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The resonance modes near the edges of the first absolute band gap of a two-dimensional solid phononic
crystal with an epoxy host are investigated in this paper. A rotary resonance mode, induced by the joint effect
of the Bragg and Mie scattering, is observed near the bottom of the gap. The gap, resulting from the interaction
between the rigid-body resonance and the effective homogeneous medium, coalesces with the Bragg gap,
which leads to the formation of a wide gap. Then a simple analytical model is introduced to give a physically
intuitive account of the rotary resonance. Finally, the effects of the array and the filling fraction on the band gap
are explained by the conditions for occurrence of the resonance.
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A phononic crystal �PC� is a composite material whose
density and/or elastic coefficients vary periodically in space.1

Under certain conditions, PCs can exhibit a phononic band
gap �PBG�. The PBG is a frequency domain where the
propagation of the elastic wave is forbidden. Further to Si-
galas’s structural proposal,2 the band gaps and the math-
ematical analogy between the elastic waves in PCs and elec-
tromagnetic waves in photonic crystals3 have been
extensively studied during the last decade.4–13 Most of these
studies focused on identifying the absolute band gaps in vari-
ous PCs.4–7 For a solid-solid system, the absolute gap is dif-
ficult to find because the longitudinal and transverse waves
are mixed. The contrast between the elastic coefficients and
densities of the compositions of the PC is critical in deter-
mining the existence and the width of the PBG �reviewed by
Kafesaki6�. As for the formation of the gap, Sainidou et al.
showed in three-dimensional �3D� PCs �steel spheres in
polyester� that the gap originates from the interaction be-
tween the rigid-body resonance �RBR� of the individual
sphere and the effective homogeneous medium.7 Maslov
studied the RBR theoretically and the lattice resonance
experimentally.8 In this paper, we give further investigation
of the resonance modes and the formation of the gap.

We choose a two-dimensional solid-solid PC, which per-
mits the propagation of the pure transverse �Z mode� and the
mixed modes �XY mode� independently when restricting the
wave vector k� propagating in the XY plane �see Fig. 1�. We
confine our attention to the XY mode. Compared to 3D PCs,
there is one less transverse mode mixed in the XY mode,
which simplifies the nature of the eigenmodes and the corre-
sponding computation, and makes it easier to understand the
physical origin of the gaps.

First, a square array of glass cylinders with circular cross
section in epoxy is considered �for material parameters see
Table I�. The geometry is illustrated in Fig. 1. Figure 2�a�
shows the band structure calculated by the improved plane-
wave expansion �IPWE� method.9 The filling fraction F is
0.45 and 441 plane waves are used in this and the following
calculations. The frequencies are normalized as fa /ct, where
ct is the transverse wave velocity in epoxy. From Fig. 2�a�,
we can see that the first absolute PBG exists between the

third and fourth bands. The long-wavelength limit �f →0�
presents two linear dispersion curves �corresponding to the
transverse and the longitudinal waves propagating in the PC,
respectively�, the slopes of which give the effective veloci-
ties of the composite medium. Here the PC behaves as a
homogenous medium. Figure 3�a� shows the particle dis-
placement vectors calculated by the lumped-mass method.10

It can be seen that all the particles in the lattice move in
phase and with the same amplitude. The particle displace-
ment vectors at the gap bottom �� point denoted by B� are
showed in Fig. 3�b�. The distinct feature is the standing wave
accompanied by a rotary resonance, i.e., the glass rod re-
volves about its axis and the epoxy vibrates accordingly. This
resonance mode is induced by the joint effect of the Bragg
and Mie scattering. The former originates from the lattice
periodicity and the contrast between the material parameters
of the components. The periodicity makes the linear disper-
sion of the effective homogeneous medium fold onto the first
Brillouin zone. This effect can be explained in the case that
there is little contrast between the material parameters of the
components. Generally, a small or no gap will be opened. In
the glass-epoxy system, the contrast of the acoustic imped-
ance, i.e., the product of the density and the velocity, induces
reflection between the adjacent layers along a specific direc-
tion. This reflection is enhanced when the transmitting dis-
tance of the reflective waves from adjacent layers meets the
corresponding wavelength, which leads to zero transmission

FIG. 1. �a� Cross section of the two-dimensional square array of
glass cylinders with radius r in epoxy. a is the lattice constant. �b�
The high-symmetry points �, X, and M in the first Brillouin zone.
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in the specific frequency range. This is the physical origin of
the Bragg gap. This gap will be dependent on the symmetry
of the lattice, the bottom of the gap is mainly determined by
the wave scattering along the �1,0� direction, and its top is
mainly determined by the wave scattering along the �1,1�
direction. As a verification, Fig. 3�d� shows the particle dis-
placement vectors at the gap top �denoted by point D in Fig.
2�a��. On the other hand, the weak RBR of the individual
cylinder, resulting from the Mie scattering, exists near the
bottom of the Bragg gap. Figure 3�c� shows the particle dis-
placement vectors �denoted by the line with arrowhead at
point C in Fig. 2�a��. A series of such resonators attach to and
interact with the effective homogeneous medium, which
leads to zeros of transmission in the gap �PCs with a locally
resonant structure serve as good examples for understanding
the formation mechanism of the gap11–13�. This gap coalesces
with the Bragg gap, so a wider gap comes into being.

In order to support the origin of the wide gap stated
above, the resonance modes of various cylinder materials
with larger densities are also investigated �for material pa-
rameters see Table I�. The results show that the particle dis-
placement vectors present almost the same patterns as the
glass-epoxy system at the corresponding point. The main dif-
ference is that a greater rotary resonance exists near the gap
bottom as the cylinder density is getting larger. As we know,

the intensity of RBR increases with increase of the cylinder
density �it behaves very similarly as in 3D systems8�, which
is denoted by the relatively flatter band. As can be seen from
the steel-epoxy system in Fig. 2�b�. At the same time, the
frequency of RBR gets lower, so the gap induced by the
RBR exists in the lower-frequency domain, and widens the
corresponding Bragg gap too.

Now, we introduce a simple model for more physical in-
sight into the rotary resonance. When F is lower or a little
higher than 0.43 �0.47� in the square �triangular� array, the
cylinders can rotate almost freely. So the resonant frequency
can be estimated from a single cylinder in one unit cell. The
rotary inertia of matrices with radii between R=r /a and 1/2
�the limit of the cylinder radii� is considered, which is rea-
sonable according to the resonance pattern in Fig. 3�b�. The
rotary inertia I with unit length is

I = ��SR4/2 + ��M��3/2 − �F/��4 − 1�R4/2, �1�

where �s ��M� is the density of the cylinder �matrix�. The
corresponding effective torsional stiffness K� is

K� = 2�R2��M + �M� , �2�

where �M and �M are the Lamé coefficients of the matrix. So
the resonant frequency f is

f =
1

2�
�K� /I . �3�

Figure 4 shows the gap bottom as a function of the cylin-
der’s density. The thick dash-dotted line represents the cal-
culation result from by �3�. The thin solid line shows the gap

TABLE I. Parameters of the materials employed in this
paper.

Material � �kgm−3� cl �ms−1� ct �ms−1�

Glass 2490 5660 3300

Al 2690 6450 3220

Al2O3 3970 10850 6345

BaCO3 5300 5170 2780

Steel 7890 5780 3220

Cu 8960 4330 2900

W 19300 5090 2800

Au 19500 3360 1239

Epoxy 1220 2490 1180

FIG. 2. Dispersion relations of XY modes in 2D �a� glass-epoxy
and �b� steel-epoxy with square array. F=0.45. A, linear dispersion
area; B and D, bottom edge and top edge of the first absolute PBG,
respectively; C, the band of RBR mode.

FIG. 3. Particle displacement vectors of XY mode uxy in one unit
sell. The direction and length of the arrows represent the direction
and amplitude of the displacement vectors, respectively. The se-
lected wave vector and frequency are corresponding to point �a� A,
�b� B, �c� C, and �d� D in Fig. 2, respectively.
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bottoms of the PCs with various cylinder materials �for ma-
terial parameters see Table I�, which are calculated by the
IPWE method. The good fittings show that the model is
valid. It should be pointed out that the error between the
result of the IPWE and that of Eq. �3� becomes more distin-
guishable when the cylinder’s density is larger, which is in-
duced by the convergence problem of the IPWE.

In this section, we will explain the effects of the array and
the filling fraction on the first absolute PBG by the condi-
tions for the resonance occurring. Figure 5 shows the varia-
tion of the gap edges �a� and width �b� of the steel-epoxy
system with F. Let us look at the bottom of the gap first.
When F	0.43 �0.47� in a square �triangular� array, the reso-
nant frequency gets lower with increasing F, which is in-
duced by the rotary inertia of the cylinder. It also can be seen
from Fig. 5�a� that the gap bottom in the square array is
lower than that of the triangular array. The reason is that
there is a larger rotary inertia in the square array because of
the larger radii under the same F �R=�F /� for the square
array and ��3F /2� for the triangular array�. For F
0.43
�0.47� in the square �triangular� array, the stress from the
neighbor cylinders, as a resistance, weakens the cylinder’s
rotation resonance. As a result, the interaction between the
resonant cylinder and the matrix becomes weaker. Thus the
frequency of the gap bottom gets higher. It is noticeable that
the gap bottom of the square array is higher than that of the
triangular array when F
0.653, which is induced by the
larger resistance in the square array under the same F.

Finally, the gap top is mainly determined by the Bragg
scattering along the �1,1� direction, which leads to the gap

top of the triangular array is higher than that of the square
array �Fig. 5�a��, so the band gap of the triangular array is
wider than that of the square array under the same F �Fig.
5�b��. For F	0.57 �0.65� in square �triangular� array, the
distance between the boundaries of the neighbor cylinders is
reduced while F increases; accordingly the wavelength of the
standing wave becomes shorter, and the resonant frequency
gets higher. For F
0.57 �0.65� in the square �triangular�
array, the stress from the almost still cylinders �the resonance
is mainly concentrated in the matrix; see Fig. 3�d�� weakens
the matrix’s resonance, i.e., the Bragg scattering in the �1,1�
direction becomes weaker, which leads to the narrower gap.

In conclusion, we have shown the resonance modes near
the edges of the first absolute PBG in 2D PCs with a matrix
of epoxy. The resonance of the gap top is induced by Bragg
scattering, and the resonance is mainly concentrated in the
matrix. The bottom resonance is induced by the joint effect
of the Bragg and Mie scattering and presents a rotary reso-
nance mode. The gap induced by the rigid-body resonance
coalesces with the Bragg gap, so a wider gap comes into
being. Then the physical understanding of the rotary reso-
nance has been investigated by a simple model with an ana-
lytical solution. The behavior of this resonance has been
characterized as a function of the mass densities of the cyl-
inders. Finally, the effects of the array and the filling fraction
on the first absolute phononic band gap are explained by the
conditions for the occurrence of resonance.
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