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I. INTRODUCTION

Considerable interest has been attracted recently to the
properties of simple gasessnoble gases and small moleculesd
adsorbed near bundles of carbon nanotubes.1–18 This subject
has been reviewed recently.13,14 The adsorption of these
gases can occur within the tubes only if they are open, which
is possible either during the process of nanotube formation
se.g., when endohedral C60 molecules are formedd,15 or after
chemical treatment to open the tubes.16,19 The presence, or
absence, of interstitial channelsICd molecules is an open
question in the case of an idealized bundle of identical tubes;
there seems to be no doubt, however, that such IC adsorption
occurs in laboratory samples of polydisperse tubes.20 In con-
trast to variability in adsorption at these sites, the adsorption
of gas on the external surface of the bundle is a ubiquitous
phenomenon, in which the film coverage increases with the
pressuresPd of the coexisting gas. In that exohedral environ-
ment, an adatom is strongly attracted to the groove region
between two neighboring tubes; there, the film forms a
quasi-one-dimensional phase. Further adsorption at low tem-
peraturesTd is predicted to manifest a so-called three-stripe
phase of gas aligned parallel to the grooves.21 At higher gas
coveragesNd, there occurs a two-dimensional monolayer
phase, qualitatively analogous to that found on the graphite
surface.22,23At even higher coverage, a multilayer film grows
asP increases. There is an upper limit of total film coverage,
set by the bundle’s curvature;24,25 this limit has yet to be
explored.

This study extends a previous investigation26 of the ad-
sorption of Ar gas on the external surface of a nanotube
bundle. Argon was chosen as a model adsorbate because its
gas-gas interaction is well known, making it a standard fluid
in the study of simple fluids. In the previous study, denoted I,
we employed the grand canonical Monte Carlo simulation
method to explore the evolution of the equilibrium film as a
function of P andT. The present paper, stimulated by recent
and proposed experiments, adds three results to those derived
in the previous study. One property is the specific heat,csTd,
which is computed here from energy fluctuations, evaluated
using simulations within the canonical ensemble. The second

property is the differential heat of adsorption,qd=
−s]E/]NdT, whereE is the energy of the film. This quantity
is closely related to another quantity, which is more often
measured experimentally, the isosteric heatqst
=f]sln Pd /]bgN fwhere b=1/skBTdg, by the relation27 qst

=qd+kBT sassuming an ideal gas coexisting with the filmd.
The third property reported here is the anisotropic correlation
function of the overlayer. This quantity is related by Fourier
transform to results of diffraction experiments. With the ex-
ception of the isosteric heat calculated by Shi and Johnson,20

none of these properties has been explored in simulation
studies of films on nanotube bundles, prior to the present
work.

The outline of this paper is the following. Section II sum-
marizes our simulation methods. Section III reports results
for the density and correlation functions. Section IV presents
results for the thermodynamic properties,c andqd. Section V
summarizes our results.

II. COMPUTATIONAL METHODS

When not explicitly contradicted in this paper, it may be
assumed that the physical system and computational method
are as described in I. The primaŕy model system is a bundle
of infinitely long, cylindrically symmetric carbon nanotubes
of identical radii equal to 6.9 Å. Only two adjacent nano-
tubes on the external surface of the bundle are simulated.
The y axis is parallel to the nanotubes, and thez axis is
directed away from the surface of the bundle. Periodic
boundary conditions are imposed in thex and y directions
sapproximating the surface of the bundle as an infinite plane
of nanotubesd; reflecting boundary conditions are imposed in
the z direction. The unit simulation cell, whose volume con-
tains half of each of the two adjacent nanotubes with the
groove in between them at the center, is 17 Å in thex direc-
tion, 34 Å in they direction, and 40 Å in thez direction.

The simulations were done in the canonical ensemble,
rather than the grand canonical ensemble more commonly
used in adsorption simulations, in order to facilitate the cal-
culation of the heat capacity. Two Markov Chain Monte
Carlo simulation methods were used, the Metropolis
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algorithm28,29and the Wang-Landau algorithm.30–32The Me-
tropolis algorithm was used to calculate configurational ob-
servables, such as density distributions and correlation func-
tions. The Wang-Landau algorithm was used to calculate
thermodynamic observables expressible in terms of en-
semble averages or their derivatives, such as specific and
isosteric heat, for certainN; the Metropolis algorithm was
used to determine the fullN dependence.

The Metropolis algorithm proposes new configurations
and accepts them with a probability equal to
minh1,Psx8d /Psxdj, wherePsxd andPsx8d are the probabili-
ties of the old and new configurationsx andx8; this accep-
tance rule causes the random walk to converge to the prob-
ability distribution Psxd. By choosingPsxd proportional to
the Boltzmann factor expf−bUsxdg, whereUsxd is the poten-
tial energy of the configuration, the Metropolis algorithm
uniformly samples configuration space. For the Metropolis
simulations of eachsN,Td, 43107 Monte Carlo moves were
discarded during the initial equilibration to converge the al-
gorithm to the Boltzmann distribution, then 43106 moves
were generated, from which 104 samples were drawn to per-
form simulated measurements of system observables.

The Wang-Landau algorithm, like the Metropolis algo-
rithm, also proposes and accepts configurations with a prob-
ability equal to minh1,Psx8d /Psxdj. However, it chooses
Psxd to be proportional toPfUsxdg=1/gfUsxdg, wheregsUd
is the srelatived density of states, thus uniformly sampling
energyspacesinstead of configuration space, as in the Me-
tropolis algorithmd. It dynamically refines its estimate of the
density of states by counting each visit to a state of a given
energy U sor, rather, within a small range of energiesU
P fUi −e /2 ,Ui +e /2g about an energy binUi of width ed, and
multiplies its running estimate ofgsUid by a constant factor
f. It continues the random walk until each energy is visited
approximately uniformlysa “flat histogram” of visits in en-
ergy spaced, whereupon it reduces the factorf → f1/2 and
starts another iteration. The algorithm terminates whenf is
reduced to a preset minimum greater than unity, with values
closer to unity yielding more accurate estimates of the den-
sity of states.

Once an estimate ofgsUd is produced, it can be used to
calculate the partition function directly

Z ,E dx e−bUsxd < o
i

gsUide−bUi . s1d

Thermodynamic quantities can then be calculated from the
partition function, as usual. One advantage of the Wang-
Landau algorithm over the Metropolis algorithmsand the
main reason for using it for this studyd is that, because tem-
perature dependence appears only in the Boltzmann weight
exps−bUd and not in the density of statesgsUd itself, a single
simulation ofgsUd can calculate thermodynamic observables
for all temperatures at once.

Some modifications and improvements to the original
published Wang-Landau algorithm were implemented.
Boundary effects were properly handled.33 To adapt the
original lattice-based algorithm to continuum systems, pre-
liminary Metropolis runs at low temperature were performed

to estimate a lower bound on the energy binssi.e., the ground
state energyd.34 The simulation can also become trapped for
long periods of time in regions of high degeneracy, so that
energies with smallgsUd go a long time before being revis-
ited. To remedy this, the energy bins can be broken up into
overlapping subranges; ergodicity can be achieved more rap-
idly if the interval of energies to be traversed is smaller.
Separate simulations are performed in each subrange, pro-
ducing independent estimates ofgsUd. Some care must be
taken in combining them into an estimate ofgsUd over the
full energy range: because each simulation calculates only
the relativedensity of states, the estimates will not generally
match up at the boundaries of the subranges. To overcome
this, each subrange estimate ofgsUd is rescaled by a constant
factor that minimizes the least-square error in loggsUd wher-
ever two neighboring subranges overlap in energy.34 This
corresponds to choosing normalizing factorsCn that mini-
mize the sumoihlogfgnsUid /Cng−logfgn−1sUidgj2 over the
overlapping binsUi swheregn denotes the density of states
simulated over subrangend, and then rescalinggnsUd by Cn.

For the Wang-Landau simulations of eachN, 1500 equal-
sized energy bins were used in a rangefUmin,0g, whereUmin

is the ground state energy. The 1500 bins were divided into
four overlapping subranges, simulated separately, consisting
of the bins numbered 1–150, 76–787, 713–1425, and 1351–
1500. A histogram was considered “flat” when the number of
visits to any particular energy bin was less than ±20% the
average number of visits to any bin. The minimumf factor
was fmin=1+10−5.

III. CORRELATION FUNCTIONS

For the purposes of this paper, the three-dimensional pair
correlation function is defined as the probability densitygsr d
that two particles are separated by a relative displacementr .
Its projectionGsx,yd;edz gsr d into thexy plane is depicted
in Fig. 1. The contours become wider and more irregular at
higher temperatures, as the particles are thermally excited
out of their well-defined low temperature sites.

In the top pair of panels, one observes the nearly periodic,
quasi-one-dimensionals1Dd order within the groove. As
studied recently in connection to nanotube adsorption,35–40

this phase may undergo a phase transition due to the weak
interactions between particles in neighboring grooves. In the
second pair of panels, one observes that the correlations
within the three-stripe phase are weaker and even moreT
dependent than those in the groove phase. At 90 K, at higher
coveragesseen in the middle four panelsd, the stripes are not
as straight, primarily due to transverse excitationsas dis-
cussed in Sec. IV Cd. Note that the half-filled stripe case
sN=18d is somewhat less ordered than the completely filled
three-stripe casesN=27d, as is expected. The bottom panels
of Fig. 1 exhibit a highly correlated anisotropic two-
dimensionals2Dd solid at 60 K, the order of which washes
out nearly completely by 90 K, as the monolayer melts.

Previous experimental studies of Ar adsorption onto pla-
nar graphite41–44 found that the melting temperature depends
on density, starting near 55 K at low density, and increasing
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with density. Although the system studied here differs from
that experiment in geometry, we expect the melting tempera-
ture of the monolayer in our system to similarly increase
with density. The corrugation of the nanotube bundle should
elevate the melting temperature somewhat compared to a
planar surface, as the grooves will serve to more strongly
confine the film’s structure.

Bienfait et al. have measured diffraction patterns for Ar
on nanotube bundles.2 Probably due to heterogeneitysfor
which there exists evidence in bare surface diffractiond, the
diffraction data are not easily interpreted. There is, however,
definite evidence of 1D interatomic spacingsi.e., a peak at
wave vector q=17/nmd at low coverage and 2D close-
packed spacingspeak near 20/nmd.

IV. HEAT CAPACITY

A. Overview

The isochoric specific heat,csTd=s]E/]TdV/N, i.e., the
heat capacitysper particled at constant volume, was calcu-
lated from ensemble averages. It is known45 that the heat
capacity can be given in terms of energy fluctuations,
s]E/]TdV=skE2l−kEl2d / skBT2d, wherek·l denotes an expec-
tation taken over the canonical ensemble. The equipartition
theorem gives the kinetic energy contribution of1

2kB per de-
gree of freedom to the specific heat, yielding a totalcsTd
= 3

2kB+skU2l−kUl2d / sNkBT2d. Given the density of states

gsUd calculated with the Wang-Landau algorithm, the expec-
tations may be calculated fromkUl=Z−1oiUiexps−bUid, and
similarly for kU2l. The heat capacity was also estimated di-
rectly from the derivatives]E/]TdV by means of a finite dif-
ference approximation. These latter estimates, while consis-
tent with the fluctuation estimates, were “noisier” and are not
considered further in this paper.

The simulatedcsTd for the groove, three-stripe, and
monolayer phases is shown in Fig. 2. Note that the overall
trend is for csTd to have a remarkably high value, in the
range 3–7 Boltzmanns, much higher than might be expected
from simple quasi-one-dimensional and two-dimensional
models. We do not have a detailed quantitative model to
explain all of the observed features, but we can give a quali-
tative explanation of its behavior. The explanations are jus-
tified by examining the probabilities of finding particles at
given energies in the external potential, Fig. 3, indicating the
fraction of particles that are in the groove, stripes/monolayer,
etc. squantified in Table Id.

B. Low density

Consider first the low-density limit.47 At low tempera-
tures, the specific heat is near 2.5 Boltzmanns. This is to be
expected: the three kinetic degrees of freedom each contrib-
ute the usual 1/2 Boltzmann; the two transverse dimensions,
for which the external potential is approximately harmonic at
its minimum at the center of the groove, each contribute
another 1/2 Boltzmann. As the temperature increases, a peak
in the specific heat occurs near 170 K when substantial num-
bers of adatoms are promoted out of the groove and into
monolayer sites elsewhere on the surface of the nanotubes
ssee Table Id. As T→`, the adatoms desorb from the surface
altogether, andcsTd approaches the 3/2 Boltzmanns of the
three kinetic degrees of freedom of a pure vapor.sThis will
be the case for all other densities as well, in the high-T limit.d

These conclusions are corroborated, as mentioned, in the
first row of Fig. 3; these results, in the low-density limit, can
also be understood by examining the so-called “volume den-
sity of states”46 fsUd, defined such thatfsUddU is the volume

FIG. 1. Equiprobability contour plots of the projection into the
xy plane of the pair correlation function,Gsx,yd for, from top to
bottom, N=9 sgrooved, N=18, N=27 sthree-striped, and N=54
smonolayerd, atT=60 K sleftd andT=90 K srightd. Distances are in
angstroms. Note that the vertical axis scale is compressed relative to
the horizontal.

FIG. 2. The dimensionless specific heatcsTd /kB of the low-
density limit sN=1d; the groovesN=9d, three-stripesN=27d, and
monolayer sN=54d phases; and the theoretical prediction of the
low-density limit given by the dimensional crossover modelsdis-
cussed in the textd.
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of space bounded by infinitesimally separated isopotential
surfaces,U,Uext,U+dU. This function is related to the
energy probability densityPsUd in Fig. 3 at low density by
PsUd=rfsUdexps−bUd, where r is the number density of
particles. By dividing an estimate ofPsUd at a given tem-
peratureshere,T=300 Kd by the exponential Boltzmann fac-
tor, we obtain an estimate proportional to the volume density
of statesfsUd, depicted in Fig. 4.

The qualitative form of this figure can be explained by
appealing to a previously studied analytic model, the dimen-
sional crossover model.47 This exactly soluble model ignores
interparticle interactionssan assumption appropriate for the
low-density limitd and treats the nanotube bundle as consist-
ing solely of two regions, a one-dimensional groove region
approximated by a harmonic potential in the two transverse
dimensions, and a two-dimensional planar monolayer region
approximated by a harmonic potential normal to the surface.
Evaporation from the monolayer to vapor is neglected. Its
sconfigurationald partition function is given by

Zcrossover=E
groove

d2r e−bfVg+s1/2dar2g

+ LsE
mono

dz e−bfVm+s1/2dkmz2g, s2d

where the parametersVg=−1671 K, a=4898 K/Å2, Vm
=−853 K, andkm=4792 K/Å2 were determined by a fit to
the external potential,Ls=18 Å is the approximate width of
the monolayer region in the transverse direction, and integra-
tions were taken over regions extending 2 Å away from the
groove minimum and 1 Å away from the monolayer mini-
mum.

For the low energies dominated by the groove phase, the
crossover model approximates the external potential asU
=Vg+ 1

2ar2. The cylindrical volume enclosed by an isopoten-
tial goes likeV, r2, and fsUd=dV/dU=sdV/drd / sdU/drd,
which is a constant; indeed, thefsUd calculated in Fig. 4 is
nearly constant at low energies. For the monolayer region,
close to the potential minimum,U=Vm+ 1

2kmz2. The rectan-
gular volume enclosed by an isopotential goes likeV,z, and
fsUd=sdV/dzd / sdU/dzd, which goes likez−1,sU−Vmd−1/2

for U.Vm. This divergence in the model accounts qualita-
tively for the peak infsUd just above the monolayer energy
of about −800 K. For high energies dominated by the vapor
phase, we can treat the substrate as a semi-infinite rectangu-
lar volume, and approximate the external potential by a long-
distancesr−6d Lennard-Jones potential integrated over this

FIG. 3. The relative probabilityPsUextd of finding a particle at
an external potential ofUext, for the low-density limitsN=1d, and
the groovesN=9d, three-stripesN=27d, and monolayersN=54d
phases, for various temperatures.

TABLE I. Percentage of particles in the grooves−1600 K
,Uext,−1200 Kd, monolayers−1200 K,Uext,−400 Kd, and va-
por sUext.−400 Kd regimes, for the low-density limitsN=1d, and
the groovesN=9d, three-stripesN=27d, and monolayersN=54d
phases, for various temperatures.

N T sKd % groove % monolayer % vapor

1 20 100 0 0

170 61 31 7

300 14 35 51

9 20 100 0 0

70 93 6 0

175 43 42 15

27 20 33 67 0

55 33 67 0

165 22 60 18

54 20 17 83 0

80 17 77 7

140 14 54 32

FIG. 4. The functionfsUd sunscaledd, giving the volume of
spacefsUddU enclosed within a range of external potential energy
fU ,U+dUg.
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region, which yieldsU,−z−3. Then fsUd will go like z−4

,s−Ud−4/3, qualitatively accounting for the sharp rise infsUd
asU→0.

Given the volume density of statesfsUd, we can then
obtain the energy probability densityPsUd at any other tem-
perature by scaling this temperature-independent function by
the appropriate Boltzmann weight. In particular, the three
columns of the first row of Fig. 3 are just the function in Fig.
4 scaled by Boltzmann factors exps−bUd that decay with
decreasing rapidity asT increasessb decreasesd. The groove
is highly populated at low temperaturesslarge bd when the
exponential damping is great enough to suppress population
at higher energies. The monolayer becomes populated at in-
termediate temperatures when the damping is no longer suf-
ficient to suppress the peak infsUd that occurs at the mono-
layer energys−800 Kd, and the vapor becomes populated at
still higher temperaturesssmallbd when the damping fails to
suppress the rapid increase infsUd towards 0 K.

The partition function of the crossover model can also be
used to calculate the specific heat directly. As seen in Fig. 2,
the correspondence between the prediction of this analytic
approximate model and the simulated full model is quite
good.

C. Higher coverage

Next, consider the groove phase. At low temperatures, the
specific heat is near 3 Boltzmanns. A contribution of 2.5
Boltzmanns is accounted for by the same argument as for the
low density limit. Unlike the low density limit, however, the
groove phase is densely packed with adatoms, and interpar-
ticle interactions must be considered. An additional 1/2
Boltzmann arises from confinement in the longitudinal di-
mension, for which the Ar-Ar interaction potential is ap-
proximately harmonic at its minimum when the adatoms are
stably distributed in equilibrium. As the temperature in-
creases, evaporation out of the groove begins. AtT<70 K,
evaporation is great enough to excite adatoms out of the
groove; while not many of these atoms reach the monolayer
region sTable Id, there is still a large change in potential
energy for a small increase in temperature, and thus a large
specific heat. The specific heat then decreases slightly with
increasing temperature, since the change in energy is not as
large once the initial adatoms have begun to be promoted.
This low-temperature peak is not present in the low-density
case because, as seen in both Table I and Fig. 1, the adatoms
are not spread transversely as greatly about the immediate
groove region at low temperatures in the low-density case as
they are in the groove case. However, in a manner qualita-
tively analogous to the low-density limit, an additional,
larger peak in the specific heat is found at still higher tem-
peraturessT<175 Kd, mostly from promotion from the
groove into the stripes and the rest of the monolayer.

Like the groove phase, the three-stripe phase starts out at
3 Boltzmanns at low temperatures, similar to the groove
phase, except that the 1 Boltzmann from external potential
confinement in the transverse plane is replaced by 1/2
Boltzmann from external potential confinement normal to the
surface, and 1/2 Boltzmann from interparticle confinement

along the surface in the transverse plane. The specific heat
peaks nearT=55 K; this is not due to a significant fraction of
particles being promoted from the groove to the stripes, as
one might expect, but rather to a wider range of energies
within the stripe/monolayer region, and promotion from the
stripes to the rest of the monolayer; see Fig. 3 and Table I. It
peaks again nearT=165 K, with as the groove empties into
the stripes and monolayer, as well as the beginning of evapo-
ration off the surface.

The monolayer phase also starts out at 3 Boltzmanns at
low temperatures, for reasons analogous to the three-stripe
phase. At higher temperatures, there is a peak in the specific
heat nearT=80 K which, like the three-stripe peak, is largely
due to a broadening of the particles across a range of ener-
gies in the monolayer region, as well as some promotion
from the monolayer to the bilayersFig. 3d. Another peak
appears nearT=140 K, corresponding to evaporation out of
the monolayer into the bilayer, and to vapor.

D. Further results

The N dependence of several isotherms is displayed in
Fig. 5. Of particular note is the rapid rise in the specific heat
nearN,8, just before groove completion, asT goes from 60
to 90 K. This is attributed to promotion out of the groove.
Similarly, near monolayer completion the marked increase in
c with T is attributed to thermal promotion out of the mono-
layer.

It is also illuminating to study the differential heat of ad-
sorption,qdsNd=−s]E/]NdT, the energy required to adsorb
an additional particle onto the surface at constant tempera-
ture. The differential heat is related to the heat capacity at
constant density,CN=s]E/]TdN, by a Maxwell relation de-
rived from the total derivative dE=s]E/]TdNdT
+s]E/]NdTdN, which yields

S ]CN

]N
D

T

= − S ]qd

]T
D

N

. s3d

sNote thatCN=CV in the canonical ensemble.d
The differential heat of adsorption is summarized in Fig.

6. At low densities, the differential heat is near the minimum
of the external groove potential<−1600 K, becoming
slightly larger at lower temperatures. Both this value and the

FIG. 5. The dimensionless specific heatcsTd /kB as a function of
density, atT=60, 75, and 90 K.
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T dependence at lowN can be understood from the low-
density equation of state,U /N=Vg+ 5

2kBT. As additional par-
ticles are added, the energy for each additional particle is
reduced by slightly more than this amount, to include the
interaction energy. As the groove phase is approached, the
groove becomes tightly packed and the interaction energy
becomes significant, so that adding an additional particle re-
duces the energy by the external groove potential plus the
Lennard-Jones well depth,e<−120 K for Ar. The difference
in qdsNd between low and high temperatures is particularly
large just before the groove phase, which in accordance with
Eq. s3d corresponds to the steepest increase in heat capacity
as seen in Fig. 5; at theN=9 groove phase itself, where the
heat capacity peaks with increasingN, we see correspond-
ingly little difference in the differential heat at various tem-
peratures. At the other extreme, near monolayer completion,
a similarT dependence is observed. The large decrease inqd
with increasingT is consistent with Eq.s3d and Fig. 5; the
latter shows a large value ofdC/dN except below 60 K. The
explanation is monolayer-to-bilayer promotion above 60 K.

Experimental measurements of isosteric heat for argon on
nanotube bundles have been reported by Wilsonet al.,11 Ta-
lapatra, Rawat, and Migone,7 Jakubek and Simard,4 and Bi-
enfait et al.;2 grand canonical Monte Carlo simulations have
been published by Shi and Johnson.20

The isosteric heat calculations of Shi and Johnson for ad-
sorption of Ar on a homogeneous bundle at 90 K agree
closely with our results, with a peak ofqst=14 kJ/mol just
before the groove phase, corresponding to our peak of 1650
K. Past the groove phase, their calculated isosteric heat drops
and remains constant with coverage, slightly below
10 kJ/mol, corresponding to our nearly constant value near
1200 K.

Shi and Johnson compared their calculations to the ex-
perimental results of Wilsonet al. and Talapatraet al., and
since we agree with those calculations, we will briefly sum-
marize their conclusions. Our calculations agree with both
experiments at higher coverage, beginning at the three-stripe
phase, but their isosteric heats at lower coverage are dramati-
cally greater than ours, as large as 18 kJ/mols,2200 Kd at
low coverage. We ascribe this discrepancy with experiment
to our neglect of bundle heterogeneity, following Shi and
Johnson, whose simulations of heterogeneous bundles agreed
well with both experiments.

In contrast, the isosteric heats measured by Jakubek and
Simard agreed well with our simulations, with a peak of 137
meV s,1600 Kd near the groove, descending to plateau of
106 meVs,1200 Kd through to monolayer coverage. This
agreement with our calculations suggests that their bundles
were more homogeneous than those studied in the other two
experiments. It should be noted, however, that their isosteric
heat continues to decrease as coverage increases, whereas
our isosteric heat appears to rise slightly as the monolayer is
approached. The isosteric heat of Wilsonet al. also drops
past the monolayer.

Like the other experiments, the results of Bienfaitet al.
for Ar exhibit two plateaus in the dependence of the isosteric
heat on coverage. The lowest coverage data yieldqst
=15 kJ/mol, or about 1800 K. Our predicted value in this
range is of order 1650 K. The higher coverage, broad plateau
corresponds to a measuredqst=1200 K, which agrees well
with the value we find for the three-stripe phase. However,
the data at monolayer coverage continue to decrease, while
ours appear to increase, as noted. Another area of disagree-
ment is the extent, in coverage, of these plateaus. In the data,
the second plateau extends over a coverage range compa-
rable to that of the first plateau. Our calculations, instead,
find that groove region of highqst extends over just one-sixth
of the range of the combined three-stripe plus monolayer
regime sgrouped together because of similar values ofqstd.
This discrepancy may be attributed to the role of large inter-
stitial cavities within the bundle, as argued by Bienfaitet al.

V. SUMMARY AND CONCLUSIONS

Our results are intended to stimulate further experimental
studies of this system and analogous systems involving other
gases on nanotube bundles. We have investigated the varia-
tion of thermodynamic properties withT andN. One of the
more interesting general results is that the specific heat is
typically larger than might have been expected from either
simple models used to treat these systemsseither indepen-
dent particles or a solidd18 or from experimental results for
films on graphite.22 For most conditions studied here, the
specific heat exceeds three Boltzmanns, with average values
in the range four to five Boltzmanns. In contrast, the specific
heat of independent particles47 in this environment is less
than three Boltzmanns, except at highT sabove 100 Kd,
when the particles are excited out of the groove. The large
values found in these simulations arise from the fact that the
highly corrugated potential surface presents a sequence of
excitation steps sgroove→ three-stripe→monolayer→¯

→vapord, each of which enhances the specific heat.
The temperature dependence of the specific heat shows a

characteristic double-peak structure. All densities show a
large peak near 175 K, corresponding to promotion of ada-
toms out of the groove into the monolayer region. The
groove, three-stripe, and monolayer phases show an addi-
tional peak at lower temperature, corresponding to a thermal
broadening in the range of external potential energies of the
particles, rather than to any significant promotion of particles
into qualitatively different regions.

Other principal results involve the relation between the
evolution of film structureswith increasingNd and the cor-

FIG. 6. The differential heat of adsorptionqdsNd /kB at T=60,
75, and 90 K.fShift each curve upwards by its temperatureT to
obtain the isosteric heatqstsNd /kB.g
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responding thermodynamic and correlation functions. As the
groove begins to fillsN approaching 9d, the heat capacity
shows a dramatic jump as a function of coverage. Consistent
with the Maxwell relation, Eq.s3d, the differential heat de-
creases withT at that pointsFig. 6d. Analogous behavior
occurs near completion of the three-stripe phase, nearN
=27.

Our study has been fully classical, but the temperatures
beneath which quantum effects become significant can be
estimated.47 We estimate that quantum effects can be ignored
above about 80 Kssee Appendix Ad. This is a higher tem-
perature than some of the important structure in the heat
capacity—the first peak in the heat capacity occurs at or
below this temperature. Modifications to the heat capacity
from quantum mechanics at very low energies are given by
Debye theory:18,48–50we expect thatcsTd→0 asT→0, and
csTd~Td, whered,1 for the groove andd,2 for the mono-
layer, if the density is high enough to form a bulk phase. To
evaluate quantum effects accurately would require applica-
tion of the path integral Monte Carlo method to the
problem.51

We note, also, that an experimental heat capacity cell has
a volume on the order of 1–10 cm3, whereas our simulation
volume was on the order of 10−20 cm3. Our simulation, fo-
cusing on small volume nearer the adsorbed film, thus ig-
nores almost all of the volume in which desorption into va-
por can occur. This causes the simulation to underestimate
the heat capacity that will be experimentally measured. The
effects of desorption cannot be ignored when the number of
atoms in the vapor starts to approach the number of atoms in
the film; this occurs at roughly 25–50 Kssee Appendix Bd.

Particularly interesting results from the correlation func-
tion studies include the reduced longitudinal correlations in
the groove and striped phases asT rises above 60 K. These
results would be amenable to testing by diffraction experi-
ments even if the samples included a randomly oriented
batch of nanotubes; this is a familiar problem dealt with in
powder averaging of small-sample experiments.

This paper studied a system of identical nanotubes. The
sensitivity ofcsTd to nanotube heterogeneity, with an asym-
metric groove region between nanotubes of different sizes, is
a potentially interesting subject for future investigation.20
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APPENDIX A: QUANTUM EFFECTS

The upper bound on the temperature at which quantum
effects must be considered is dominated by the physics of the
deepest energy well, i.e., the groove. We can obtain one es-

timate by considering the minimum energy of longitudinal
phonons in the groove in Debye theory,"vD, where vD

=Îk/m and k=28/3s9e /s2d is the force constant of a qua-
dratic approximation to the minimum of the Ar-Ar interac-
tion potential, a 12-6 Lennard-Jones potentialUint
=4efss / rd12−ss / rd6g, with s=3.4 Å, e=120 K for Ar. The
corresponding energy is 27 K. This estimate considers only
Ar-Ar interactions and ignores the external potential; we can
obtain a complementary estimate by ignoring the interactions
and considering only the external potential. We return to the
crossover model of the groove, outlined in Sec. IV, as a
two-dimensional harmonic oscillator with a force constant
a=4898 K/Å2. Treating it now as aquantumharmonic os-
cillator, it is excited at an energy"v', wherev'=Îa /m and
m is the atomic mass of argon. The corresponding energy of
this second estimate is 77 K. Taking the larger of the two as
a conservative estimate, we expect that quantum effects can
be ignored above about 80 K.

APPENDIX B: EFFECTS OF DESORPTION

We can estimate the temperature at which desorption into
the full volume of an experimental cell becomes significant,
by determining when the ratioNv /Nm of atoms in the vapor
to atoms in the monolayer becomes significant. Extending
the crossover model, we can consider the monolayer and
vapor phases as separate systems, the monolayer modeled as
a surface with a harmonic normal potential, and the vapor
modeled as a free gas. The ratioNv /Nm is then given by the
ratio of their respective partition functions

Nv

Nm
=E

cell
dzYE

mono
dz e−bfVm+s1/2dkmz2g. sB1d

We take the first integral between zero and the cell height,h;
the second integral may be safely taken between zero and`,
in the interests of finding an analytic solution. This gives

Nv

Nm
=

h
Îp/s2bkmd

e−bVm. sB2d

The fraction of atoms in the vapor above which desorption
should be considered “significant” is ambiguous, but we
might take it to be 10%–20%. Solving Eq.sB2d for b, using
h=1 cm and the values forVm and km found in Sec. IV B,
this corresponds to a temperature in the range of 25–50 K.

This calculation neglects interparticle interactions. Their
inclusion would lower the estimate of the temperature at
which desorption from the monolayer into vapor becomes
significant, analogously to how the evaporation from the
groove to the monolayer takes place at a lower temperature
when the groove is packed—the interacting case—than when
it is sparsely populated and the adatoms are effectively non-
interacting. This is supported by the data in Table I: more
groove→monolayer promotion occurs forN=9 at T
=175 K than for N=1 at the comparable temperatureT
=170 K, indicating that the groove promotion begins at a
lower temperatures for the interactingN=9 than for the non-
interactingN=1.
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