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Order-disorder effects on equation of state �EOS� properties of substitutional binary alloys are investigated
with the cluster variation method �CVM� based on ab initio effective cluster interactions �ECI�. Calculations
are applied to the fcc based system. Various related quantities are shown to vary with concentration around
stoichiometry with a surprising “W shape,” such as the thermal expansion coefficient, the heat capacity, and the
Grüneisen parameter, due to configurational ordering effects. Analysis shows that this feature originates from
the dominated behavior of some elements of the inverse of Hessian matrix, and relates to antisite defects
occurring around stoichiometric compositions. This kind of strong compositional effects on EOS properties
highlights the importance of subtle thermodynamic behavior of order-disorder systems.
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I. INTRODUCTION

The equation of state �EOS� is a primary but important
property to understand materials behavior. Although the
theory of the EOS for elemental substances is well-
developed in both the ordinary density1,2 and the abnormal
density region,3,4 its extension to alloys and compounds is a
rather recent development5 and some interesting results have
been obtained.6 It has been understood that ordering and dis-
ordering process have considerable effects on phase stability
and thermodynamic behaviors of materials, as well as on the
EOS, of course. For example, the pressure is increased con-
siderably due to the order-disorder transition along the Hugo-
niot in Ni3Al.6 However, this effect on the EOS was inves-
tigated only at constant composition. Initial calculations have
pointed to surprising compositional variations in the heat
capacity.7,8 Though these calculations dealt with simple mod-
els and some important contributions were ignored, a theo-
retical analysis showed that the so-called “W shape” of heat
capacity around stoichiometric compositions is a general fea-
ture of ordered alloys9 and similar phenomena can be ex-
pected for other thermodynamic quantities.

First-principles calculations based on density functional
theory �DFT� have received much attention for the study of
alloy phase stability with contributions from chemical
effects10 and lattice vibrations.11 For the EOS, first-principles
results are not as accurate as might be expected,12 mainly
because of the large error in calculating the bulk modulus of
transition metals and the difficulty to accurately account for
lattice vibrations and local distortions. However, the preci-
sion of current ab initio results is high enough for making
definite predictions, and will be employed in this work to
derive effective cluster interactions �ECI�.

For a full understanding of the properties of alloys,
knowledge of formation free energy alone is not completely
sufficient. The information of the EOS is essential for under-
standing mechanical and thermodynamical properties during
adiabatic compression and so on. Thus all Gibbs free energy

contributions must be considered.5 A combination of the
cluster expansion method �CEM� and the cluster variation
method �CVM� provides a natural and feasible approach to
evaluate the EOS of alloys and solid solutions, in which
configurational effects are included explicitly. The effects of
ordering and disordering process can be modelled directly in
this framework by variation principle of minimizing Gibbs
function with respect to volume and correlation functions. It
is necessary to point out that unlike vibrational and elec-
tronic excitations, excitations associated with short or long
ranged order have large energy barriers so that nonequilib-
rium states are easily reached. Therefore, it is quite suitable
to separate out the effect of ordering on the thermal proper-
ties.

In this paper we calculate order-disorder effects on the
EOS and related thermal quantities for binary fcc Ni-Al al-
loys using ab initio chemical and lattice vibrational contri-
butions. The methodology of our calculations is discussed
briefly in the next section. The model to approximate the
contribution of lattice vibrations is described and ordering
corrections to the thermal expansion coefficient, heat capac-
ity at constant pressure, Grüneisen parameter and so forth are
derived and calculated. The implications of the strong com-
position dependence are discussed.

II. METHODOLOGY

For substitutional binary alloys, the Gibbs free energy can
be written as

Ĝ = �
i
��vi�V� + wi�V,T�� · �i + kBT

��
�i

a�i
Tr�i

��i
log ��i

+ PV� , �1�

where the summation is over all types of clusters, a�i
is the

möbius inversion coefficient of cluster �i of type i which
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satisfies a�i
=����i

� �−1���/�i�, the prime indicates the summa-
tion is restricted by maximal clusters; ��i

is the density ma-
trix of cluster �i and is related to correlation functions �i by

��i
= ��i

0 	1 + �
�j��i

�j��

� j��j
, ��i

0 = 2−��i�.

Here ��j
is the cluster occupation variable and ��i� is the

number of sites contained in the �i cluster.13 The chemical
and vibrational effective cluster interactions �ECI� vi�V� and
wi�V ,T� are derived by a generalized Connolly-Williams
procedure14 with cohesive energies and vibrational free en-
ergies of a set of superstructures,

vi�V� = �
S

��i
S�−1ES�V� , �2�

wi�V,T� = �
S

��i
S�−1Fv

S�V,T� . �3�

The superscript S denotes the superstructures and ��i
S�−1 is

the general pseudo-inverse, i.e., the Moore-Penrose inverse
of the correlation function matrix, which gives the least
squares solution for overdetermined systems of equations.15

The vibrational free energy of each superstructure is de-
scribed approximately by Debye-Grüneisen �MJS� model16

Fv�V,T� = 3kBT ln�1 − exp�− 	D/T��

− kBTD�	D/T� +
9

8
kB	D, �4�

where kB is Boltzmann’s constant and D is the Debye func-
tion. The Debye temperature is approximated as16

	D = �c · dAl + �1 − c� · dNi��BV1/3

M
�1/2

, �5�

where B is the bulk modulus as determined from the cohe-
sive energy curve, M is the atomic weight, and c is the con-
centration of Al. Scaling factors dAl and dNi are determined
from experimental 	D’s of constituent elements at ambient
condition, respectively �423 K for Al and 427 K for Ni�, to
remedy this model for transition metals and their alloys. One
should be noticed that the linear prefactor in Eq. �5� is just a
semiempirical way to improve the agreement between calcu-
lated and measured Debye temperatures for the pure ele-
ments. The Debye temperature still depends in a nontrivial
way on the state of order in the alloy through the bulk modu-
lus B and the atomic volume V. It is necessary to point out
that the Debye-Grüneisen model is a little crude. It does not
have the capability to model the phonon density of state
�DOS� at high frequencies properly, which results in inaccu-
rate vibrational entropy difference among phases. However,
this is not so serious because the contribution from the vi-
brational energy becomes more important than entropy for
EOS calculations and the Grüneisen parameter is dependent
mainly on low frequencies part of phonon DOS. A much
more severe limitation of this model is that for cluster ex-
pansion procedure Eq. �5� sometimes will become ill-
defined, even breaks down completely when the atomic vol-

ume is beyond the inflection point of the cohesive energy
curve where the bulk modulus B=0. Ni-Al alloys exemplify
this case, where at the Al-rich region, the equilibrium volume
is beyond the inflection point of the Ni cohesive energy and
the bulk modulus and Debye temperature cannot be defined
properly. Therefore, in order to use the Debye-Grüneisen
model, a certain hydrostatic pressure must be applied to re-
duce the size difference between Ni and Al. In this paper, a
pressure of 30 GPa is used.

The equilibrium Gibbs function is obtained by the varia-
tional principle

G = �Ĝ��Ĝ/��i=�Ĝ/�V=0. �6�

Then the EOS and other related quantities can be derived
directly. In the framework of CVM+CEM, these quantities
are calculated by numerical differentiation. For example, the
thermal expansion coefficient at composition c, temperature
T0, and pressure P0 is evaluated using the formula

��c,T0,P0�

=
1

V�c,T0,P0��V�c,T0 + 
T,P0� − V�c,T0 − 
T,P0�
2
T

� .

�7�

Other quantities, the compressibility �, heat capacity at con-
stant pressure CP and isobaric EOS parameter R3,4 can be
calculated analogously with

� = −
1

V
	 �V

�P



T
, �8�

CP = 	dH

dT



P
, �9�

R =
P

CP
	 �V

�T



P
. �10�

The isochoric EOS parameter �i.e., Grüneisen parameter� �,
and the coefficient of pressure �, however, must be com-
puted indirectly via other thermal quantities because it is
impossible to fix volume when the equilibrium Gibbs free
energy is obtained variationally. Generally, the Grüneisen pa-
rameter can be obtained with

� =
�V

�CV
, �11�

where the heat capacity at constant volume is given by CV
=CP−TPV�� and the coefficient of pressure �=� / P�.

III. CALCULATIONS AND DISCUSSIONS

A. Ab initio calculations and phase diagram

Cohesive energies of some hypothetical Ni-Al fcc-based
superstructures have been listed in Ref. 5. Here the cohesive
energies of some additional structures are given as computed
with CASTEP �Refs. 17 and 18� with the generalized gradi-
ent approximation �GGA� �Ref. 19� for fcc lattice parameters
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from 2.8 to 4.8 Å. The calculations employ ultrasoft
pseudopotentials20 with a cutoff kinetic energy for plane
waves of 540 eV. Integrations in reciprocal space are per-
formed in the first Brillouin zone with a k-point grid with a
maximal interval of 0.03 Å−1 as generated with the
Monkhorst-Pack21 scheme. The energy tolerance for the
charge self-consistency convergence is 2 eV/atom for all
calculations. Cohesive energies at different lattice parameters
are extracted from the total energies by subtracting the spin-
polarized energies of isolated atoms. Then, they are fitted to
Morse-type energy functions which are used to derive ECIs.

The calculated equilibrium lattice parameters and cohe-
sive energies at zero pressure are listed in Table I. NR40 and
C2/m are the most stable structures. We have tried to calcu-
late the ground states and phase diagram at finite temperature
with CEM and CVM approach13,22,23 with the tetrahedron-
octahedron �T-O� approximation by inclusion of these new
structures with those listed in Table II of Ref. 5. However, it
fails due to the relative order of stability of superstructures is
modified by the CEM procedure. Although the use of the T-O
approximation could, in principle, improve the accuracy of
the results, we found that an accurate fit of a cluster expan-
sion within the T-O approximation that correctly reproduces
the ground states would have required a much larger number
of input structures. The T-approximation, however, was
found to be able to reproduce the known ground states in the
studied systems, thus capturing their qualitative behavior,
which is enough for the purpose of this work.

After excluding the Z2 and C2/m �Ni4Al2� structures
from above mentioned superstructures, a set of ECIs �Ref.
24� is derived within the T-approximation �using 12 super-
structures� that faithfully produces the correct ground states.
The corresponding phase diagrams at a hydrostatic pressure
of 30 GPa are plotted in Fig. 1, where horizontal lines indi-
cate the temperatures at which the configurational correc-
tions of the EOS properties have been calculated as functions
of composition. Here global relaxation �for the elastic energy
partially� is taken into account, which is responsible for the
phase separation at the Al-rich side; and hydrostatic pressure
is implemented to reduce the size difference between Ni and
Al so that the CEM bulk modulus of the pure phases is well
defined. For comparison, the phase diagram without vibra-
tional contribution is presented also. It is seen that order-
disorder transition temperatures of L12 and L10 are slightly
lowered by vibrational contributions, but less than 100 K.

Considering that including vibrations through anharmonity
causes a volume expansion, it appears that in actuality the
effect of vibrations on the order-disorder temperatures is
even less. Therefore, vibrational effects on phase diagram of
fcc Ni-Al appear very minor, in agreement with that inferred
from first-principles calculations of the vibrational entropy.25

However, when bcc-based structures are included, this state-
ment might have to be reconsidered.26

B. Order-disorder effects on EOS quantities

Generally, thermal expansion of materials originates from
anharmonic lattice vibrations. However, in the case of alloys,
configurational effects are another source of thermal expan-
sion, although its magnitude is not as large as that of vibra-
tions. Figure 2 shows the configurational excess thermal ex-
pansion coefficient �, computed at fixed temperatures of

TABLE I. Cohesive energies of fcc superstructures at 0 GPa.

Structure cAl

Ecoh

�eV/atom�
a

�Å�

C2/m 0.333 −4.779 3.578

MoPt2 0.333 −4.725 3.588

L11 0.5 −4.412 3.681

Z2 0.5 −4.232 3.703

NR40 0.5 −4.617 3.652

C2/m 0.667 −4.203 3.770

MoPt2 0.667 −4.224 3.768

FIG. 1. �Color online� The phase diagram of fcc NiuAl in the
T approximation with elastic relaxations included. For comparison,
both with and without vibrational effects are shown.

FIG. 2. �Color online� Thermal expansion coefficient of Ni-Al
alloys without vibrational contributions as a function of composi-
tion. Solid lines are for single phases and dotted curves are for
metastable/coexisting disordered phases.
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2100, 2650, 2950, and 3350 K, respectively, as indicated in
Fig. 1. Stable and unstable phases and two phase regions can
be found easily from Fig. 1. It is evident that for the meta-
stable fcc phase, increasing temperature always decreases �,
reflecting the loss of short range order. This might suggest
that ordering increases �. However, for stable ordered phases
�L12 and L10�, � increases with temperature. This apparent
contrast can be understood when realizing that disordering in
the ordered state accelerates as the temperature increases.
Some other details are particular interesting. The most no-
ticeable features are the peaks and wings around stoichio-
metric compositions. According to Sluiter and Kawazoe9 this
is due to antisite defects near stoichiometry. The second re-
markable feature is that at low temperatures, � of the ordered
phase is much smaller than that of the fcc phase. However,
when the temperature approaches the order-disorder transi-
tion temperature Tc, � in the ordered state rapidly increases
and greatly exceeds the disordered �. This leads to a sharp
drop in � at Tc when order-disorder transition is completed.
Actually, according to Eq. �7� and the fact that order-disorder
transitions on fcc lattice are always first order, which results
in a jump of volume at Tc, we can conclude that � diverges
at Tc and has a steeper drop on disorder side. The same
conclusion is also valid for heat capacity, but not for com-
pressibility, since pressure also jumps at Tc and with Eq. �8�
the compressibility has a finite value at Tc.

These observations still are valid when vibrational contri-
butions are included, as is shown in Fig. 3. Including vibra-
tions now lead to � of the disordered phase that consistently
increases with temperature. The � curves also become more
smooth with increasing temperature. The difference between
� of the ordered and disordered phases is enhanced a little by
lattice vibrations. Simultaneously, the peaks near stoichio-
metric compositions become less pronounced than those in
Fig. 2. In Fig. 3, 
�1 is the difference between the � of Ni
and that of Al at 2100 K, and 
�2 is the increment of � of Ni
when temperature raised from 2100 K to 2650 K. It is seen
that their values are not so large and are comparable with the

difference of � between ordered and disordered phases. This
kind of variation of � �curves in Fig. 3� as a function of
composition and temperature due to ordering/disordering
process has not been reported before. Considering that actual
materials generally are not perfectly single phases with ho-
mogeneous composition, the strong composition dependence
of the thermal expansion coefficient might contribute to ther-
mal stresses in alloys �the same conclusion is also valid for
mineral crystals�.

The EOS parameter R �for isobaric� and � �Grüneisen
parameter, for isochoric� are also modified by configurational
corrections. The variation of the former with Al concentra-
tion is plotted in Fig. 4. The Grüneisen parameter has a shape
very similar to the EOS parameter R when vibrational con-
tributions are excluded. It is evident that the effect of short-
range ordering is very strong. In contrast, long-range order-
ing corrections are very limited, just a slightly lower �higher�
R in the L12 �L10� single phase region.

Remarkably, there are two points �a and b in Fig. 4�
where R appears constant with temperature for the meta-
stable fcc phase at both sides of the L10 phase. However,
these points do not occur when lattice vibrations are included
and we believe they have little significance for materials be-
havior.

When lattice vibrations are taken into account the behav-
ior of the isochoric and isobaric EOS parameters changes
significantly. Figure 5 shows the isochoric EOS parameter as
a function of the Al concentration at different temperatures.
The cross points a and b in Fig. 4 are removed by vibrational
effects. The upset “W-shape” �pointed out by arrow� appears
near stoichiometry. Although � of the L10 is rather tempera-
ture independent, � of the L12 phase is not. This is probably
due to the order-disorder transformation of the L12 phase in
the displayed temperature range. Above the order-disorder
temperature � attains a higher value again, as the 2950 K
data shows �line c in Fig. 5�. This kind of rapid change of the
Grüneisen parameter explains the sudden increase in pres-
sure during an order-disorder transition in Ni3Al.6

FIG. 3. �Color online� Thermal expansion coefficient of Ni-Al
alloys with vibrational contributions at different temperatures. The
dotted lines denote the metastable/coexisting region of the disor-
dered phase.

FIG. 4. �Color online� Isobaric EOS parameter R as a function
of Al concentration, without vibrational contributions. Dashed-
dotted lines indicate those of the fcc phase at 2650, 2950, and
3550 K, respectively.
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The heat capacity at constant pressure CP has a very simi-
lar shape as that of the thermal expansion coefficient. It sug-
gests there is a common underlying cause. The variation of
CP with Al concentration and temperature is shown in Fig.
6.27 Its variation with concentration �including the peaks and
wings� and with temperature is considerable, which would
enhance the inhomogeneous temperature distribution during
heat treatments of alloys.

The compressibility � is an important property to model
compression behavior of materials under high pressures. It is
related to the bulk sound velocity via a simple thermody-
namic relation. Order/disorder process has little effect on �.
It is slightly lower in the ordered phases than in the disor-
dered fcc phase, as shown in Fig. 7. Thus, long-range order
has little influence on the bulk sound velocity. However, a
deviation from linearity due to short-range order is apparent.
For the bcc lattice, it must be pointed out that the situation is
somewhat different. We have in fact observed that both

strong short- and long-range order effects are presented
there, whereas the “W-shape” is still absent �not shown
here�.

To better understand the behavior of alloys mentioned
above, it is helpful to decompose the Gibbs free energy of
formation into contributions such as internal energy, vibra-
tional entropy, configurational entropy and volume differ-
ence times pressure, respectively. The formation Gibbs free
energy is defined relative to that of the mixing model,
namely, the mechanical mixture of the ingredients as


G�T,P� = G − �cAlGAl�T,P� + �1 − cAl�GNi�

= 
E + P
V − T
Svib − TScvm. �12�

The magnitudes of each partial Gibbs free energy of forma-
tion at 2100 K and 30 GPa are shown in Fig. 8. The internal

FIG. 5. �Color online� The Grüneisen parameter as a function of
Al concentration at different temperatures. Vibrational contributions
are included.

FIG. 6. �Color online� The heat capacity at a constant pressure
of 30 GPa for Ni-Al alloys with vibrational contributions included.
Notice the similarity with the thermal expansion coefficient.

FIG. 7. �Color online� The compressibility at 30 GPa of Ni-Al
alloys with vibrational contributions included. The dashed-dotted-
dotted line indicates the linear interpolation. For the mechanical
mixture model � is slightly upwards protruding.

FIG. 8. �Color online� The partial Gibbs free energy of forma-
tion at 30 GPa and 2100 K for the fcc Ni-Al system. Dotted lines
indicate metastable/coexisting phase regions.
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energy is the largest contribution, followed by the volume
difference and configurational entropy terms. The vibrational
entropy difference is much less and almost negligible. The
sharp turns in the curves of internal energy and configura-
tional entropy in the ordered single phase region suggest a
connection to the “W-shape” of the EOS properties.

Variations of the EOS quantities as functions of tempera-
ture, pressure, and concentration are determined completely
by the Gibbs free energy as a functional of volume V and
correlation functions �i �after integrating out other degrees of
freedom, say, the concentration c�. By defining a vector vari-
able �0=V and �i=�i, �i=1,2 , . . . �, and using the variational
condition �G /��=0, one obtains

	 ��

�T



i
= �

j
	 �2G

����



i,j

−1� �H

T��
−

�2H

�T��
+ T

�2S

�T��
�

j
,

�i, j = 0,1,2, . . . � , �13�

where H is enthalpy and S the entropy including vibrational
contributions. ��2G /�����−1 is the inverse of the Hessian
matrix with subscripts i and j labeling matrix elements. Us-
ing this relation, the heat capacity CP is given by

CP = 	dH

dT



c,P
=

�H

�T
+ �

i
	 �H

��i



c,P
	 ��i

�T



c,P

=
�H

�T
+ �

ij
	 �H

��



i
	 �2G

����



i,j

−1

�� �H

T��
−

�2H

�T��
+ T

�2S

�T��
�

j
. �14�

Here the subscripts c, P indicate that both composition c and
pressure P are constants. Similarly, the thermal expansion
coefficient � is expressed as

� =
1

V
	 �V

�T



P
=

1

V
�

i
	 �2G

����



0,i

−1� �H

T��
−

�2H

�T��
+ T

�2S

�T��
�

i
,

�15�

and Grüneisen parameter � is related to the correlation func-
tions via Eq. �11� where the heat capacity at constant volume
CV is given by

CV = 	dE

dT



c,V
=

�E

�T
+ �

ij
	 �E

��



i
	 �2F

����



i,j

−1

�� �E

T��
−

�2E

�T��
+ T

�2S

�T��
�

j
, �16�

where F is the Helmholtz free energy and E the internal

energy. These relations indicate that the “W-shape” is di-
rectly related to the behavior of inverse Hessian matrix.
Some of its elements dominate the detailed thermodynamical
behavior of alloys, mainly from the variation of Gibbs free
energy with respect to correlation functions.28 In contrast to
the previously mentioned properties, the compressibility is
determined only by the variation of free energy with respect
to volume

�−1 = V
�2F

�V2 . �17�

It is unrelated to any correlation functions, and then the “W-
shape” is also absent, as shown in Fig. 7, so as for the bulk
sound velocity on bcc-based phases. As the “W-shape” com-
position dependence is governed mainly by the general be-
havior of the inverse of Hessian matrix with respect to cor-
relation functions for order-disorder systems, the conclusions
drawn here should be valid also for other system, e.g., inter-
stitial alloys and mineral crystals.

IV. CONCLUSION

The variation of EOS quantities as functions of concen-
tration and temperature as calculated with ab initio ECIs was
presented. The “W-shape” in the composition dependence
around stoichiometry is observed for several important prop-
erties. Analysis shows that this kind of behavior is related to
the behavior of the inverse of Hessian matrix with respect to
correlation functions. This explains the similarity in behavior
of the heat capacity and the thermal expansion coefficient,
and the absence of the “W-shape” near stoichiometry for the
compressibility and the bulk sound velocity. The strong com-
position dependence near stoichiometry due to configura-
tional corrections has not received much attention before and
may be helpful for understanding subtle phenomena in alloys
and mineral crystals. The configurational corrected Grü-
neisen parameter is also shown to have strong composition
dependence near stoichiometry around Tc. This suggests that
the EOS of order-disorder systems is much more compli-
cated than previously expected and that configurational ef-
fects cannot be neglected.
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