentials.1,5,10 We solve the full inelastic-
phonon Boltzmann equation, including anharmonic phonon-
phonon, isotopic impurity, and boundary scattering using an
iterative approach. We find that at low temperatures where
boundary scattering and scattering by isotopic impurities
dominate, the thermal conductivity is well described by all
three models. However, at higher temperatures where
phonon-phonon scattering dominates, the three models give
thermal conductivities that are significantly larger than the
measured ones.

The failure of these models is in part a consequence of
their overestimate of the TA phonon frequencies and the cor-
responding group velocities away from the zone center. The
strong anharmonicity of the Tersoff model and the increase
in the phase space for three-phonon scattering that occurs for
the ED model cause these two EIPs to give better results for
the thermal conductivity than those obtained from the SW
potential.

For the Tersoff model, we are able to obtain significantly
improved agreement with the measured thermal conductivity
by considering a modified parameter set. This parameter set
provides a better overall fit to the TA phonon frequencies
throughout the Brillouin zone than the two parameter sets
considered previously.5,6 We show that this set also provides
improved agreement with the mode Grüneisen parameters
and the linear thermal expansion coefficient.

We note that lattice thermal conductivity is significantly
more complex to describe theoretically than are the mode
Grüneisen parameters and the linear thermal expansion coef-
ficient. This is because the thermal conductivity depends on
the phase space for three-phonon scattering and on a solution

TABLE I. Mode Grüneisen parameters for the Tersoff EIP cal-
culated using three different parameter sets as described in the text
and compared to experimental values from Ref. 36.

Set B Set C Set B* Experiment

�LTO��� 1.33 1.32 1.39 0.98±0.06

�TA�X� −6.46 −0.20 −0.91 −1.4±0.3

�TO�X� 1.66 1.60 1.71 1.5±0.1

�TA�L� −3.13 −0.31 −1.24 −1.3±0.3

�TO�L� 1.48 1.45 1.55 1.3±0.2

FIG. 7. Calculated lattice thermal conductivity of isotopically
enriched silicon using the Tersoff EIP for three parameter sets, as
described in the text. Set B �dashed line�; set C �dashed-dotted line�;
set B* �solid line�; experimental data from Ref. 24.

FIG. 8. Calculated linear thermal expansion coefficient for sili-
con using the Tersoff EIP for three parameter sets, as described in
the text. Set B �dashed line�; set C �dashed-dotted line�; set B*

�solid line�; experimental data from Ref. 35.
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of the phonon Boltzmann equation. The fact that the Tersoff
and ED models give almost identical thermal conductivities
�see Figs. 5 and 6� but vastly different thermal expansion
coefficients13 reflects the fact that the dependence of these
quantities on the harmonic and anharmonic forces is differ-

ent. It is a stringent test of any theory to provide good
agreement with both. Finally, it is worth noting that the con-
tribution from higher-order phonon-phonon processes should
be negligible in the temperature range considered in this
work.37
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