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The influence of shock waves on the bcc ground state, the metastable � phase, and quasicrystal structures of
the Dzugutov potential �Phys. Rev. A 46, R2984 �1992�� has been studied by molecular dynamics. In general,
a phase transition is observed to the well-known high-pressure fcc- or hcp-phase. The details of the phase
transition and the perfection of the created phases depend on the orientation of the shock wave propagation
direction with respect to the symmetry axes. The results are in good qualitative agreement with recent simu-
lations with embedded atom method potentials designed specifically for iron. For the quasicrystal we observed
flips, a new plasticity mode predicted for these structures. Furthermore we will report the results for an
amorphous structure supplied with the same potential. No crystallization takes place in this case, indicating that
it is easier to shift atomic layers collectively than to order the atoms one by one.
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I. INTRODUCTION

Shock wave experiments and simulations are useful tools
to expose a solid-to-strong uniaxial stress and to study plas-
ticity induced by defects or phase transitions without prior
assumptions about the possible mechanisms. The action of
shock waves has been explored in monatomic crystals to
some depth,1,2 and a first understanding of the basic pro-
cesses has emerged.3 The generation of partial dislocations
and stacking fault type defects in fcc crystals could be
clarified.4 Results for the plasticity of other structures, such
as bcc iron for example, are also available now.5

The purpose of the present study is to find out whether
monatomic quasicrystals behave differently than crystalline
materials if they are penetrated by shock waves. Most natu-
rally occurring quasicrystals are ternary alloys. Stable binary
quasicrystals have been discovered only very recently.6

Shock waves in binary quasicrystals have been studied, and
it was found that the results for quasicrystals and crystals
depend primarily on the atomic interaction and not on the
structure.7

From a fundamental point of view it is more interesting,
however, to study models as simply as possible, i.e., mon-
atomic quasicrystals. But the number of such models is
rather limited if generic interactions are favored. The crucial
point is the packing density. There is the unit sphere packing
model of Henley8 with a density of 0.6288, still worse than
the random close packing at 0.6366. Treated as a quasicrystal
with Lennard-Jones interactions, the structure is metastable
only up to 10% of the melting temperature of the ground-
state fcc crystal.9,10 It is the only promising monatomic
icosahedral quasicrystal model known to us. Henley’s
twelvefold site model8 has a much lower packing density and
so is even less stable. Other models are layered quasicrystal-
line, which are periodic in one direction. The decagonal
model of Cockayne and Mihalkovič11 has a packing density
of 0.6953, higher than the icosahedral model and larger even
than bcc. But it also transforms into fcc upon heating if the
atoms interact via Lennard-Jones potentials. Finally there is a
dodecagonal quasicrystal model with Dzugutov-potential in-
teractions. Its phase diagram has been studied in detail.12,13

Although Dzugutov14 has obtained a quasicrystal by cooling
a melt, it is not a ground state for this interaction at zero
temperature. Another crystal structure, namely the � phase,
which may be regarded as a low-order quasicrystal approxi-
mant, is more stable than the quasicrystal. But even more
stable and the true ground state at zero temperature is a bcc
crystal. The stable structures at high pressure and low tem-
perature are even close-packed fcc phases or hcp phases.
Upon heating at low pressure, bcc, the � phase, and the
quasicrystal phases are stable up to rather similar melting
temperatures. This is the reason why shock-wave simulations
have been carried out with these structure models and the
Dzugutov potential.

The work is being described in two papers. Here we
present the results of shock wave simulations in the different
structures stable with Dzugutov interactions. In a second
paper15 �called paper II in the following� we concentrate on
the phenomenon of solitary waves observed especially in the
bcc structure shocked along the threefold axis and discuss in
detail the hexagonal � phase,16 a typical product of a bcc
lattice instability. The present paper is organized as follows.
We first describe the simulation setup and the structure mod-
els. The next sections contain the results for each of the
models and for the different orientations, followed by a short
account of the soliton phenomenon. A thorough discussion of
the latter will be given in the second paper. We close with a
discussion of the results.

II. GENERATION OF THE SHOCK WAVES
AND SIMULATION SETUP

A. The structures

Shock waves have been generated in three-dimensional
dodecagonal quasicrystals, in the Frank-Kasper-type � phase
and in bcc crystals. The bcc structure may be regarded as a
tetrahedrally close-packed �tcp� phase and therefore has
some similarity to the Frank-Kasper phases. From this point
of view, bcc contains disclinations where six tetrahedra meet
along a common edge and antidisclinations where four tetra-
hedra meet, whereas ordinary Frank-Kasper phases contain
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disclinations only. The � phase is such an ordinary Frank-
Kasper phase with squares and triangles as basic motives.
The � phase and other related phases together with dode-
cagonal quasicrystals have been described in detail by
Roth.12 Here we will recollect only the most important as-
pects of the structure.

The unit cell of the � phase can be subdivided into build-
ing blocks that look like two regular triangles and two
squares if projected onto the basis plane perpendicular to the
fourfold direction �Fig. 1�. The building blocks will be called
tiles in the following and we will simply speak of squares
and triangles. Two squares and three triangles meet at each
vertex in such a way that the squares have no common edge.
The arrangement of the atoms can be read off from Fig. 1.
The vertices of the squares and triangles are decorated with
atoms at z=0 and z= 1

2 �dotted circles�. These are the basic A
layers. The edge centers of the squares are alternatively
decorated at z= 1

4 and z= 3
4 �filled and empty circles�. The

interior of the squares contains four additional atoms. Atoms
nearest to each other in projection are placed in different
layers. The atoms at the edge centers of the triangles are all
either at z= 1

4 or at z= 3
4 , the interior atom is again in the layer

not occupied by the edge atoms. The atoms at z= 1
4 and z

= 3
4 form the B and B̄ layers, respectively, locally equivalent

up to translations and rotations. The atoms at the vertices of
the tiles are 14-fold coordinated, while the atom in the center
of the triangles is 15-fold coordinated. The remaining atoms
on the edges and in the interior of the square are 12-fold
coordinated nonregular icosahedra. Since all coordination
shells have a triangular surface, all atoms are tetrahedrally
close packed.

Other combinations of squares and triangles are also pos-
sible. There are three additional phases in which all vertices
are of the same type.19 They are presented in Fig. 1. These
phases are less stable than the � phase, so they will not be
considered further in this paper. If more than one vertex type
is allowed, the number of possible phases grows very rap-
idly, even for crystalline structures.20

The quasicrystal is built of the same square and triangle
tiles. We have studied random tilings only in this paper al-
though it is possible to construct perfect quasicrystals with
the help of matching rules or by inflation. In the quasicrystal
model, the tiles of the primary layer are arranged in such a
way that the structure has dodecagonal symmetry on aver-

age. The B and B̄ layers have hexagonal symmetry only.
They are mapped onto one another by the 12-fold symmetry.
It is possible to introduce additional tiles, for example the
hexagons �see Fig. 2�, and to construct more general quasi-
crystalline structures, but they will not be considered here
since these configurations are not as stable as the pure
square-triangle tiling.

Additional tiles are found in crystalline samples already
�see Fig. 2�. Especially rhombi may occur as localized de-
fects or represent grain boundaries. The rhombi are not stable
if they occur in pairs or larger aggregates. The two hexagons
have not been observed in crystals. They may be viewed as
transition states that can split into the other tiles.

Figure 3 represents a special approximant of a quasicrys-
tal, which has been chosen such that most of the tiles and
vertex configurations are present.

B. Orientation of the samples

For the simulation of shock waves it is necessary to apply
periodic-boundary conditions. Otherwise the pressure from
the shock wave leads to rapid transverse disintegration. The
direction of the shock wave has to be parallel to one of the
boundary axes, for example, the x axis. This limits the pos-
sible �quasi-�crystalline directions along which the shock
wave can travel in the simulations. The quasicrystal, espe-
cially, has to be replaced by an orthorhombic approximant.
Shock waves have been studied in the bcc phase along the
fourfold, threefold, and twofold axes where they are straight-
forward to implement. Shock waves in the square-triangle
quasicrystal have been studied along the periodic axis and in
the quasiperiodic plane. Due to the high 12-fold symmetry
�space group 126/mnm� the quasicrystal is expected to be
elastically isotropic in the plane, and the approximant should

FIG. 1. Possible vertex configurations in square-triangle tcp
phases. From left to right: A phase, Z phase, H phase, and � phase.

FIG. 2. Primary and additional tiles observed in the square-
triangle tcp phases. From left to right: square, triangle, rhombus,
threefold, and twofold symmetric hexagon.

FIG. 3. Part of a dodecagonal quasicrystal. The atoms in the
basic A layers z=0 and z= 1

2 are dotted. The black atoms are in the

B layer at z= 1
4 , the white atoms are in the B̄ layer at z= 3

4 . The edge
length is usually of the order of 2a, the nearest-neighbor distance,
but depends on the interaction between the atoms.
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not deviate too much from isotropy. Shock waves along dif-
ferent in-plane directions should therefore give similar re-
sults. The � phase has space-group symmetry 42 /mnm,
which means that for an ordinary, nearly cubic unit cell with
60 atoms the coordinate axes are parallel to the fourfold axis
and to glide planes n, and the diagonals are parallel to mirror
planes m. A diagonal tetragonal unit cell with 30 atoms is
also possible with the fourfold axis and the m planes parallel
to the coordinate axes. The aspect ratio of these two unit cell
lengths in the plane and along the z direction is such that it is
possible to construct “diagonal” cubic boxes with only minor
distortion of the structure and to rotate them by 45°. In sum-
mary we have studied shock waves in the � phase along the
fourfold axis, along the n and m directions, and along orien-
tations at 45° between the fourfold direction and n and m,
respectively. The directions will be denoted by 0,
n90, m90, n45, and m45. The corresponding Miller indices
are �100�, �001�, �011�, �201�, and ��811�.

C. The Dzugutov potential and phase diagram

Reduced units are used throughout the paper. Lengths are
given in a and energies in �. All other units are converted
into a ,�, and the mass m. Thus we have t0=a�m /�, v0
=�� /m, and P0=� /a3.

Dzugutov has invented his potential17 to study the glass
transition of monatomic liquids. It turns out that the potential
has a number of interesting properties, especially stabilizing
monatomic dodecagonal quasicrystals. It is similar to the
Lennard-Jones potential from the core down to the minimum
at r=1.061a and V=−1�, a being the interatomic distance
�see Fig. 4, left�. The minimum is followed by a maximum at
r=1.5282a and V=0.7906�, designed to disfavor square ar-
rangements of nearest-neighbor atoms prominent in close-
packed crystal structures at ambient pressure. The potential
has a built-in cutoff radius of rc=1.805a. If the density of the

structure is increased, the interatomic distances shift and the
close-packed structures becomes more favorable than bcc
and the � phase.

The phase diagram of the Dzugutov potential has been
determined by means of molecular dynamics simulations and
thermodynamic perturbation theory12 and improved recently
by direct free energy calculations at low temperatures18 �see
Fig. 4, right�. It turns out that the bcc phase is the ground
state only in a very small triangular pocket between kT=0,
P=0; kT=0.4�, P=0; and kT=0, P=5.5P0, but is metastable
in the whole range of stability of the � and quasicrystal
phases. Close-packed phases with different stacking se-
quences are largely degenerate due to the short-range nature
of the potential, which ranges only up to the third neighbor
shell. These phases are stable above about P=6P0. The
phase boundary moves slowly to higher pressures with in-
creasing temperature and reaches P=10P0 at kT=1� �kT
=1.02� is the melting temperature of the � phase and the bcc
phase at P=0�. The � phase seems to be the stable phase
below P=6P0 and above the domain of the bcc phase. Care
must be taken here, however, since with increasing tempera-
ture other tcp phases and especially the quasicrystal phase
may become more stable than the � phase due to the addi-
tional entropy caused by the freedom to �re�arrange the tiles.
The location in the phase diagram where the quasicrystal
phase has been discovered is indeed included in the stability
domain of the � phase.14

D. Sample size and preparation

All simulations have been carried out with the IMD which
means ITAP Molecular Dynamics simulation package.24 The
sizes of the samples depend on the structures and orienta-
tions. Therefore they will not be listed in detail. For most of
the simulations the sample size was about �20�20
�100�a3. The samples contained about 40 000 atoms. To
study the influence of the size of the samples and the propa-
gation time of the shock wave on the results longer
�200a ,300a, and 600a long with up to 250 000 atoms� and
thicker samples ��40�40�300�a3 with 500 000 atoms�
have also been analyzed. The principal results are found to
be independent of the sample sizes. There were minor differ-
ences in the details, but there were no differences, for ex-
ample, in the shock wave propagation velocities or in the
phase transitions.

Equilibrations were performed with the number density
�velocity� time �nvt� Nosé-Hoover and N-P-T Andersen
ensemble. At low temperature and pressure the differences
between nvt and N-P-T equilibration are marginal. Before the
simulation starts, the samples are equilibrated for a time in-
terval of �t=10t0 at a temperature of kT=0.001� and a pres-
sure of P=0.01P0. If the simulations are carried out at el-
evated temperatures, the samples are equilibrated again at the
desired temperature. If necessary, the samples are quenched
to kT=0.0 after simulation to simplify the analysis of the
results.

For the shock simulations a constant number of mol-
ecules, volume, and energy �NVE� ensemble was used. There
are a number of well-established methods to generate shock

FIG. 4. Left: The Dzugutov potential in the parametrization ap-
plied in this work. Right: Semiquantitative phase diagram of the
Dzugutov potential. The stress-temperature curves for shocked
states are presented for materials initially amorphous �Sec. III C 5�
and bcc shocked along the twofold and fourfold axes �Sec. III�. The
curves for other initial structures and directions are similar to bcc.
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waves in simulations.3,21 In the present work we have ap-
plied the momentum mirror method: As soon as the atoms
reach the upper end of the sample, their velocities are in-
verted. Thus the atoms behave as if a second sample is col-
liding with the simulated one. Tests have shown that the
results for the mirror method are equivalent to the simulation
with the collision method. Consequently the boundary con-
ditions are periodic only in transverse direction whereas
open boundaries exist at the end of the sample opposite to
the mirror.

E. Analysis tools for the shocked structures

If the shocked state is monocrystalline as for bcc shocked
along the fourfold direction at low piston velocities, then the
analysis can be carried out directly by visual inspection of
the structures. The stacking sequence can be derived from a
projection of the atoms perpendicular to the distinguished
threefold axis: A zigzag pattern determines hcp; a diagonal
sequence determines fcc. In general we find a mixture of
both.

Usually the shocked crystals are very defective, the lattice
rows and planes are warped and rotated, twins or several
crystallites may exist. A direct distinction between fcc or hcp
or more complicated stackings is no longer possible. The
radial distribution function �RDF� tells us only that a close-
packed phase has been generated �Fig. 5�.

But if the angular distribution function �ADF� is com-
puted for nearest-neighbor atoms only, then it is possible to
distinguish fcc and hcp �Fig. 6� since hcp permits an addi-
tional maximum between 140° and 160° �the angle between
the apex atoms and a base atom of two face-connected tet-
rahedra�. In most cases a mixture of fcc, hcp, and other
stacking sequences is found.

We have tried to quantify the fraction of fcc and hcp using
the common neighbor analysis.22,23 The first difference be-
tween fcc and hcp occurs for the 1421 and 1422 diagrams. In
fcc crystals there are no 1422 diagrams whereas the fraction
of 1421 and 1422 diagrams should be equal for hcp. There is
a problem, however: In amorphous structures, the 1422 are
twice as frequent as the 1421. Thus it is not possible to

distinguish fcc and hcp quantitatively by the 1421 and 1422
diagrams if substantial disorder is present. The inclusion of
other diagrams into the analysis such as 1555, 1544, and
1433 for icosahedral order or the most frequent second-
neighbor diagrams 2333, 2211, and 2100 did not help to
resolve the ambiguities.

III. RESULTS

The stress-temperature behavior of the shocked material
is included in the equilibrium phase diagram �Fig. 4�. The
curves are rather similar for all initial structures as far as a
unique temperature can be defined. This is not the case
within the transition region from unshocked to shocked
where the initial structure is destroyed in several steps and
the final structure has to be formed. For details see Sec. III C.
Thus we do not find a thin shock front to which we could
apply the standard jump conditions. The stresses and tem-
peratures have been determined directly from the simulation
results of the shocked state. The stress-temperature curves
are always very steep and do not cross the melting line up to
very high pressures �P�180P0�.

In the following sections we will present the results of the
shock wave simulations in detail. We will start with the elas-
tic properties of the materials since they form the limiting
case of very weak shock waves where the strength of the
material prohibits the creation of defects. The next step is the
discussion of the relation between the piston velocity up and
the speed of the shock wave us represented in a Hugoniot
diagram. In the mirror method setup the shock velocity is
obtained from the velocity of the sample up and the shock
propagation velocity v observed in the laboratory reference
frame by us=v+ �−up�. The Hugoniot diagram permits a clas-
sification and characterization of different shock wave re-
gimes. The following is a presentation of the phase transfor-

FIG. 5. Typical radial distribution function. The spikes indicate
the neighbor shells for ideal fcc ��� and hcp ��� crystals. Obvi-
ously, these cases cannot be distinguished in the simulation result.

FIG. 6. Typical angular distribution function. The spikes denote
the angles in ideal fcc ���, hcp ���, and bcc �*�, respectively. The
simulation result does not fit to the bcc maxima, but to fcc or hcp.
A distinction between the latter is possible since the maximum be-
tween 140° and 160° is only present in hcp. The conclusion is that
the sample under consideration is preferably hcp stacked. Cases
without a maximum between 140° and 160° have also been
observed.
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mation results grouped together with respect to similar
phenomena.

A. Elastic properties and sound velocities

Dodecagonal quasicrystals behave elastically isotropic
with respect to the quasicrystalline plane, but not with re-
spect to the periodic axis, similar to hexagonal crystals. The
� phase is anisotropic in the square-triangle plane since it
has only tetragonal symmetry. The bcc crystals have cubic
symmetry. The elastic constants determined by quasistatic
uniaxial deformations are presented in Tables I and II. If the
piston wave velocity up goes to zero, the shock wave veloc-
ity tends toward the velocity of an elastic sound wave.

It is important to note that the highest velocities of sound
occur along directions perpendicular to the thinnest crystal
planes, or equivalently, parallel to the densest atomic rows.
These are the directions where the solitary waves �see Paper
II� are most prominent.

B. The Hugoniot relation: us versus up and wave profiles

In the case of shock waves in two-atomic Laves crystals
and quasicrystals,6 three regimes of different behavior of the
shocked materials have been observed. The same is true

here, although at a first glance the Hugoniot diagram �Fig. 7�
looks different: There seem to be only two ranges, separated
at about up=0.25cx, if cx is the uniaxial velocity of sound of
structure x.

The reason is that the elastic first range is very small since
the transition from bcc and � phase to close packed takes
place at about P=5.5−6P0, and this pressure is reached at
0.03−0.05cx. Furthermore no retardation effect is observed.
The elastic wave velocity is difficult to determine since no
sharp wave fronts exist. Therefore it is not included in the
diagram.

In the range between up=0.05 and about 0.2−0.25cx we
observe steady and unsteady wave fronts, depending on the
orientation of the samples and the character of the phase
transition. In this range the shock speed of the uniaxial com-
pression wave is more or less constant whereas the velocity
of the slower transformation wave grows rapidly �Figs. 7 and
8�. It is remarkable that the two wave fronts taken separately
are steady although relaxation and healing of defects occurs
for the second. The wave profile as a whole is not steady
since the different wave fronts have different velocities.

TABLE I. Elastic properties for the bcc phase. The first column
gives the Miller indices, the second the uniaxial elastic modulus,
and the third the velocity of the quasilongitudinal wave. The bcc
crystals are obviously anisotropic.

Direction F�P0 /m� c�v0�

�100� 287.0 16.6

�110� 387.0 19.3

�112� 389.4 19.4

�111� 424.8 20.2

TABLE II. Elastic properties of the tcp phases. The first column
gives the Miller indices; the second and fourth, the uniaxial elastic
modulus; and the third and fifth, the velocity of the quasilongitudi-
nal wave for quasicrystals and the � phase, respectively. The first
three rows contain the results for the perfect samples; the last two
rows list the results for samples that have been distorted to permit
periodic boundary conditions parallel to the 45° direction. A com-
parison of the second and third rows and the fourth and fifth rows,
respectively, shows that the quasicrystal is isotropic within the error
margins whereas the � phase possesses a moderate anisotropy of
the order of 6%.

Quasicrystal � Phase

Direction F�P0 /m� c�v0� F�P0 /m� c�v0�

�100� 298.4 16.8 299.2 16.8

�010� 179.2 13.0 180.4 13.1

�011� 177.0 13.0 203.0 13.9

�201� 216.8 14.3 248.0 15.4

��811� 200.6 13.8 208.2 14.0

FIG. 7. Hugoniot diagram for � phase and quasicrystal simula-
tions. The axes are scaled with the velocities of sound. The lines
serve as a guide to the eye only. The two parallel branches indicate
the beginning and end of the phase transformation.

FIG. 8. Hugoniot diagram for the simulations of the bcc crystal.
The axes are scaled with the velocities of sound. The lines serve as
a guide to the eye only. The two parallel branches indicate the
beginning and end of the phase transformation.
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Above up=0.2−0.25cx the velocities of both waves ap-
proach each other. This part will be called the overdriven
range. If the transition is sharp, as in the case of bcc shocked
along the fourfold direction, a distinction between both
waves no longer exists. In the other cases, especially for bcc
shocked in the threefold or the twofold directions two “trans-
formation” wave fronts are plotted. A first one that indicates
that the initial phase starts to be destroyed and a high-defect
phase is formed, and a second one that indicates the transi-
tion to a low-defect close-packed phase. The situation plotted
in Fig. 8 is typical for short samples. If up=0.3cx, for ex-
ample, both transformation fronts have reached the same ve-
locity after a distance of about 70a and the whole wave
profile has become steady. If up=0.5cx the distance has fallen
to 50a.

Figure 9 displays some representative hydrostatic pressure
wave profiles from all three ranges. In the upper part of the
figure it is found that the pressure rises continuously in the
elastically deformed part and that this part widens as time
goes on. The plastic front, on the other hand, rises sharply
and reaches a steady state. In the lower part of the figure a
comparison is given between the wave profiles in the over-
driven range in the fourfold direction where a direct transi-
tion occurs and the twofold and threefold directions where
the bcc structure is first destroyed and a close-packed phase
is formed subsequently. This double structure corresponds to
the starting and ending of the phase transition as indicated in
Figs. 7 and 8.

In conclusion, in the monatomic system a clear distinction
exists between an underdriven elastic-plastic regime and an
overdriven phase transformation regime for all cases studied,
in contrast to the smooth transition that has been observed in
the simulations of diatomic materials.6

In some cases, especially for shock waves along the three-
fold axis in bcc, additional phenomena are observed which
will be discussed in detail in paper II. In the elastic-plastic

range, a metastable phase is formed that is related to solitary
waves observed in the overdriven range. These effects lead
to additional wave fronts and wave velocities u and may
complicate the analysis of the results. For simplicity, in Fig.
8 the wave crests related to the metastable phase and the
solitary wave trains are omitted.

C. Description of the structural results

Since a lot of structures and orientations have been stud-
ied to get a general overview of the possible mechanisms, it
is not possible to deal with all the cases in detail and to
describe the results in dependence of the piston velocity up.
Instead we will concentrate on a few representative cases,
describe them in detail—especially the dependence on
up—and add remarks about other structures and orientations
where appropriate. We will concentrate on the elastic-plastic
range, since in the elastic range no defects are created and in
the overdriven range the energy stored in the structure is so
high that no low-defect crystals are created during simula-
tion.

1. The fourfold direction

The phase transition from bcc to close-packed phases for
shock waves along the fourfold direction is very special. It is
the only case where a perfect crystal is found after the tran-
sition and an atomically flat interface between bcc and fcc or
hcp is observed. Consequently the pressure profile is steady
and shows a sharp jump at the interface between bcc and the
close-packed phase.

As an example, we present the results for up /c4=0.24 in
middle range. Figure 10 shows the flat interface. The orien-
tation of the close-packed layers is such that a threefold axis
is generated parallel to the shock direction. A twofold axis is
parallel to the face diagonal �Fig. 11, left�. This orientation is
none of the well-known martensitic bcc-fcc orientation rela-

FIG. 9. Wave profiles of hy-
drostatic pressure in the elastic,
elastic-plastic, and overdriven
range. The first three plots are for
the fourfold direction, the lower-
right plot is for a twofold direc-
tion. The profiles in the elastic and
the elastic-plastic regime �upper
part� look similar for all shock
wave directions and initial phases.
The arrows in the lower-left part
indicate the additional wave ob-
served, for example, for bcc
shocked along a twofold direction.
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tionships. The stacking sequence of the layers is more or less
random but sometimes rather pure fcc or hcp sequences oc-
cur. In the right part of Fig. 11, two twins are shown repre-
senting a low-energy type of defect. Due to the periodic
boundary conditions there have to be two interfaces: one at
y=8a and one at y=18a. If the shock wave proceeds, the
twins vanish �Fig. 11, right�. The twin boundaries end at a
dislocation line. We have found that the newly generated
close-packed phase may change several times between
twined and monocrystalline.

The transformed phase remains no longer monocrystalline
when the piston velocity enters the overdriven region. Sev-
eral crystallites are created, and at about up=0.5c4, the defect
density has grown so large that the sample cannot be distin-
guished from a disordered or an amorphous structure.

2. Other directions and structures

Shock waves along the twofold and threefold directions in
bcc, in the � phase, and the quasicrystal along any direction
never lead to a direct transition to the close-packed phase.
Although the statistics and the details may differ, the overall

pattern of the phase transitions is similar. Therefore we will
discuss these cases summarily.

At low shock wave intensity the general picture is that the
initial structure is heavily distorted or destroyed by the arriv-
ing shock front and, at the same time, structure transforma-
tion into the close-packed phase starts.

Two cases can often be distinguished but are usually
mixed up: transverse shifts that appear as a bending of the
atomic layers �Fig. 12�, and more complicated deformations
where atomic layers are rotated around an axis parallel to the
shock direction in addition to the shifts �Fig. 13�. It is re-
markable that there are only kinks in the atomic chains par-
allel to the shock wave direction, but no disruption. Few
pointlike defects occur at low shock wave intensities. The
whole motion of the atoms seems to be well correlated.

FIG. 10. Longitudinal projection of a bcc crystal shocked along
the fourfold direction �up=0.24c4�. The shock wave moves to the
left, the mirror is at the right side at x=100a. The interface between
initial bcc and final fcc at about x=31.5a is flat.

FIG. 11. Transverse cuts through a bcc crystal shocked along the
fourfold direction �up=0.24c4�. The shock front is currently at x
=31a and moves toward x=0 �see Fig. 10�. Left: Slice between x
=50a and x=60a, right: slice between x=75a and x=85a.

FIG. 12. Longitudinal projection of a bcc crystal shocked along
the twofold direction �up=0.125c2�. This is an example where the
lattice planes are shifted perpendicular to the shock wave direction.
The shock wave moves to the left; the mirror is at the right side. A
beginning ABABC stacking sequence is visible near x /a=97.

FIG. 13. Longitudinal projection of a bcc crystal shocked along
the threefold direction �up=0.19c3�. This is an example where the
lattice planes are rotated perpendicular to the shock wave direction.
The shock wave moves to the left; the mirror is at the right side. A
beginning ABABABABABCBCAB stacking sequence is visible be-
tween x /a=87 and x /a=100.
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The final state of material is a close-packed phase with
clearly defined layers perpendicular to the shock direction,
but with several crystallites in the plane. Compared to the
bcc case shocked along the fourfold direction, the close-
packed crystal has no preferred orientation with respect to
the coordinate axes, and it contains many defects and ex-
tended disorder. The details of the phase transformation dif-
fer for the different structures and orientations. Although the
details might be interesting for the study of possible plastic-
ity modes, we have collected only the most important cases
in Table III.

At the end of the sample, close to the mirror, an almost
perfect close-packed crystal is generated �Figs. 12 and 13�.
This part is clearly induced by the mirror that enforces a
layering parallel to the mirror. It is not present if the collision
method is used. Thus it can be regarded as an artifact. The
close-packed phase itself, however, is not a consequence of
the simulation method. First of all, the close-packed phase is
also created in simulations with the collision method, and
second, the close-packed phase is also present in the other
parts of the sample as discussed before, but polycrystalline
with random orientations of the crystallites and with defects.

The effect of higher piston velocity up is similar to the
case of shock waves along the fourfold direction of bcc: the
close-packed phase become polycrystalline, more and more
defects are created, and if up reaches around 0.37 to 0.5cx,
the structure can no longer be distinguished from an amor-
phous material.

3. Flipped configurations in the TCP phases

A phenomenon that is called “phason flip” in quasicrystals
occurs in the tcp structures shocked along a direction that
lies in the basic layer. For simplicity, the phason flips can be
regarded as tile rearrangements and replacements that are
possible in many nontrivial tilings.

Figure 14 shows an example of new rhombi and rear-
ranged tiles in the � phase shocked in m90 orientation. The
orientations of the tiles are always the same, others are not
possible for geometric reasons. In samples shocked in the
n90 orientation the rhombi are oriented with their long diag-

onal parallel to the coordinate axis. In the quasicrystal both
orientations are observed. The threefold symmetric hexagon
has also been seen in some occasions, but the twofold sym-
metric hexagon never shows up, because it is very unstable.
The atomic rearrangements of a flip have been described in
detail by Roth.19 All the atoms along a row perpendicular to
the shock direction change from a one-dimensional configu-
ration of atoms in the basic layer represented by a dotted ring
in Figs. 1–3 to a staggered configuration represented by a
open and nearby close circle or vice versa. The tiles them-
selves are abstract objects that have no physical meaning.
Therefore it is not surprising that flips from one-dimensional
to the staggered configuration are observed that lead to non-
tilable regions.

TABLE III. Summary of the phase transition phenomena observed at low shock wave intensity.

Structure and Orientation Phase Transformation Phenomena

bcc fourfold Direct transition, interface atomically flat

bcc twofold and threefold Transverse bending and kinks, shifting or rotation
of atomic layers perpendicular to shock wave
direction

� phase 0 and quasicrystal 0 Periodic modulation along the shock wave
direction

� phase m45 and m90 No special phenomena

quasicrystal 90 No special phenomena

� phase n90 Periodic bands at 45° with respect to the shock
wave direction

� phase n45 First: transient state generated by homogeneous
shear, later: kinks and bends

FIG. 14. Part of a � phase sample shocked in m90 orientation,
up=0.125cx. A part of the tiling has been redrawn. Shaded are the
newly generated rhombi. The black dots mark the squares and tri-
angles that have been flipped. The shock wave moved from the
right to the left.
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4. Special phenomena for shock waves along the threefold
direction of bcc

If shock waves are studied in bcc along the threefold di-
rection, an intermediate phase and wave phenomena are ob-
served, which are denoted “solitary waves” since they show
up as singular, roughly Gaussian shaped dispersionless
maxima. We think that this name is appropriate although the
solitary waves decay slowly. But since we have not demon-
strated the collision property, we will not call the peaks soli-
tons. The intermediate phase has been identified as the hex-
agonal two-layer � phase.16 It is the crystal structure of AlB2
and �-CrTi, and occurs in the phase diagram of the elements
Ti, Zr, and Hf. The � phase is also well known as a conse-
quence of phonon softening along the threefold direction in
bcc. The � phase and the solitary waves are closely related
and will be presented in detail in Paper II.

5. Results for an amorphous structure

Shock waves have been studied in an amorphous structure
produced by cooling a molten bcc crystal. Since there is no
liquid phase for the Dzugutov potential at ambient
pressures,13 we had to prepare the liquid by heating at con-
stant volume, cool it down to kT=0, and expand it to P=0.

The amorphous structure generated from the liquid has a
RDF that differs from an ordinary monoatomic amorphous
structure generated with Lennard-Jones potentials for ex-
ample. The difference is caused by the outer maximum of the
Dzugutov potential. The RDF shows the well-known behav-
ior of a super-cooled liquid with a first maximum for nearest
neighbors and a double maximum for next-nearest neigh-
bors, but the first of the two next-nearest-neighbor peaks is
extremely sharp if compared with what is usually observed.
The third maximum seems to be enhanced also. See Fig. 16
where the curve for up=1.0v0 is more or less identical with
the unshocked state. The stress-temperature curves for the
shocked state have been included in the equilibrium phase
diagram �Fig. 4�. The curves are somewhat lower than those
for the initially ordered structures. The most important dif-
ference, however, is the observation that for the amorphous
structure, the temperature of the shocked state is always well
defined.

The Hugoniot curve �Fig. 15� shows that at low piston
velocities the velocity of the wave front at half height is
almost constant. The distance between the bottom �amob�
and the place where the wave reaches a constant value grows
and the difference is most prominent around up /ca�0.1. If
the piston velocity is increased the ascent of the wave gets
sharper and sharper until the difference between the veloci-
ties vanishes in the overdriven regime. The width of the tran-
sition region is of the order 5 to 10 atom distances a.

In the RDF we find a rather sharp transition at the begin-
ning of the overdriven regime at about up /ca�0.4 �Fig. 16�.
At low piston velocities, the first maximum of the RDF lies
around 1.05a, then it moves to 0.85a and broadens slightly.
The most significant change occurs to the sharp subpeak of
the second maximum: It stays at its place, but broadens from
a width of 0.1a to 0.5a. The other subpeak vanishes com-
pletely and the third maximum moves by 0.3a and doubles

its width. At the highest piston velocities the RDF looks like
one of an ordinary monatomic liquid.

The ADF possesses two broad maxima at an angle of 60°
and at 112°. In the shocked samples these maxima shift con-
tinuously to 57° and 110°, respectively, if the piston velocity
is increased.

The sharp transition indicates that the behavior of the ma-
terial changes from glasslike to liquidlike if the piston veloc-
ity increases from weak shocks to overdriven shocks. The
kinetic energy of the atoms is high enough that the repulsive
outer maximum of the Dzugutov potential no longer plays a
role at the high piston velocities.

In contrast to all other samples studied in this paper no
transition to fcc is observed. This is already obvious from the
RDF since no maximum or shoulder exists around the dis-
tances 1.25a and 1.55a. The ADF has no maxima at 90°,
150°, and 180°. All together this proves that there are no
square arrangements of atoms and no nuclei of a close-
packed phase. A modulation of the density occurs only
closely to the momentum mirror.

Compared to the shock waves in the ordered structures we
find no crystallization. This indicates that it is easier to shift

FIG. 15. Hugoniot curve us vs up for the amorphous structure.
Plotted are the velocities at the bottom �amob�, at half height
�amoc�, and at the place where the hydrostatic pressure reaches a
maximum �amot�. In the overdriven region, the distinction between
these velocities vanishes, which means that we find a sharp wave
front.

FIG. 16. RDF of the amorphous sample for different up. The
arrows indicate how the RDF changes if the shock strength is in-
creased from up=0.1ca to up=0.8ca �ca�10v0�.
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atomic layers collectively to generate a new structure than to
crystallize an amorphous material.

D. Common-neighbor analysis

The common-neighbor analysis has been carried out for
all structures and orientations investigated in the preceeding
sections. Here we will present only a representative selec-
tion. For the amorphous structure the fraction n1421/n1422 is
always close to 0.5 �Fig. 17�, which indicates complete dis-
order �compare to Honeycutt and Anderson22� and no crys-
tallization. Therefore the distinction between fcc and hcp is
difficult. We know, however, that a bcc crystal shocked along
the fourfold direction with up=0.24c4 results in nearly per-
fect hcp �compare to Fig. 10�, and this structure has
n1421/n1422�1. Furthermore, perfect fcc should yield
n1421/n1422→	. Thus the higher values of n1421/n1422 clearly
indicate fcc stacking. On the other hand, it is obvious that
disorder grows with increasing piston velocity.

From the diagram we read off three cases in addition the
amorphous case. bcc shocked along the twofold axis prefers
fcc stacking at low piston velocities. The � phase shock in
the m45 direction behaves similarly. bcc shocked along the
threefold direction behaves differently: it is hcp at low piston
velocities and becomes preferably fcc stacked around up /c3
�0.15. bcc shocked along the fourfold direction is always
preferably hcp stacked. The quasicrystal shocked along the
m90 direction is similar. The other structures, the � phase
shocked along the n45,m90, and 0 direction; the quasicrystal
shocked along the 0 direction; and the � phase along the n90
direction lie between bcc shocked along the threefold and the
fourfold direction, in the given ordering. The fluctuations of
n1421/n1422 are large if the results for neighboring piston ve-
locities are compared. The data should be regarded with
some care especially for low piston velocities since the new
phase forms rather slowly. For example, the point at up
=0.8c2, n1421/n1422=2.9 may be too high. But if subsequent
snapshots of the simulations are compared it is found that
n1421/n1422 varies rather smoothly. Usually the results do not
depend strongly on the size of the sample, but for the �
phase shocked along the n45 and m45 it has been observed
that special transition modes lead to a strong preference of
hcp stacking.

IV. DISCUSSION

A. Comparison to shock wave simulations of iron

Kadau et al. have carried out molecular dynamics simu-
lations of bcc iron single crystals.5,25,26 Instead of a simple
pair potential they used EAM potentials especially adjusted
to the properties of iron. Despite these differences their re-
sults and ours are in good qualitative agreement. There are
several reasons for this observation: The phase diagram of
iron27 and for the Dzugutov potential9 is similar, i.e., both
possess at low temperatures a low pressure bcc and a high
pressure close-packed phase. Furthermore, if the elastic con-
stants are computed for the Dzugutov potential and com-
pared with the relative values c11/c44 and c12/c44 for iron28 it
is found that these values are closer in the diagrams �Fig. 2
of Every28� than to any other material.

Due to the similarity of the phase diagram, the Hugoniot
for iron �Kadau et al.,25 Fig. 4� and bcc with Dzugutov po-
tentials �Fig. 8� is qualitatively similar. The results for the
fourfold direction are also in good agreement, however we
did not observe the compressed bcc inclusions �Kadau et al.,5

Fig. 1�b��. It is possible that they have been missed since
their up interval of occurrence is rather small.

Twinning is also prominent in our simulations �Fig. 11�,
and the growth of the crystallites with time �Kadau et al.26�
has also been noticed. Another important coincidence15 is the
solitary waves that occur for both interactions along the same
threefold direction. They will be discussed in detail in paper
II.

There are also some notable differences. The figures of
structures generated by shock waves along the twofold and
threefold axis25 look similar at a first glance. Kadau et al.
only remark that the grains in these situations are smaller
than for the fourfold case. Furthermore a broad range of
elastically compressed material is seen. The mechanism of
phase transformation seems to be similar to the fourfold di-
rection. But if we take our Figs. 12 and 13 into account, we
find a correlated transverse motion of lattice planes, i.e., a
martensitic type of transformation.30 The � phase has not
been reported for EAM iron. At last we want to remark that
there is a difference in the final structures. The EAM poten-
tial clearly favors a hcp phase �Kadau et al.,25 Fig. 3�,
whereas we get a mixture of stackings of the close-packed
layers. The reason for this difference is not obvious since the
range of the EAM potential is similar to the range of the
Dzugutov potential. We attribute the different behavior to the
many-body part of EAM that is lacking for the pair potential.
Therefore, there is no difference in energy for ABA or ABC
stacking for the Dzugutov potential whereas the EAM poten-
tial favors fcc ABC.

B. Conclusions

We have presented detailed studies of shock waves in
several structures that are stabilized by the Dzugutov poten-
tial. There are at least three major results. The Dzugutov
potential which has been designed for a completely different
purpose is suitable to study qualitative features of bcc met-
als, such as iron. It may even be possible to get to a semi-
quantitative or quantitative agreement if the Dzugutov poten-

FIG. 17. Relative frequency of the 1421 and 1422 common
neighbor diagrams for some representative cases.
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tial is modified by fitting it directly to the iron properties. A
second major result is the generation of special defects in the
tcp phases, which are equivalent to the phason flips in qua-
sicrystals. This effect has been observed now on several oc-
casions, here and in binary quasicrystals.7 Since the defects
occur especially in the uniaxially compressed part of the
sample it also represents evidence of the coupling between
phononic and phasonic degrees of freedom29 of a quasicrys-
tal. In the end this means that although we have not �yet�
found evidence for extended defects like phason walls gen-
erated by shock waves, we have observed the creation of
point defects and phason-type flips. Furthermore we have

presented simulations of a Dzugutov glass and found that no
crystallization occurs that tells us that the pre-existing bcc or
tcp order helps the structures in the phase transition and
shows that the transition is a correlated phenomenon.
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