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Lattice strains in nanocrystalline cubic silicon nitride were measured using an energy-dispersive x-ray
diffraction technique under nonhydrostatic stress conditions up to a confining pressure of 68 GPa. The high-
pressure elastic properties of �-Si3N4 were also investigated theoretically using density-functional theory. The
differential stress t between 30 and 68 GPa increases from 7 to 23 GPa and can be described beyond 40 GPa
as t=7�4�+0.24�7�P where P is the pressure in GPa. The differential stress supported by �-Si3N4 increases
with pressure from 3.5% of the shear modulus at 21 GPa to 7.6% at 68 GPa. �-Si3N4 is one of the strongest
materials yet studied under extreme compression conditions. The elastic anisotropy of �-Si3N4 is large and
only weakly pressure dependent. The elastic anisotropy increases from A=1.4 to A=1.9 as the parameter � that
characterizes stress-strain continuity across grain boundaries is decreased from 1 to 0.5. The high elastic
anisotropy compares well with our first-principles calculations that lead to A=1.92–1.93 at ambient pressure
and A=1.94–1.95 at 70 GPa. Using molybdenum as an internal pressure standard, the equation of state
depends strongly on �, the direction between the diamond cell axis and the normal of the scattering plane. The
bulk modulus increases from 224�3� GPa to 460�13� GPa as � varies from 0° to 90°. This large variation
highlights the need to account properly for deviatoric stresses in nonhydrostatic x-ray diffraction experiments
carried out at angles other than the particular angle of �=54.7°, where deviatoric stress effects on the lattice
vanish. At this angle we find a bulk modulus of 339�7� GPa �K0�=4, fixed�. This result is in general agreement
with our local density approximation calculations, K0=321 GPa, K0�=4.0, and previous shockwave and x-ray
diffraction studies. However, our results are significantly lower than the recently reported bulk modulus of
K0=685�45� GPa for nanocrystalline �-Si3N4 below 40 GPa.
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I. INTRODUCTION

A particular challenge in material sciences is the design
and synthesis of materials with desired physical properties. It
is for this reason that superhard materials have attracted sig-
nificant interest. Over the past few decades a large number of
new compounds with large hardness values have been iden-
tified �e.g., Refs. 1 and 2� and this has motivated searches for
systematics among physical properties of these materials.
Correlation between hardness and elastic properties such as
the bulk modulus1–3 and the shear modulus1,2 are important
for a priori materials evaluation. However, ultimately the
hardness is determined by the nature of bonding and the
crystal structure.1,2,4 Several general characteristics have
emerged from comparative studies as well as the comparison
to diamond, the hardest known material: the presence of a
high degree of covalent bonding is accompanied by a high
bulk modulus3 and a high shear modulus.2 A high shear
modulus is related to high-bond-bending-force constants and
a small number of internal degrees of freedom.2 Additional

insight into high-hardness materials can be obtained by con-
sidering phase relations in these systems. Several candidate
materials �boron nitride, silicon nitride, germanium nitride�
crystallize in a hexagonal structure before transforming into
a spinel-type high-pressure polymorph. Spinel may therefore
be an important prototype for the design of novel high-
hardness materials.5 The expectation that high pressure may
be a promising route to find novel superhard materials is
supported further by volume-elasticity systematics that show
higher elastic moduli for smaller atomic volumes in an isoch-
emical series of phases.6

The Si3N4 phases provide an example of the succcess of
this strategy. At ambient pressure two phases are known:
�-Si3N4 �space group P31c� is the stable structure below
2000 K and the �-Si3N4 phase �space group P63 �Refs. 7 and
8� or P63m �Ref. 9�� is stable at higher temperatures. How-
ever, at pressures above 15 GPa and 2000 K, �-Si3N4 be-
comes stable.10 The same material has also been recovered
from shock synthesis experiments11,12 where the transition
from the low-pressure �-Si3N4 and �-Si3N4 phases to
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�-Si3N4 occurred above 20 GPa and reached completion at
63 GPa. �-Si3N4 shows excellent thermal metastability up to
at least 1873 K at ambient pressure before it reverts to its
low-pressure phases.13 Electron diffraction shows that

�-Si3N4 belongs to spacegroup Fd3̄m �Ref. 10�. In this spi-
nel structure, octahedrally and tetrahedrally coordinated Si
atoms are fixed by symmetry and the N positions possess a
single degree of freedom10,14 in support of the suggestion
that a small number of internal degrees of freedom is a nec-
essary but not sufficient condition for a superhard material.2

The measured Vickers hardness of �-Si3N4 is between
35 GPa �Ref. 13� and 43 GPa �Refs. 15 and 16� and confirms
that this material qualifies as a potentially superhard solid.

The equation of state of �-Si3N4 has been determined
from static diamond-anvil-cell �DAC� studies with reported
bulk moduli of 290�5� GPa �Ref. 16� and 308�5� GPa �Ref.
17�. These bulk moduli are also consistent with that derived
from the shock Hugoniot equation of state, 300�10� GPa
�Ref. 11�. However, the bulk modulus of nanocrystalline
�-Si3N4 �grain size between 10 and 50 nm� has been deter-
mined to be 685 GPa below a pressure of 40 GPa and
415 GPa above this pressure,18 significantly higher than in
previous experiments. It was proposed in the same study that
nanocrystalline �-Si3N4 shows substantial grain size harden-
ing below 40 GPa. �A general trend of increased flow stress
with decreasing grain size has been established for simple
metals.19,20 For oxides, the grain size dependence of the
equation of state is not clear: bulk moduli of MgO �Ref. 21�
and CuO �Ref. 22� are independent of grain size while
�-Al2O3 shows a decreasing bulk modulus with decreasing
grain size.23�

There are conflicting reports on the shear modulus of
�-Si3N4. From nanoindentation measurements, the shear
modulus of �-Si3N4 has been indirectly inferred to be
148�16� GPa at ambient conditions.16 In contrast theoretical
studies using density-functional theory predict a shear modu-
lus of 258–282 GPa at ambient pressure17,24 and theory
also predicts an ideal tensile stength of �-Si3N4 of 50 GPa
�Ref. 24�.

In this study, we examine nanocrystalline �-Si3N4 under
nonhydrostatic loading in a diamond anvil cell using x-ray
diffraction in a radial geometry. Such experiments measure
the variation of the lattice strain with respect to the stress
orientation by rotating the DAC for a fixed x-ray scattering
geometry.25–27 From the analysis of these strains25,28,29 we
can investigate directly the effect of nonhydrostatic stress on
the equation of state and obtain the ratio of differential stress
to shear modulus. However, the determination of the differ-
ential stress itself requires the shear modulus. We use first-
principles calculations to determine the complete elastic con-
stant tensor of �-Si3N4 up to 70 GPa.

II. METHOD

A. Experimental method

The starting material was shock synthesized �-Si3N4 �Ref.
30�. X-ray and electron diffraction30 confirmed that the re-
covered sample was �-Si3N4 with residual traces of

�-Si3N4. The grain size of the powder was determined from
TEM to be in the range of 10–50 nm �Ref. 30�.

The nanocrystalline sample was loaded into a �70-�m
hole in a Be gasket that was preindented to 20–30 �m thick-
ness. A small Mo foil was placed on one of the culets as
pressure marker and as a reference for the x-ray position.26 A
DAC was used to compress the sample nonhydrostatically.
Radial x-ray diffraction experiments27,31 were performed at
the X17C beamline of the National Synchrotron Light
Source. The incident x-ray beam was focused by a pair of
Kirkpatrick-Baez mirrors to approximately 10�15 �m2 and
directed through the Be gasket and the sample. After allow-
ing time for stress relaxation at each compression step �typi-
cally less than 2 h� energy-dispersive x-ray diffraction pat-
terns were collected for 15–45 min each at different relative
orientations of the DAC axis and the x-ray scattering plane.
The hydrostatic pressure at each loading step was determined
from the measured lattice constants of Mo at 54.7° and the
equation of state of Mo �Ref. 32�.

d spacings were obtained by fitting background subtracted
Gaussian-Lorentizan line shapes to the spectra. For �-Si3N4
the �220�, �311�, �400�, and �440� lines were used in the
analysis �Fig. 2, below�. For Mo, the lattice parameter was
determined from the �110� diffraction line only. All other Mo
peaks had either very low intensities or overlapped with
�-Si3N4 diffraction lines.

Lattice strain theory28,29 describes the variation of lattice
strain as a function of stress in a cylindrical geometry. The
stress state is characterized by two principal stresses: �3 in
the axial direction and �1 in the radial direction. The hydro-
static stress component is the trace of the stress tensor,
�P= ��1+2�3� /3, and the deviatoric stress is t=�1−�3	�y

=2
, where �y is the yield strength and 
 is the shear
strength. The average strain for a particular �hkl� diffraction
plane is calculated by averaging the strains of all crystallites
that contribute to the diffraction peak under consideration.29

Assuming a random distribution of grain orientations leads
to the following set of equations:25,28,29

am�hkl� = aP�1 + �1 − 3 cos2 ��Q�hkl�� , �1�

where � is the angle between the DAC axis and the diffrac-
tion plane normal �Fig. 1�. aP is the lattice constant that
would result from the application of a hydrostatic pressure, a
state that is reached at �=54.7° for which the nonhydrostatic
stress disappears �Eq. �1��. Q�hkl� is given by

Q�hkl� =
t

3
� �

2GR�hkl�
+

1 − �

2GV
� , �2�

where t is the differential stress, GR is the aggregate shear
modulus under isostress conditions across grain boundaries,
and GV is the Voigt bound that applies under isostrain con-
ditions and is independent of the grain orientation. � is a
parameter that specifies the degree of stress and strain con-
tinuity across grain boundaries. For a cubic system, GR is
given by
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1

2GR�hkl�
= S11 − S12 − 3S� , �3�

where S, a measure of the elastic anisotropy, has the follow-
ing form:

S = S11 − S12 −
S44

2
�4�

and

� =
h2k2 + h2l2 + k2l2

�h2 + k2 + l2�
, �5�

1

2GV
=

5

2

�S11 − S12�S44

3�S11 − S12� + S44
, �6�

where Sij are the single-crystal elastic compliances. It is
therefore expected that the lattice parameter for each diffrac-
tion plane �hkl� varies linearly with 1−3 cos2 � �Eq. �1��.
The intercept aP is the lattice constant at hydrostatic stress
conditions and the slope m1 is related to Q�hkl�: m1

=aPQ�hkl�. The predicted linearity from Eqs. �2� and �3�
between Q�hkl� and ��hkl� implies that the average differen-
tial stress can be obtained by averaging Q�hkl�. Assuming
�=1, it follows that

t = 6GR�Q�hkl�	 , �7�

where GR is the isotropic Reuss shear modulus. More general
expressions that hold for any value of � have been given
elsewhere.25 In the same limiting case for �, the intercept
�m0� and slope �m1� of Q�hkl� vs 3� is given as

m0 =
t

3
�S11 − S12� �8�

and

m1 = −
t

3
�S11 − S12 − S44/2� . �9�

For the Zener elastic anisotropy A, the ratio of the shear
moduli in the �100� and �110� planes in the �001� direction, it
follows that27

A =
1

1 + m0/m1
, �10�

A =
2C44

C11 − C12
= 1 +

2S12

S44
. �11�

Lattice strain theory shows that the measurement of lattice
parameters under nonhydrostatic stress conditions can give
access to a variety of material parameters. At the angle of
54.7°, the macroscopic nonhydrostatic stress is predicted to
vanish and a hydrostatic equation of state can be determined.
The elastic anisotropy �A� follows from the intercept and the
slope of the linear relationship between Q�hkl� and 3� �Eq.
�10��. The ratio between differential stress �t� and shear
modulus �GR� can be determined directly from Eq. �7�. Once
the uniaxial stress component is known, it is possible to de-
termine the individual elastic stiffnesses.25

B. Computational method

Our computational method is based on density-functional
theory �DFT�. The Hamiltonian for the electronic structure
calculations preserves the symmetry while allowing the full
relaxation of all internal degrees of freedom.33 The compu-
tations were performed with the software package VASP.34–36

Two approximations are made in the treatment of the many-
electron problem: the electrons were described by ultrasoft
pseudopotentials37 and the exchange-correlation potential
was described in the local density approximation38 �LDA�.
We also performed calculations using the generalized gradi-
ent approximation39 �GGA�. Moving the atoms according to
the calculated forces allows for an efficient minimization of
the total energy. Tests of the computational parameters
showed that converged results of the Kohn-Sham equations
can be obtained with a plane-wave energy cutoff of 600 eV
and a 4�4�4 Monkhorst-Pack40 grid. The total energies
and stresses were converged to within 0.14 and
0.45 meV/atom and 0.02 and 0.04 GPa, for the LDA and
GGA respectively. These computational parameters are si-
miliar to the parameters in previous studies of �-Si3N4 at
zero pressure.24,41,42

�-Si3N4 crystallizes in the space group Fd3̄m, with 56
�14� atoms in the conventional �primitive� unit cell.10 All Si
positions in �-Si3N4 are fixed by symmetry in the tetrahedral
8a site �1/8 ,1 /8 ,1 /8� and the octaheral 16d site
�1/2 ,1 /2 ,1 /2�. Only the N positions in the 32e site �x ,x ,x�
have a single degree of freedom.10 The three independent
elastic stiffnesses of cubic �-Si3N4 were determined in two
steps: First, the structure was relaxed into its ground state at
a given volume and the pressure was obtained from the trace
of the stress tensor. Second, the three independent elastic
constants C11, C12, and C44 of �-Si3N4 were determined by

FIG. 1. Experimental geometry of the radial diffraction experi-
ment. The diffraction angle is 2�, and � is the angle between the
diffraction plane normal and the diamond anvil cell axis ��3�.
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applying small positive and negative strains of magnitude
1% to the relaxed ground-state structure �strain 1: 
11�0 all
other 
ij =0; strain 2: 
44=
55=
66�0 and all others zero�.
All internal degrees of freedom were rerelaxed in the
strained unit cell to account for the coupling between lattice
vibrations and strain. This method has previously been ap-
plied successfully to determine elastic properties of
insulators.43,44

III. RESULTS AND DISCUSSION

Radial x-ray diffraction spectra of �-Si3N4 were collected
up to an equivalent hydrostatic pressure of 68 GPa. As ex-
pected, the sample peaks shift to lower energies �larger lat-
tice parameter� as � increases �Fig. 2�. The observed x-ray
diffraction lines belong either to �-Si3N4, Mo, or the gasket
with the exception of the weak line at an energy of E
=42 keV �Fig. 2� whose origin is unknown. The total shift in
x-ray diffraction lines between the minimum strain �90°� and
the maximum strain �0°� orientation is �0.7 keV �Fig. 2�.
The Mo foil that is used as a pressure marker also serves as
a reference for the DAC axis when the DAC is rotated. How-
ever, these two functions of Mo define opposing require-
ments on the size of the Mo foil: On the one hand, a larger
foil allows for rapid sample positioning and stronger diffrac-
tion peaks. On the other hand, the theory applies strictly only
on the DAC axis28,29 in favor of smaller Mo foils. To exam-
ine the stress distribution, we measured transects across the
sample at 0° and 90° �Fig. 3�. The pressure in this case was
calculated assuming that the measured lattice strain at 0° and
90° corresponds to hydrostatic strain. Both transects show a
broad plateau with a diameter of �50 �m. The static equi-
librium equations for deformable media require ��rr /�r=0
on the symmetry axis of the cylinder in order to obtain bound
stresses.45 However, the spatial extent of the plateau is less
clear and may depend on the material considered as well as
the detailed sample-diamond-gasket geometry.45 The large

extent of the observed plateau indicates that lattice strain is
rather insensitive to the exact positioning of the x-ray beam,
at least in the case of �-Si3N4.

For all diffraction lines, the lattice constants show a linear
relationship with �1−3 cos2 �� as expected from lattice strain
theory28,29 �Eq. �1� and Fig. 4�. For a cubic material such as
�-Si3N4, the equation of state can be determined from each
x-ray diffraction line at 54.7°, where the effect of macro-
scopic nonhydrostatic strain vanishes although microstresses
due to the variation in the local stress field are still present.25

The average volume at a given angle was determined as the
arithmetic average of all observed �-Si3N4 diffraction lines.
The pressure was determined at 54.7° from the Mo �110�
line. It has previously been observed that the Mo �110� dif-
fraction line systematically overestimates the lattice param-
eter of �0.1% as compared to other observed Mo diffraction
lines.27 This suggests that the Mo pressure marker may un-
derestimate the pressure by �P=K�V /V where K is the bulk
modulus at pressure and �V /V is the volume change. Using
the Mo shock-wave equation of state32 with K�411 GPa at
70 GPa and �V /V�0.3 results in a deviation of �1.5 GPa

FIG. 2. X-ray diffraction patterns at a pressure of P=32.7 GPa.
The angles between the DAC axis and the diffraction plane normal
are indicated on the right. The diffraction lines, indicated as c, Be,
and Mo, belong to �-Si3N4, Be, and Mo, respectively. The two
peaks near 20 keV are Mo fluoresence peaks. The � symbol signi-
fies an unidentified peak.

FIG. 3. Apparent pressure gradient across the sample recorded
at �=0° and 90° for a quasihydrostatic pressure ��=54.7° � at the
sample center of 46.5�0.9� GPa. � values �0°, 90°� are shown on the
plot. Solid lines are guides to the eye. The dashed lines are linear
fits of the pressure gradient.

FIG. 4. Dependence of lattice spacing on 1−3 cos2 � at selected
pressures for �-Si3N4. Squares: �220�. Triangles: �311�. Diamond:
�400�. The lines are least-squares fits to the data: dashed line, solid
line, and dot-dashed line, for �220�, �311�, and �400�, respectively.
Errors are less than the size of the symbols.
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at the highest quasihydrostatic pressure in our study.
At ambient pressure we obtain a volume of V0

=464.1�4� Å3 from a powder x-ray diffraction pattern ob-
tained before compression, consistent with V0
=464.4�1.9� Å3, the volume of the shock-recovered sample30

and previous DAC experiments.16,41 The equation-of-state
parameters at 0°, 54.7°, and 90° were obtained from a fit to a
second-order Birch-Murnahan equation of state46 with
V0=464.1 Å3 and K0�=4 fixed. The resulting bulk moduli are
224�3� GPs, 339�7� GPa, and 460�13� GPa for �=0°,
�=54.7°, and �=90°, respectively �Table I and Fig. 5�.

The equation of state as obtained for the quasihydrostatic
stress state ��=54.7° � is in agreement with previous hydro-
static equation of state measurements17 �Fig. 5�a��. It is noted
that the quasihydrostatic bulk modulus in the present study is
�12% �for K0�=4� higher than DAC experiments on �
-Si3N4 in a N2 pressure medium.17 This agreement is reason-
able in view of the limited number of data points in the
present study. Our measured volumes generally overlap with
those of Ref. 17 in the common pressure range although our
data tend towards slightly larger volumes. Nevertheless, a
slighlty high bulk modulus has been observed in radial dif-
fraction experiments on Au/Re samples26 and Mo/Au
samples.27 This difference can be caused by a variety of fac-
tors such as nonvanishing microstresses or pressure differ-
ences between sample and pressure marker.26

The results of the static first-principles calculations of the
equation of state are in good agreement with previous
calculations17,24,42 �Fig. 5�a� and Table I�. For a more direct

comparison between theory and experiment, the pressure due
to zero-point motion and 300-K temperature difference was
calculated within a Debye model. We find that zero-point
motion contributes �80% to the correction while �20% are
due to the 300-K temperature difference between theory and
experiment. Accouting for vibrational effects and zero-point
motion improves the agreement between the LDA calcula-
tions and experiment �Fig. 5�a� and Table I�: the zero-
pressure volume is underestimated by less than 1.5% and the
bulk modulus is within the experimental error. For the GGA,
the static zero-pressure volume was already higher than ex-
periment and therefore the deviations increase as vibrational
effects and zero-point motion are included. The remaining
discrepancy is attributed to the exchange correlation poten-
tial and the pseudopotential. It is expected that the bulk
modulus is further reduced as the zero-pressure volume is
increased to match the experimentally observed ambient-
pressure volume. Therefore the calculated LDA value may
constitute an upper bound for the bulk modulus.

The direct comparison of the 0° and 90° equation of state
�Fig. 5�b� and Table I� shows that the bulk modulus varies by
more than a factor 2 for data collected at 0° and 90°. This

TABLE I. Equation of state of �-Si3N4. The 300 K theoretical
values were calculated using a Mie-Grueneisen equation of state,
with �0=1.2 and q=� ln � /�V=1 �Ref. 11�. Zero-point motion and
thermal effects were calculated within a Debye model using the
acoustic Debye temperature.

Ref. V0 �Å3� K0 �GPa� K0� �-�

Experiment

This study �=54.7° 464.1�4� 339�7� 4 �fixed�
This study �=0° 464.1�4� 224�3� 4 �fixed�
This study �=90° 464.1�4� 460�13� 4 �fixed�
Ref. 17 464.2�1.7� 308�5� 4.0�2�
Ref. 11 — 300�10� 3�1�
Ref. 18 461.7�6� 685�45� 4 �fixed�
Ref. 16 463.1�1.1� 290�5� 4.9�6�

Theory

This study: LDA, 0 K 452.6 321.5 4.00

LDA, 300 K 457.4 309.9 4.02

This study: GGA, 0 K 471.9 287.7 4.01

GGA, 300 K 477.2 276.9 4.02

Ref. 47 �HF-aiPI� 408.4 407 3.33

Ref. 41 �LDA� 456.0 308 3.9

Ref. 41 �GGA� 473.2 284 3.9

Ref. 42 �PAW-LDA� 455.8 321 –

Ref. 42 �PAW-GGA� 472.5 285 –

Ref. 48 �quantum chemical� 483.0 335 –

FIG. 5. Equation of state of �-Si3N4. �a� Radial diffraction at
54.7°: Solid squares: radial diffraction. Solid line: second-order
Birch-Murnahan equation of state. Open circles: Ref. 41. Solid
down triangle: Ref. 10. Solid up triangle: Ref. 14. Open up triangle:
Ref. 30. Open down triangle: Ref. 8. Theory: lower �upper� dashed
line, LDA �GGA� static calculations, this study; lower �upper� dot-
dashed line, LDA �GGA� 300 K isotherm. �b� Dependence of the
equation of state on the orientation of DAC stress axis and the
normal of the diffraction planes. This study: �=0°, triangles up;
54.7°, solid squares; and 90°, open triangles down. Open diamonds:
Ref. 18. Open circles: Ref. 41.
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suggests that the very high bulk modulus of 685�45� GPa
reported recently for nanocrystalline �-Si3N4 �Ref. 18� is
likely due to nonhydrostatic stress in the experiment. The
experiments were done without a pressure medium, close to
a 90° scattering geometry. The sample used in Ref. 18 was
also shock synthesized and of similiar grain size as that in
the present study. Lattice strain theory together with theoreti-
cally calculated elastic constants �see below� allows us to
predict the expected order of the lattice spacing for this ge-
ometry due to nonhydrostatic stress. For �-Si3N4 the pre-
dicted order of the lattice parameter is a�111��a�220�
�a�311��a�511��a�400�. The order is generally consis-
tent with the observed order in Ref. 18. Indeed we find that
their equation of state follows closely our 90° nonhydrostatic
equation of state �Fig. 5�b��. Similiar conclusions likely ap-
ply to the very large bulk modulus values reported for nano-

crystalline �-Ge3N4 as well.49 The effect of grain size on the
bulk modulus of oxides and nitrides is generally unclear as
discussed above. The consistency of the experimental and
theoretical bulk moduli suggests an upper bound of K0
=310–320 GPa for �-Si3N4, and it may be speculated that
the remaining 12% difference is the maximum amount that
can be attributed to grain size effects.

We calculated the complete elastic constant tensor for
�-Si3N4 up to 70 GPa from first principles. At zero pressure,
our calculations are in good agreement with previous theo-
retical studies �Fig. 6�a� and Table II�. The pressure depen-
dence of the elastic constants has been described within the
Eulerian finite-strain formalism.50 We observe that the GGA
elastic constants are systematically lower than the LDA elas-
tic constants, consistent with the larger zero-pressure volume
of the GGA calculation �Table I�. The elastic constants as
obtained from the LDA and GGA calculations follow parallel
trends with an offset in pressure of �13 GPa roughly simil-
iar to the offset of the equation of state �Fig. 5�a��. Therefore
LDA and GGA are mutually consistent if they are compared
at constant volume rather than constant pressure. At low
pressures we observe that C11�C44�C12 with C44/C12
�1.75. It is instructive to compare these values with other
materials with spinel-type structure such as �-Mg2SiO4 and
MgAl2O4. These oxides also show the same order of the
elastic stiffnesses51 but C44/C12�1–1.2 is much lower than
for �-Si3N4. The isotructural �-Ge3N4 is intermediate with
C44/C12�1.4 �Ref. 17�. This observation is consistent with
increased covalent bonding in �-Si3N4 as compared with
�-Ge3N4. The effect of pressure is to reduce the C44/C12
ratio such that it is close to 1 at the highest pressures �Fig.
6�a��. Nevertheless, the Cauchy violation �C12−C44−2P,
where P is the hydrostatic pressure� of �-Si3N4 remains large
and changes only little with pressure, from −149 GPa at zero
pressure to −140 GPa at 70 GPa. This indicates that a high
C44/C12 ratio, favorable for a high shear modulus,2 can be
deceiving if used as a proxy for bond character in materials.

Lattice strain theory allows determination of the Zener
elastic ansiotropy ratio from the linear relationship between
Q�hkl� and 3��hkl� �Fig. 7 and Eqs. �8�–�10��.

We find that �-Si3N4 has a large elastic anisotropy A of
1.39�22� at 20.5�1.2� GPa that increases only slightly to A
=1.44�2� at 67.5�1.4� GPa. A large and weakly-pressure-
dependent elastic anisotropy factor is consistent with our
first-principles calculations. The elastic anisotropy ratio for
the LDA �GGA� changes from A=1.93�1.94� at ambient
pressure to A=1.92�1.93� at 68 GPa. The calculated elastic

TABLE II. Elastic constants and aggregate elastic properties and pressure derivatives for �-Si3N4 as
obtained from theory. Elastic moduli in GPa, pressure derivatives are given in parentheses, where available.

C11 C12 C44 K0 GR GV Reference

562.9 �5.22� 200.3 �3.38� 348.8 �1.69� 321.2 �3.99� 254.7 �1.3� 281.8 �1.4� This study: LDA �static�
510.9 �5.24� 173.6 �3.42� 325.8 �2.11� 286.0 �4.03� 237.4 �1.4� 262.9 �1.6� This study: GGA �static�

550.6 191.0 349.4 310.9 253.7 281.6 Ref. 24: LDA

499.6 159.0 333.6 272.5 241.1 268.3 Ref. 24: GGA

532.6 191.2 341.0 305.0 243.7 258.3 Ref. 41: LDA

FIG. 6. Elasticity of �-Si3N4. �a� Second-order elastic moduli of
�-Si3N4 as a function of pressure. LDA: solid lines. GGA: dashed
lines. Previous theoretical studies: solid circles from Ref. 41; solid
diamonds, open diamonds, LDA and GGA, respectively, from Ref.
24. �b� Isotropic elastic moduli for �-Si3N4. Symbols are the same
as in panel �a�.
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constants at pressure provide an explanation for this weak
pressure dependence of A: The pressure derivatives of
��C11−C12� /�P�1.8 at zero pressure almost balance the
pressure derivative of C44 �Table II�. The differences of 38%
between experiment and theory may be explained by the
assumption of �=1 in the analysis. While theory and experi-
ment are qualitatively in agreement with regard to the elastic
anisotropy, quantitative differences could be related to the
stress-strain continuity parameter �. If � is reduced from 1 to
0.5, the elastic anisotropy factor increases from 1.4 to 1.9.
Another possibility is that the lattice strain is affected by
plastic anisotropy and therefore is not a measure of pure
elastic anisotropy.52

The elastic constant tensors of many spinel-structured ox-
ides have been measured, and they consistently show elastic
anisotropy greater than 1 �Ref. 51�. Some spinels are highly
anisotropic �A=2.5, MgAl2O4� but others display modest or
weak anisotropy �A=1.2, �-MgSi2O4�. Lattice strain mea-
surements in the diamond anvil cell have previously been
reported on two spinels: dry and hydrous ringwoodites
��-MgSi2O4� �Refs. 53 and 54�. A surprising feature of these
results was that the anisotropy determined by lattice strain
theory was less than 1, which is inconsistent with previous
experimental data55,56 and theoretical predictions44 for ring-
woodite. �We note that the anisotropies in Ref. 53 are incor-
rectly plotted. The correct values are in Ref. 54.� Using a
model of plastic anisotropy, it has been suggested that this
discrepancy is due to a dominant role of strength, rather than
elastic, anisotropy.52 For another silicate, CaSiO3 in the per-
ovskite structure, although the elastic anisotropy from lattice
strain is consistent with theoretical predictions, some evi-
dence for strength anisotropy has been reported.57 On bal-
ance, our results indicate a significant difference between the
theoretically and experimentally determined elastic aniso-
tropy of �-Si3N4, further emphasizing caution in the inter-
pretation of elasticity from lattice strain results under the
assumption of elastic behavior in the Reuss limit. In com-
parison with other spinels, however, the lattice strain results
are qualitatively consistent with density-functional theory in
that the elastic anisotropy is significantly larger than 1 and
relatively constant with pressure.

The aggregate elastic properties of �-Si3N4 calculated
from theory are shown in Fig. 6�b�. From third-order Eule-
rian finite-strain fits50 of the elastic stiffnesses, we obtained a
pressure derivative of the shear modulus of 1.3 and 1.4 for
the LDA and GGA �Table II�, respectively. These pressure
derivatives are consistent with values found for other hard
materials, typically in the range of 1–1.5 �Ref. 51�. The cal-
culated LDA �GGA� Poisson’s ratio varies from 0.161
�0.148� to 0.249 �0.237� as pressure is increased from
0 to 68 GPa.

The determination of the yield strength from lattice strain
theory requires an elastic model. In our study we take this
input from our LDA calculations. Lattice strain theory
couples elastic and plastic deformation through26–28 �t	
=6G�Q�hkl�	f(A ,� , �hkl�) where �t	 is the differential stress
and �Q�hkl�	=
Q�hkl� /n is the average lattice strain as ex-
perienced by the n observed x-ray diffraction planes. We find
in agreement with previous studies25–27 that the factor
f(A ,� , �hkl�)=1 to within �5%. Furthermore, this factor de-
pends only weakly on � and A. Therefore we assumed
f(A ,� , �hkl�)=1 for this analysis. With these assumptions the
ratio of differential stress �t� and shear modulus �G�, t /G
=6�Qhkl	, is independent of the elastic model and can be
obtained directly from the measured peak shifts. The quan-
tity t /G changes from 0.0347�17� at 20.5�1.2� GPa to
0.0763�38� at 67.5�1.4� GPa �Fig. 8�a��. Boron suboxide is
another potentially superhard solid with bulk and shear
moduli of 230 GPa and 206 GPa at ambient pressure,
respectively.58 It exhibits t /G values that are about 30%
larger than those found here for �-Si3N4.

Figure 8�a� shows that t /G values are generally large for
high-hardness materials as compared to other classes of ma-
terials such as metals and silicates. These observations sup-
port previous suggestions that strong covalent �directional�
bonds are necessary but may not be suffucient for the forma-
tion of superhard materials. �-Si3N4 is a high-hardness ma-
terial not only due to its high aggregate shear modulus �Fig.
6�b��, but also for its intrinsic stength. High t /G values in
spinel-type structures support the the suggestion5 that this
structure type could be suited as a structural template for the
design of superhard materials.

We combined the calculated elastic constant tensor with
the radial diffraction measurements to determine the absolute
values of the differential stress. Linear regression of the dif-
ferential stress above 40 GPa gives t=7�4�+0.24�7�P. Alter-
natively the differential stress can be calculated from the
pressure gradient across the sample �Fig. 3� from the rela-
tionship t=h�P /�r, where h is the thickness of the sample
under compression and P is the pressure as obtained from the
0° or 90° equation of state.45 Assuming a sample thickness of
20 �m, we obtain values for t between 10�1� GPa and
23�8� GPa with an average of 18�4� GPa at a pressure of
46.5 GPa. This value is consistent with the uniaxial stress
obtained from the lattice strain measurements.

The differential stress of �-Si3N4 is very large �Fig. 8�b��
due to its large t /G and shear modulus values. The differen-
tial stress corresponds to the compressive yield strength for a
sample that has exceeded its yield point or is a lower bound
on the strength if yield has not yet been reached. The slope

FIG. 7. Q�hkl� versus 3� for �-Si3N4 at selected pressures.
Pressures are obtained from the quasihydrostatic ��=54.7° � equa-
tion of state. The errors were propagated from deviations of the
a�hkl� vs 1−3 cos2 � data.
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of the t versus pressure relation becomes shallower above
35 GPa �Fig. 8�b��. This change in slope suggests that the
yield point was reached near this pressure. Similar behavior
was observed for B6O �Ref. 60�. The differential stress sup-
ported by �-Si3N4 is comparable to that found in B6O, as
�-Si3N4 has a larger shear modulus which partially compen-
sates for the higher t /G values found in B6O. These materi-
als are the strongest yet measured at high pressure in uniaxial
diamond-anvil-cell experiments. The stength of polycrystal-
line materials is also known to increase with decreasing grain
size, and grain-size differences need also to be considered in
comparing �-Si3N4 �nanocrystalline� and B6O �microcrystal-
line�. Grain-size effects on high-pressure strength have been
documented previously in radial diffraction experiments.61

Metals and oxides show smaller values of differential
stress �Fig. 8�b��. Another high-hardness material is SiO2
stishovite with a Vicker’s hardness of 33 GPa �Ref. 62�.
However, its lower t /G values �Fig. 8�a�� in conjunction with
a softening of the shear modulus at pressure also lead to a
modest absolute value of the differential stress �Fig. 8�b��.

The strong increase of t /G above the yield point for
�-Si3N4 indicates that the strength under compression in-
creases considerably more rapidly than the shear modulus for
nanocyrystalline �-Si3N4. This is also true for other classes

of materials investigated to date �Fig. 8�b��. Thus, the yield
strength increases more rapidly with compression than pre-
dicted by simple scaling models.63–65

It has been suggested that once the yield strength is
reached the measured lattice strain no longer reflects the
elastic anisotropy but is controlled by plastic anisotropy.52

We therefore analyzed the lattice strains as experienced by
individual x-ray diffraction lines for their strength anisotropy
by applying the relationship t�hkl�=6GR�hkl�Q�hkl� to each
diffraction line individually. Within the resolution of our
data, we could not find evidence for strength anisotropy.

IV. CONCLUSION

The high-pressure behavior of cubic silicon nitride has
been investigated experimentally using radial x-ray diffrac-
tion techniques in a diamond anvil cell and theoretically us-
ing density functional theory �LDA and GGA�. The sample
studied was shock synthesized and had a grain size of
10–50 nm. Our results provide new constraints on the elas-
ticity, equation of state, and strength of nanocrystalline
�-Si3N4 at high pressures. The main conclusions are as fol-
lows.

�i� The quasihydrostatic equation of state for �-Si3N4 ob-
tained from nonhydrostatic x-ray diffraction at the appropri-
ate angle between diffraction vector and stress axis yields a
bulk modulus of 339�7� GPa �for fixed K0�=4� which is
�12% higher than found from our first-principles calcula-
tions and most previous theory and experiments on micro-
crystalline samples.

�ii� The bulk modulus from both theory and experiment
determined here is nevertheless dramatically lower by about
a factor of 2 than that found in a previous compression study
�Ref. 18� on nanocrystalline �-Si3N4 of similar particle size
as this study. A comparison of both averaged volumes and
ordering of lattice parameters from individual diffraction
lines indicates that the large bulk modulus obtained previ-
ously is mainly due to the combined effects of nonhydro-
static stress and sample geometry, not small grain size.

�iii� Based on the above, we conclude that the maximum
effect of the nanocrystalline grain size would be to produce a
12% increase in the bulk modulus. However, there are other
possible explanations for the differences between K0 from
radial diffraction and theory.

�iv� The elastic constant tensor of �-Si3N4 has been com-
puted up to 68 GPa using density-functional theory. Our am-
bient pressure results agree well with previous calculations,
and we provide the first determinations of the elastic tensor
at high pressures. The pressure derivative of the Reuss shear
modulus is 1.3 and 1.4 at ambient pressure for the LDA and
GGA, respectively. The elastic anistropy A=2C44/ �C11

−C12� is found to be 1.92–1.94 at high pressure, compared
with 1.39–1.44 from the lattice strain experiments. There is
thus agreement that �-Si3N4 retains strong elastic anisotropy
under compression with a Zener anisotropy ratio greater than
1. Differences between theory and experiment could be re-
lated to degree of stress-strain continuity �� parameter�, plas-
tic anisotropy, and experimental and theoretical uncertainties.
We note, however, that no direct evidence for strength aniso-
tropy has been identified.

FIG. 8. �a� Ratio of differential stress to Reuss shear modulus as
a function of pressure. Solid squares: this study, radial diffraction.
Solid line: linear fits to present data. Short-dashed line: Ringwood-
ite �Ref. 53�. Long-dashed line: Forsterite �Ref. 59�. Dot-dashed
line: SiO2 stishovite �Ref. 31�. Thin solid line: CaSiO3 perovskite
�Ref. 57�. Solid circles: B6O �Ref. 60�. �b� Differential stress. Re,
Mo, and Au �Refs. 26 and 27�; other symbols and references are the
same as in panel �a�.
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�v� The differential stress supported by �-Si3N4 increases
with pressure from 3.5% of the shear modulus at
20.5�1.2� GPa to 7.6% of G at 67.5�1.4� GPa. Combining
these results with theoretical values for the shear modulus,
the supported differential stress ranges from 7 GPa at
32.4�0.8� GPa to 23 GPa at 67.5�1.4� GPa. B6O and
�-Si3N4 exhibit similar differential stress values at high pres-
sure and are the strongest materials yet studied under these
extreme compression conditions.
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