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By developing the lattice Green’s function approach, we study transport properties of T-shaped quantum
wires �TQWR� under potential modulation. It is found that the potential barrier in the vertical arm induces a
dip-peak structure in conductance straight through and around the bend. The increase of potential thickness
results in the dip-peak couples being more pronounced, while the number of dip-peak couple also increases
with the thickness. The dip-peak structures are related to the quasibound states localized at the junction of the
TQWR. We numerically analyze the dependence of the quasi-bound state energy on the potential height and
width. Different conductance profiles can be selected by the potential modulation on coupled TQWR.
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I. INTRODUCTION

Recent developments in semiconductor growth techniques
have enabled the fabrication of various nanostructures. As
one of interesting structures, T-shaped quantum wires
�TQWR� �Ref. 1� can be realized by the epitaxial overgrowth
of cleaved edge GaAs/AlxGa1−xAs quantum wells.2 The
structure has attracted much attention because of improved
optical properties,3 such as the excitonic laser emission, the
enhancement of excitonic binding energy, and the concen-
trated oscillator strength. Recently, T-shaped quantum wires
�TQWR� were revealed to exhibit interesting transport
characteristics.4–10 Due to the open geometry of TQWR,
electrons have possibilities to transmit ballistically across the
wire region and show a strong energy dependent transmis-
sion as a consequence of quantum interference effect induced
by the interplay between the propagating mode of wires. So
the junctions in TQWR are found to strongly filter the elec-
trons, changing the distribution of the electrons among the
mode of the quantum wire �QWR�, while the interference in
scattering from two junctions leads to an oscillatory depen-
dence of the transmission on the length between the
junctions.4 By tailoring the widths of the QWRs and/or com-
bining more wires on the scale of the Fermi wavelength,
different conductance profiles can be selected.5 A theoretical
study on a periodic array of T-shaped devices6 shows that
deflected arrays exhibit a unique resonance with respect to
electrons traveling along the array. The coefficients of the
reflection and transmission through the array can peak simul-
taneously at resonance. Recent experimental photolumines-
cence spectroscopy analyses2 and theoretical calculations7,8

have manifested that there are quantum bound states in
TQWR. The existence of these states in such TQWR essen-
tially shows the confinement effect of the mesoscopic geom-
etry in the quantum-mechanical region, and substantially af-
fects the transport properties of the TQWR. It is found that
the bound state energies depend strongly on the ratio of the
arm widths.8

It is well known that the geometry and the potential
modulation are important factors to interference of electrons
in nanostructures. Various geometries and potential modula-

tion may cause a variety of quantum phenomena, which
leads to the manufacture of concept devices with an opera-
tion principle entirely based on these quantum phenomena.
However, the former studies are only focused on the effect of
the geometry of TQWR, without considering potential modu-
lation on transport properties.

In this paper, based on the recursive Green’s function
�RGF� method,11,12 we develop a lattice Green’s function
�LGF� �Refs. 13–15� method to study the transmission
through TQWR under potential modulations in vertical arms.
The effect of potential height and thickness on transport
properties of single and coupled TQWR is discussed. The
potential in the vertical arm of TQWR will affect the quasi-
bound states localized at the T junctions, while each quasi-
bound state will induce a dip-peak structure in conductance
profiles. Therefore conductance of TQWR can be tailored by
choosing appropriate potential height and width.

II. MODEL AND METHOD

Let us consider a single TQWR which is divided into
seven parts through dashed lines, as shown in Fig. 1�a�, I, V,
VII are leads and II, III, IV, VI are middle parts among leads
to describe scattering region. Using discreted lattice model,
the tight-binding Hamiltonian is given by

H = �
i,j

��i,j + Pi,j��i, j��i, j� + �
i,j

V1��i, j��i, j + 1� + H.c.�

+ �
i,j

V2��i + 1, j��i, j� + H.c.� , �1�

where �i,j is the site energy, Pi,j is the additional potential at
�i , j� site, and V1 and V2 are transverse and longitudinal hop-
ping matrix elements between the nearest neighboring sites,
respectively. Generally, �i,j =−d�2V �d is the number of di-
mensions� and V1=V2=V=−�2 /2m*a2 in the absence of
magnetic modulation �m*=0.067m0 is effective mass of elec-
tron and a is lattice constant�. We symbol, respectively, leads
I, V, VII with columns 1, n, and row m �see Fig. 1�a��.11–13

To describe the transport properties for electrons incident
in lead b to be transmitted into lead c, Gcb defined as the
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Green’s function between leads b and c is required first. We
take the calculation for the Green’s function GV,I between
parallel leads I and V as an example. Since the TQWR is a
multiterminal system, one reformulates the multiterminal
problem into an effective two-terminal problem by the “self-
energy” term. As shown in Fig. 1�a�, row k is viewed as the
“surface” of the vertical arm consisting of lead VII and re-
gion VI. Using the RGF scheme,11,12 the Green’s function GS

of the surface is recursively obtained from row m to k. Then
the self-energy of the vertical arm can be calculated by �
=V2�GS.14,15 Taking into account the effect of the vertical
arm on region III, the Green’s function GR of region III is
given by14

GR = �E − H0 − ��−1, �2�

where E is the energy of electrons �in units of −V� and H0 is
the Hamiltonian of isolated region III associated with Eq.
�1�. While the Green’s function G�q , p+1�, G�p+1,q� be-
tween column p+1 and q, the Green’s function G�q ,q� of
column q and the Green’s function G�p+1, p+1� of column
p+1 will be found by extracting elements from GR, where
G�r ,s� denotes the Green’s function between column s and
column r. Suppose region III has nine sites �see Fig. 1�a��,
Eq. �2� can be rewritten as the matrix form

GR =	
g1,1 g1,2 ¯ g1,9

g2,1 g2,2 ¯ g2,9

¯ ¯ � ¯

g9,1 g9,2 ¯ g9,9


 , �3�

with gu,v representing the propagation of electrons from
point v to u �u ,v=1,2 , ... ,9�. The Green’s functions in re-

gion III such as G�q , p+1� and G�p+1, p+1� can be ex-
pressed as

G�q,p + 1� = 	g7,1 g7,2 g7,3

g8,1 g8,2 g8,3

g9,1 g9,2 g9,3

 ,

G�p + 1,p + 1� = 	g1,1 g1,2 g1,3

g2,1 g2,2 g2,3

g3,1 g3,2 g3,3

 . �4�

As these Green’s functions are known, the Green’s function
G�p ,1�→G�q ,1�→G�n ,1�, i.e., GV,I is recursively yielded in
turn as Ref. 10.

The Green’s function GV,I allows us to calculate the trans-
mission coefficient TV,I in horizontal QWR.11,12 Conductance
straight through the horizontal QWR GV,I �from leads I to V�
is represented by the Landauer-Buttiker formula

GV,I =
2e2

h
TV,I. �5�

It should be noted that the method integrates the RGF and
ordinary LGF methods to solve the Green’s function of in-
termediate regions in the transverse direction. It reduces the
dimension of the Green’s function matrix and computing
time, which provides a foundation for calculating more com-
plex and large-scale model. The method can also be extended
to treat one- and three-dimensional multiterminal system. We
calculated the transmission coefficients of one-dimensional
multiterminal system as given by Ref. 16. Similar results to
those in Ref. 16 were obtained.

To calculate the eigenenergy E of the single TQWR and
corresponding wave function �, we write the Hamiltonian of
the system as

H = H0 + ��, �6�

where H0 is the total Hamiltonian of regions II, III, IV as
well as VI and �� is the total self-energies of the three leads.
Solving the eigenequation H�=E�, one can obtain the
eigenenergy and wave function. In general, the eigenvalue is
a complex expressed as E= �ER ,−��, in which the real part
ER represents the eigenenergy and the imaginary part � is
associated with the lifetime � of the eigenstate through �
�� /2�.14 While the liftetime � is of the order of the recip-
rocal of the width of the resonance peak �� /�E� in the trans-
mission spectrum.17 So the smaller �, the longer the lifetime
�, and the narrower the resonance width �E in transmission
spectrum. In addition, we use the mode-matching method8,18

to verify the quasibound states and their wave functions.

III. RESULTS AND DISCUSSION

In Figs. 2�a�–2�d�, we present the conductance as a func-
tion of electron energy for a single TQWR of which a verti-
cal lead VII is connected to a parallel QWR by a potential
barrier VI �see Fig. 1�a��. Solid and dotted lines stand for
conductances straight through GV,I and around the bend
GVII,I, respectively. For a perfect TQWR without potential in

FIG. 1. �a� Schematic view of a single TQWR with W1=W2

=10a. �b� Two coupled TQWR with W1=W2=W3=W4=10a �a is
lattice constant�.
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region VI, both GV,I and GVII,I exist a reflection resonant dip
at the energy slightly below the onset for propagation in the
second mode along horizontal QWR, as shown in Fig. 2�a�.
The dip appears because of a resonant quasi-one-dimensional
state �E= �0.382,−0.015�� with a long trapping �life� time
within the interaction.4 As a potential PVI is applied to region
VI, however, a dip and a peak are shown in conductances
straight through and around the bend, respectively �Fig.
2�b��. The electrons with the energies around the dip peak
have big probabilities of turning the corner, i.e., of entering
in a horizontal lead and exiting through the vertical arm,
while transmission of other electrons to vertical lead is sup-
pressed by the potential barrier. The resonance dip-peak
structure occurs as a result of coupling between incident
modes and the quasibound state localized at the T junction.
For the transmission around the bend, the potential barrier
results in the coupling being primarily through evanescent
modes, thus the resonance appears as a peak. Whereas in the
horizontal direction the resonance turns out to be a dip be-

cause of the propagating mode dominating the coupling.19

We depict in Fig. 2�e� the contour plot of the probability
density ���*� of the quasibound state with eigenenergy E
= �0.321,−0.031�, the more inner contour curve and darker
region possessing the higher probability density. Due to the
relatively large imaginary �=0.031 of value E representing a
small lifetime � of the quasibound state, the resonance dip-
peak structure in conductance profile is wide. As the height
of the potential is increased, the dip-peak couple in conduc-
tance becomes narrower and sharper and shifts to the onset
of the second mode �see Figs. 2�c� and 2�d��. The electrons
transmission around the bend is further suppressed except
electrons with energies near the dip peak, while transport
going forward is enhanced and gradually recovers quantized
phenomenon. The dip-peak structures in Figs. 2�c� and 2�d�
are, respectively, induced by the quasibound states with
eigenenergies E= �0.340,−0.012� and E= �0.362,−0.016�.
The quasibound state energy increases with the potential
height, leading to the shifting of the dip-peak structure.

FIG. 2. �a�–�d� Conductance versus energy of electrons for a single TQWR with a different potential PVI applied to region VI �W4

=W1 /3�. The solid and dotted lines represent the conductance straight forward GV,I and around the bend GVII,I, respectively. �a� PVI=0, �b�
PVI=0.176, �c� PVI=0.352, �d� PVI=0.88, the dashed line in �d� presents the conductance GV,I as PVI=1000. �e�–�g� Contour plots of the
probability density distributions of the quasibound state corresponding to �e� the dip peak in �b� with E= �0.321,−0.031�, �f� the dip peak in
�c� with E= �0.340,−0.012�, �g� the dip peak in �d� with E= �0.362,−0.0016�. The more inner contour curve and darker region possesses the
higher probability density.
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While the structure being narrower and sharper results from
the lifetime increase of the quasibound state. In Figs. 2�f�

and 2�g�, we show the contour plots of the probability den-
sity distribution of the two states. It is seen that the wave
function is gradually purged out of the vertical arm by a
higher potential barrier and extended to the parallel QWR.
As expected, the conductance straight forward is a com-
pletely formed quantization plateau �see dashed line in Fig.
2�d��, as the potential modulation is strong enough. In this
case, the wave function is completely purged out of the ver-
tical arm and the coupling of the vertical arm and the parallel
QWR vanishes. To more clearly show the dependence of the
quasibound state on the potential barrier, we depict in Fig. 3
the quasibound state energy as a function of the potential
height PVI. One can see from the figure that the quasibound
state energy behaves like a cure of E=E2��1− �P�−V�−1/2�
�the dotted line�, where E2� is slightly greater than the thresh-
old energy of the second mode. It rapidly increases with the
potential height at lower potential, and slowly approaches the
threshold of the second mode with higher potential.

In Figs. 4�a� and 4�b�, the conductance for a single
TQWR in Fig. 1�a� with different thickness W4 of potential
barrier VI are calculated. Comparing Fig. 4�a� with Fig. 2�b�,
the dip-peak couple structure in conductance becomes more
pronounced and shifts toward the lower energy, as W4 is
increased from W1 /3 to W1. It is originated from the fact that

FIG. 3. Quasibound state energy E of a single TQWR as a
function of the potential PVI in vertical arm with W4=W1 /3. The
dotted line represents the curve E=E2��1− �P�−V�−1/2� with E2�
=0.389.

FIG. 4. �a� and �b� Conductance versus electron energy for a single TQWR with different potential thickness W4 �PVI=0.176�; �a� W4

=W1, �b� W4=2W1. The solid and dotted lines represent the conductance going forward GV,I and around the bend GVII,I, respectively. �c�–�e�
Contour plots of the probability density distribution of the quasibound states corresponding to �c� the dip peak in �a� with E= �0.294,
−0.0124�, �d� the first dip peak in �b� with E= �0.284,−0.006�, �e� the second dip peak in �b� with E= �0.321,−0.011�. The more inner
contour curve and darker region possesses the higher probability density.
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the variation of the potential thickness gives rise to the
eigenenergy of the quasibound state moving from E
= �0.320,−0.031� to E= �0.294,−0.0124�. The contour plot of

the probability density distribution of the state, as shown in
Fig. 4�c�, also exhibits the electrons having bigger probabili-
ties of staying at the junction with thicker potential barrier.
As the thickness is further increased to 2W1, two couples of
dip peak induced by the quasibound states are shown in the
conductance profile, the first dip nearly turning into a trans-
mission zero �Fig. 4�b��. It indicates that there are two qua-
sibound states existing in the T junction. In Figs. 4�d� and
4�e�, we plot the contour of the probability density of the two
quasibound states, respectively, with energies E= �0.284,
−0.006� and E= �0.321,−0.011�. The thickness increase
leads to the wave function of the quasibound states localized
deeply into the vertical arm. In addition, it is also found from
Figs. 4�a� and 4�b� that the conductance of low-energy elec-
trons is nearly unchanged with the variation of W4. This case
is somewhat like the case caused by length variation of T
stub in Ref. 11. It can be interpreted that electrons with a
relatively low energy cannot penetrate through the barrier
thus are insensitive to changes of potential thickness. In Fig.
5, we display the relation of quasibound states and the po-
tential thickness. Two features deserve special attention. One
is the quasibound state energies decrease with the thickness
increase. The other is, as W4 is added to �n+0.5�W1, another

FIG. 5. Quasibound state energy of a single TQWR as a func-
tion of the potential thickness W4 with PVI=0.176, the solid square,
solid up triangle, and solid rhombus represent the first, second, and
third quasibound state energies, respectively.

FIG. 6. Conductance for two coupled TQWR with a different potential P1, P2, respectively, applied to region 1, 2 �W5=W6=W1 /3�, �a�
P1=0, P2=0, �b� P1=0, P2=0.352, �c� P1=0, P2=0.88, �d� P1=0.352, P2=0.176, �e� P1=0.352, P2=0.352, �f� P1=0.352, P2=0.88. The
solid and dotted lines, respectively, represent the conductance straight through GV,I and around the second bend GVII,I �from lead I to lead
VII�.
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quasibound state will appear in the high energy region of the
first mode. From these results, we can conclude that the
transport properties of TQWR are sensitive to the potential
modulation in vertical arm.

By cascading two single TQWR, separated by a region of
length W4, we obtain the configuration of two coupled
TQWR, where two vertical leads VI and VII are connected to
horizontal QWR by regions 1 and 2, respectively �see Fig.
1�b��. It is known that transport properties of the coupled
TQWR are dependent on the length W4,4 due to quantum
interference in the scattering from the two T junctions. Here,
we concentrate on the effect of potential modulation on elec-
tron transport, fixing W1=W2=W3=W4. The calculated con-
ductance for the coupled TQWR as a function of electron
energy are depicted in Fig. 6. Figures 6�a�–6�c� display the
conductance for case of only P2 is applied to region 2 of the
coupled TQWR, and Figs. 6�d�–6�f� display the conductance
for case of both P1 and P2 are applied to regions 1 and 2
respectively. Comparing with the isolated wire case, the
coupled wire case shows sharper modulation and more oscil-
lations in conductance profile, which is ascribed to the co-
herence between left and right TQWR. The comparison also
shows that the conductance straight through and around the
bend keep the feature of those in a single TQWR case. The
increase of potential weakens the transmission around the

corner while strengthens the transport of electrons going for-
ward. In particular, each potential barrier in the vertical arm
induces a dip-peak couple structure which shifts to high en-
ergy and becomes narrow and sharp with the potential modu-
lation. Each dip-peak couple corresponds to a quasibound
state localized at the T junction. In Fig. 7, we show the
conductance straight through the coupled TQWR with differ-
ent potential thicknesses W5 and W6 of regions 1 and 2. It is
clear that the thickness has obvious modulation on the oscil-
lations of conductance, due to the influence of the thickness
on the quasibound states localized at the junctions, especially
the high-energy region of the first mode. For the case where
only a potential P1 is applied to region 1, we compare in Fig.
7�a� conductance for three different thickness W5 of the bar-
rier: W1 /3, W1, and 2W1. As in the single QW case, the
thicker the potential barrier, the more prominent the conduc-
tance oscillations. The first dip drops with the increase of the
potential thickness W5, dividing the plateau of the first mode
into two parts. For the case where two potentials P1 and P2
are applied to regions 1 and 2, respectively �P1	 P2�, we
compare conductance with different potential thickness W5
and W6. In the case of thin barriers �W5=W6=W1 /3� �see
solid line in Fig. 7�b� or Fig. 6�d��, two shallow dips induced
by modulation of P1 and P2 appear, respectively, at E
�0.315 and E�0.339. The individual increase of the thick-
ness of regions 1 and 2 sharpens their corresponding dips, as
shown by dashed and dotted lines in Fig. 7�b�, and oscilla-
tion around the two dips becomes very drastic. These results
demonstrate that conductance profiles of TQWR can be tai-
lored by the potential modulation in the vertical arm, thus
different conductance profiles are obtained, as the modula-
tion of QWR width on TQWR.5

IV. CONCLUSIONS

We have developed a LGF method suited to calculate the
electronic transport properties of multiterminal nanostruc-
tures. Using the method, the influence of the potential barrier
in vertical arms on electronic transport across one or two
coupled TQWR is studied. It is shown that, for a TQWR, the
potential barrier changes the energy of the quasibound state
localized at the T junction. While each quasibound state in-
duces a dip-peak couple structure in the conductance straight
through and around the bend. The modulation of the poten-
tial thickness leads to the dip-peak couple being more pro-
nounced, and the number of the dip-peak couple is closely
related to the potential thickness. For two coupled TQWR,
the two dips in conductance going forward are closely cor-
related to the potential barriers. Various conductance profiles
can be obtained by the potential modulation on coupled
TQWR.
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FIG. 7. Conductance going forward GV,I versus electron energy
for two coupled TQWR: with different potential thickness as W5

and W6, as the potentials P1 and P2 applied to regions 1 and 2,
respectively. �a� P1=0.176 and P2=0, W5=W1 /3 for solid line,
W5=W1 for dashed line and W5=2W1 for dotted line. �b� P1

=0.176 and P2=0.352, W5=W6=W1 /3 for solid line, W5=3W6

=W1 for dashed line, and W5=W6=W1 for dotted line.
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