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Phase transitions and accidental degeneracy in nonlinear spin systems
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A characterization of phase transitions and related accidental degeneracies is presented for a general spin
Hamiltonian containing linear and quadratic terms. The existence of first-, second-, and third-order phase
transitions is exhibited. Regions in the control parameters space are found where crossings and anticrossings of
quantum levels take place. The possibility of closely reproducing the ground and first excited states using even-

and odd-spin coherent states is emphasized.
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Arrays of interacting spins have attracted much attention
in recent years. Entanglement of quantum states and phase
transtions can be studied in these relatively simple systems.
Trapped ions interacting with lasers may undergo a variety of
phase transitions, representing an analog quantum simulator
of spin systems.! Entanglement estimators represent a way of
detecting quantum phase transitions in anisotropic S=1/2
antiferromagnetic chains.> A diverging entanglement length
in the Ising spin model illustrates the quantum phase
transition.> The behavior of critical entanglement in spin
systems* is analogous to that of entropy in conformal field
theories.> Networks of globally coupled oscillators exhibit
phase transitions from incoherent to coherent states.’ Quan-
tum phase transitions in mesoscopic systems, defined for in-
finite number of particles N persist even for moderate N.”

In nuclear physics, it was determined since the beginning
of the 1980s that the Bohr-Mottelson liquid drop model is the
classical limit of the interacting boson model (IBM).® Equi-
librium shapes associated to dynamical symmetries and its
shape transitions were studied. The correspondence between
classical and quantum variables was established constructing
the energy surface as the expectation value of the IBM
Hamiltonian with respect to the coherent states of the
model.’

The classical theory of phase transitions within the catas-
trophe formalism'®!! demonstrates that a shape phase transi-
tion occurs when the control parameters of the Hamiltonian
are varied and the deformation variables jump from one criti-
cal branch to another.'> Quantum phase transitions between
spherical, prolate, oblate, and +-unstable nuclear ground-
state shapes have been found in the IBM,'? with an analogy
between the IBM results and predictions of the Landau
theory of phase transitions in classical thermodynamics.'#-10

In this paper, we study the geometric interpretation and
the degeneracy of the nonlinear spin Hamiltonian

A
H=20ly+ (2 +) + %/(J+J_+J_J+), (1)
where the operators J, J, denote the spherical components
of angular momentum operators and A and vy are real param-
eter strengths. This model Hamiltonian has been very suc-

cessful in several fields of physics. In nuclear physics, this

1098-0121/2005/72(1)/012406(4)/$23.00

012406-1

PACS number(s): 75.10.—b, 05.70.Fh, 21.60.Fw, 42.50.Dv

Hamiltonian is known as the Meshkov-Glick-Lipkin (MGL)
model!” and can represent a two-level system of identical
particles interacting through particle-particle and particle-
hole channels, where phase transitions from single particle to
collective motion can be visualized.'® It can also describe a
system with proton and neutron quasiparticles in the pres-
ence of neutron-proton pairing.!” In the field of quantum
optics, this Hamiltonian allowed Kitagawa and Ueda®® to
produce spin squeezed states.

The classical limit of this system is established by study-
ing the expectation value of the Hamiltonian in the SU(2)
coherent states. This expectation value defines the energy
surface and it is analyzed using the catastrophe theory for-
malism. Once the critical points are found, it is necessary to
determine which of them belong to bifurcations or Maxwell
sets. The union of these sets defines the separatrix of the
system, which classifies the regions in the essential param-
eters space where there are phase transitions and its order,
according to the thermodynamic Ehrenfest classification.

The spin coherent states are defined by?!

1= 1+ |8 exp({ T ). (2)
where {=tan(6/2)exp(i¢) and J is associated with the num-
ber of particles. After making a shift and a magnification, the
expectation value of the Hamiltonian between coherent states
can be written as

H|O) = ]
8(0’¢):<§| |i>J W

=—2cos O+ v, sin> § cos® ¢+ Yy sin? sin” ¢,  (3)
where the parameters y, and 7, are defined by

2J-1
Vo= (y+N),

2J-1
o Yy=—7—(y=MN). 4)

2w

Trial states with good parity properties can be built as
even and odd spin coherent states given by
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|é%=m(|§)i|— ). (5)

The expectation value of the Hamiltonian between the even
(+) and odd (—) spin coherent states takes the form

e.(0,¢) = M’
wJ
=8(0’ ¢)Fi(07‘]) I (7x+ ’Y)’)Gt(a"])’ (6)

where the functions F, G are given by the expressions

1 + (cos §)>~2

F.(0,J)= s
(6.0) 1+ (cos 6)¥

(sin 6)*(cos 6)>2
1+ (cos 6)¥

G.(0,J) = )
The same shift and magnification are chosen for the three
energy surfaces to allow a simple comparison between them.
When J— o, the functions F. go to the unity, and functions
G, go to zero. From now on, the functions &, €,, and &_
denote normal, even, and odd energy surfaces and in this
asymptotic limit they are equivalent.

An analysis of the normal energy surface (3), when the
control parameters y, and 7, are varied, allows the determi-
nation of critical points, its degeneracy, the bifurcation sets,
and the loci in the control parameters space where phase
transitions occur from one local critical point to another. One
can organize all the critical points according to their stability
within the control parameters space.

The critical points of the energy surface are found by
solving the equation Ve(0, ¢)=0. From this expression, it is
immediate that the poles (i) 6,=0 and (ii) 6.= are critical
points for any values of the parameters 7y, and v,. For this
reason they are called fundamental roots. A Taylor series
expansion around these fundamental roots determines that
the system has a fourth-order germ,'' implying that there
exits at most triple degeneracy in the critical points.?> Be-
sides, there are additional critical points which are

-1 .
(i) [96=arccos<—), =01, if|y|>1,
Yx J
—1 1
(iv) {Gcz arccos(—) do=m|, if|yl>1,
Vx i

—

5
5

(v) [ 6, = arccos

-1

™ .
e TiTEe

. 3 .
(vi) | 0. =arccos b= if|nl>1,

Yy

(vii) [HL: arccos<_—_1), b= qb}, if |y >1,
Y

where 7y denotes the common value y,=7v,. The functional
form of the normal energy surface at the critical points is
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FIG. 1. (Color online) The bifurcation sets are plotted together
with the straight lines y,=—7,, ¥,= 7, with |y,|<1, and the hyper-
bola y,p=1/7,. The bifurcation sets associated to phase transitions
between minima are shown with thick lines while those related with
maxima are displayed by thick dotted lines. A reflection along the
straight lines y,=+ v, yields related energy spectra.

£(0,0)==-2, &(m,0)=2, 8(06,¢C)=F+%, (8)

where we define

Y., when ¢.=0 or m,

T 37
I'=y 7. when ¢ .= Sor 9)

y, when y, = V=7

To have the minimal classical energy surface, the following
additional conditions on the control parameters space must
be satisfied:

forT'=vy, vy <-1, and vy, <vy,
forI'=vy, v <-1, and vy,<vy,
forI'=%y, y<-1.

The Maxwell sets!! are the loci in parameters space for
which the classical energies at two or more critical points are
equal, and under small changes of the control parameters
satisfy the Clausius-Clapeyron equations

{9eW1dry, — 0eP1dy,}8y,=0. (10)

The subindex « takes the values x and y; W and £®@ denote
the two degenerate energies at critical points. When a Max-
well set is crossed, the energy surface jumps from one criti-
cal branch to another, and phase transitions take place for
IT|= 1. Phase transitions for the minimum values of the clas-
sical energy surface can only happen for I'<<—1. In Fig. 1
they correspond to the regions where y,<-1 and y,<-1.
Bifurcation sets are the loci in parameters space where the
function & changes because equilibria points are either cre-
ated or destroyed. They are obtained from the vanishing of
the determinant of the matrix of second derivatives of &
evaluated at the critical points, that is, det sij:O, with i,j
=0, ¢. The parameter values that satisfy these conditions are
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ve==x1; y==x1; y=y with|y|/=1. (11)
They are shown in Fig. 1. A second-order phase transition of
the Ginzburg-Landau type takes place when the straight lines
¥.=—1, 7,=—1 and the point (y,,y,)=(-1,-1) are crossed.
The crossing of the straight line y,=1v, yields a first-order
transition. Special attention must be given to the crossing of
the cusp point (y,,7,)=(-1,-1) along the straight line 7y,
=—v,—2 because in that case there is a third-order phase
transition, related to a convergence of second-order phase
transitions.

In Fig. 2(a), the minimum values of the even energy sur-
face are displayed. Notice that e, ~-2 for y,=~-1 and 7y,
=—1; one can also see visible changes along the straight
lines y,=-1, y,=-1, and y,=v, closely related with the
phase transitions discussed for the normal energy surface. In
Fig. 2(b), the minimum values of the even and odd energy
surfaces are plotted together. For y,=-1 and y,=-1 only
the odd energy surface e_ is observed as a flat surface with
e_~—1 with a small slope. At the bifurcation sets, for 7,
<-1 and y,<-1 the slope changes suddenly and the odd
energy surface starts decreasing faster than the even one. At
the hyperbola y,,=1/7,, there is a crossing between ¢, and
e_. Beyond this curve the minimum odd energy surfaces has
a lower energy than the minimum even energy surface,
shown with light gray in Fig. 2(b).

A deeper understanding of the behavior of the system is
obtained by analyzing the quantum solution of the Hamil-
tonian (1). After the same shift and scaling, it can be rewrit-
ten as
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FIG. 2. (Color online) In (a),
the even energy surface is plotted
for N=20 and the ranges of the
control parameters -3<7vy,<3
and 3=y, <3. In (b), the super-
position of the minima even and
odd energy surfaces is displayed
for the same range of parameters.
In (c), the minimum energy of the
Hamiltonian is plotted for the ex-
act even eigenstates, while in (d),
the superposition of minima for
the exact even and odd eigenstates
is shown.

J(y, + 2 + -
H= (‘Yx 72) += 0 — (7x ‘)/y)J(2)+ Vx ’Yy (Ji+.]%)
2J-1 J J(2J-1) 2J(2J-1)
(12)

Notice that under reflections along the straight lines y,=7,
and y,=-7, the Hamiltonian yields the same energy spec-
trum and an inverted energy spectrum, respectively. There-
fore in the y,— v, plane, it is sufficient to study the quantum
solutions only one quadrant of the control parameters space
(cf. Fig. 1).

When the case with maximum symmetry is considered,
the number of particles is twice the value of the angular
momentum N=2J. Exact eigenvalues and eigenvectors are
obtained in the angular momentum basis states
(N-n)!
™) (n)!J+IN0>, (13)

where n=J+M, and with n varying from O to N. The state
INO) is the unperturbed ground state, i.e., the ground state
when y,=y,=0. In this case all the particles occupy the low-
est level. Since the Hamiltonian (12) has nonvanishing ma-
trix elements only between states (13) with n—n,n+2, its
eigenfunctions can be written in terms of linear combinations
of states with even or odd values of n. The even and odd
exact lowest energy states correspond to the ground or the
first excited states of the system.
For the case y,=v,=7%, the energy spectrum is given by

Ny 4( N\ 2y N\?
¥ +—<n——)— H (n——). (14)
N-1 N 2/ N-1 2

There are crossings (degeneracies) between the quantum so-
lutions with different or the same parity when

[Nn) =

E,(N) =
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E(N) = E,(N) or E/(N) = E;,»(N). (15)
In the first case, the condition
N-1
g = 16
Yk N—2k-1 (16)
is obtained, with k=0,1,...,N—1, while in the second, one
gets
N-1
7 A 17
T N—2-2 (17)

with [=0,1,...,N-2. These are all the y values where there
is degeneracy for the diagonal case. Thus for a given number
of particles N, there are 2N—-2 energy crossings.

There are J or J+1/2 crossings between the ground and
first excited states, according to the integer or half integer
value of the angular momentum, respectively. These cross-
ings occur only for negative values of 7, in agreement with
the condition of the minima of the classical energies.

For vy, # v, the crossings and anticrossings of the quan-
tum levels are described by the hyperbolae

()2 (232

yyk:m’ Yy = (71 ) ’ (18)
where 7,(:) and 7;2) are gxiven in Egs. (1X6) and (17) respec-
tively. The first expression is associated to the crossings of
the energy levels of different parity, while the second one
determines anticrossings of quantum levels of the same par-
ity. If =7, or y,;=7, in the last expressions, the crossings
for the diagonal cases (16) and (17) are recovered. It is
straightforward that there is not degeneracy for y,,=—7,.

In Fig. 2(c) the lowest energies for even eigenstates are
shown while in Fig. 2(d) the lowest energies for both even
and odd eigenstates are displayed together. The number of
darker bands depends on the number of particles and show
regions where the ground state has odd parity. Each crossing
hyperbolae is given by 7. The similarity with the corre-
sponding plot for the classical energy is evident. That is, the
bifurcation sets y,=-1, y,=-1, and the cusp'’ (7, %)
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=(—1,-1) can be seen in all the figures. In the lower part, the
phase transitions and degeneracies are shown. For the clas-
sical energies, one hyperbola shows the crossings of even
and odd energy surfaces. This hyperbola always coincides
with the first degeneracy region of the exact quantum result.
When the number of particles goes to %, only the phase
transitions associated to the separatrix of the normal energy
surface remain.

The separatrix is fundamental to determine the stability
properties, phase transitions, and even the accidental degen-
eracy of the nonlinear spin Hamiltonian. The bifurcation sets
displayed by the thick continuous line in Fig. 1 separate the
single particle motion from the collective one. For y, <-1
and vy, <-1 the eigenstates are constituted by many compo-
nents of the angular momentum basis states, while for the
region y,=-1 and y,=-1, only one component is domi-
nant. In the interior region of the hyperbolae there is not
degeneracy whereas in the exterior part, degeneracy is
present. For negative values of vy, and v,, there are crossings
between quantum levels with negative energy, meanwhile for
positive values, crossings occur between energy levels with
positive energy. The hyperbolae vy, Eq. (18) indicate the set
of points in the 7y,-y, plane where there are degeneracies,
i.e., crossings between exact even and odd energy levels. The
label k of these functions is related with the number of de-
generate pairs of energy levels. That is, for k=0 there is one
degenerate pair; for k=1, there are two degenerate pairs; and
so on. The hyperbolae y,, Eq. (18) determine the region
where there are anticrossings between pairs of exact even or
odd energy levels. There are degeneracy only by the exis-
tence of a symmetry, that is, at the points y,,= 7;2). The evo-
lution of the energy surfaces as a function of the control
parameters and its relation with the exact quantum states will
be discussed in a future work.
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