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Magneto-optical response of layers of semiconductor quantum dots and nanorings
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In this paper a comparative theoretical study was made of the magneto-optical response of square lattices of
nanoobjects (dots and rings). Expressions for both the polarizability of the individual objects as their mutual
electromagnetic interactions (for a lattice in vacuum) was derived. The quantum-mechanical part of the deri-
vation is based upon the commonly used envelope function approximation. The description is suited to inves-
tigate the optical response of these layers in a narrow region near the interband transitions onset, particularly
when the contribution of individual level pairs can be separately observed. A remarkable distinction between
clearly quantum-mechanical and classical electromagnetic behavior was found in the shape and volume de-
pendence of the polarizability of the dots and rings. This optical response of a single plane of quantum dots and
nanorings was explored as a function of frequency, magnetic field, and angle of incidence. Although the
reflectance of these layer systems is not very strong, the ellipsometric angles are large. For these isolated
dot-ring systems they are of the order of magnitude of degrees. For the ring systems a full oscillation of the
optical Bohm-Ahronov effect could be isolated. Layers of dots do not display any remarkable magnetic field
dependence. Both type of systems, dots and rings, exhibit an outspoken angular-dependent dichroism of

quantum-mechanical origin.
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I. INTRODUCTION

It has been known for a long time that microstructured
materials can manipulate electromagnetic radiation. Most of
the research in that field focuses at present on photonic crys-
tals, a concept introduced a long time ago.' It is known al-
ready that microstructured materials can act as photonic crys-
tals. Recent advances in lithography, colloidal chemistry, and
epitaxial growth have made it possible to manufacture artifi-
cial meta-materials from semiconductor nano-objects. Fur-
ther application of these materials in technology demands the
extension of the usable frequency range. These demands will
push research efforts in this field to the limit. Scale reduction
is the classical answer to meet these increased frequency
demands and that holds particularly for the new nanostruc-
tured metamaterials. When these metamaterials can be made
to manipulate electromagnetic fields in the optical range, this
will be particularly beneficial for potential applications and
devices, as well as for new basic science. The short list of
possible implementations being at close range, consists of
realization of optical quantum computing, metamaterials
with negative refractive index?? in the optical region, artifi-
cial magnetism in basically nonmagnetic materials* and fur-
ther.
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Semiconductor quantum dots and nanorings are nanosized
objects resembling artificial atoms.>® From these nanoob-
jects, the nanorings are the newest and they are topologically
different from quantum dots since their geometry is nonsim-
ply connected. This different and unique topology gives them
unusual magnetic and magnetooptical properties.® The key
characteristic of this topology, the center hole, enables trap-
ping of magnetic flux quanta. This property of the nanorings
leads to quantum oscillating behavior of the magnetic re-
sponse of the nanoring for varying magnetic field B, the
Aharonov-Bohm (AB) effect.” For a simultaneously applied
optical beam this gives rise to the optical AB effects,®’
which can occur only in nanorings. Modification of material
properties by means of a magnetic field is an inherent aspect
of AB effects, including optical. This option is a prerequisite
to make artificial materials, not resembling anything in na-
ture, such as negative refractive index metamaterials.?

Up to now, most of the investigations done in the field of
magneto-optical effects in nanorings has been about far-
infrared (FIR) spectroscopy or magnetophotoluminescence
(MP).#19-13 Ip these methods an additional stimulus has been
used, apart from the electromagnetic beam, to determine the
response of the rings. These stimuli can be the creation of an
extrinsic carrier population (FIR) or an electromagnetic
beam of higher frequency (MP). In this sense those methods
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FIG. 1. Schematic diagram of
magneto-optical phenomena in a
layer of nanorings. a; lattice con-

(b) ) stant square lattice. Modeling of
dots/rings by means of ellipsoids
e I 48 I e and center hole ellipsoids. a, ¢

long and short axis, d radius cylin-

use preexcitation. The data obtained by these methods are
very important, but actually only return averaged single na-
noring information. For a quantitative characterization of the
optical properties of nanoring-based metamaterials a highly
developed optical spectroscopy, such as ellipsometry, and an
advanced theoretical description are indispensable. Proper
understanding and modeling of the collective electromag-
netic response of nanoring layers requires a correct approach,
taking into account their composite and discrete
character.!*!® In addition, comparison of the collective
magneto-optical response of metamaterials made from semi-
conductor quantum dots and nanorings can provide impor-
tant information about the basic physical distinctions be-
tween these two types of systems.

II. THEORY

In this paper the collective electromagnetic properties of
layers of semiconductor quantum dots and nanorings in the
optical range will be studied theoretically. It will be shown
that the optical AB effect inherent to the ring structures can
enrich the optical properties of nanostructured metamaterials.
To reach this goal the theory of optical effects will be devel-
oped beyond the single (averaged) quantum dot and nanoring
picture. It will turn out that, as a result, the magnitude of
these effects is clearly within the range of a modern ellipso-
metric setup.

A. Polarizability: Quantum mechanics

The systems to be investigated here are two dimensional
square lattices of InAs/GaAs quantum dots and nanorings,
with lattice parameter a; as shown in Fig. 1. The basic ele-
ments of those lattices are dots and “eye” shaped rings as
obtained in recent experiments!”'® (Fig. 2). For their static
electromagnetic response properties these elements will be
modeled by means of ellipsoids (for the dots) or center hole
ellipsoids (for the rings). This comparative study will use the
same outer diameter and aspect ratio for the ellipsoid mod-
eling of both bodies.

Quantum dots and rings are generally classified as artifi-
cial atoms. Therefore their optical response should also be
described in an atomiclike fashion, e.g., by means of polar-
izabilities. For atoms such description has been developed
originally by Kramers and Heisenberg!® and a multitude of
derivations and modifications exist of this classical model.
Optics in combination with quantum dot and ring structures

drical center hole. i, r, t incoming,
reflected, and transmitted beam,
respectively. 6; angle of incidence.

relies either upon expressions for optical absorption®” or for
oscillator strengths,”!?> being the squared modulus of the
optical transition matrix element.” It is not straightforward,
however, to transfer the Kramers-Heisenberg expressions to
the case of a quantum ring or dot, described by means of
envelope functions. To cope with the additional pitfalls we
have (re)derived the Kramers-Heisenberg equations for this
particular case.”? The present commonly used description is
only qualitative and the vector character of the electromag-
netic response is not well described. Therefore we start this
paper with a rehearsal of the main findings in Ref. 23.

To an arbitrary volume element V, containing material
nanoobjects (dots/rings), an external electric field Ex(r,?) of
frequency w is applied. Electromagnetism requires this elec-
tric field to be real valued and it has to be described by

1 . .
Ey(r,t) = Ey(r)cos ot = E[e"”’ + e "“E4(r)

and it has been shown in Ref. 23 that for such field the
corresponding dipole strength d induced in the volume V,
can be described by

(@)y(1) = Re[ d(w)Ex(r)e™],

where ag is the total monochromatic polarizability. The ex-
plicit expression for this monochromatic polarizability « is
given by?3

(a)

42 nm
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FIG. 2. Typical shape of nanoring and quantum dot structures.
(a) Schematic InAs/GaAs “eye” shaped nanoring [after TEM pic-
ture (Ref. 17)]. (b) Schematic InAs/GaAs “eye” shaped quantum
dot [after TEM picture (Ref. 18)].
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where e is the electronic charge and (k|r|l) is the transition
matrix element. For each pair of levels /, k we have a tran-
sition frequency w;, and corresponding damping 7v,.2> We
have used explicitly that the expression for y(w) has to be
even in w. For its specific shape as a function of w has been
chosen:

2 wlzsz
Vzk(w) =Y\ "z e
w w

This expression for yy(w) is just modeling, done such that it
is not much different from the traditional w-independent 7y in
the region of resonance, where w= wy,, and resolves the sin-
gularity problems in the near static regime, where w=0.
Since it is in general not possible to obtain y in a theoreti-
cally hard way, a simple algebraic format has been chosen to
model it. Equation (1) can be considered to be the “Swiss
army knife” of discrete optics. In a twofold sense it is going
to be used in this paper. First we will use it to derive an
expression for the polarizability of a nanoring in the eneve-
lope function approximation. Next we will use it to describe
the bulk response of the same semiconductor material, the
nanoobject is made from. Such relation is necessary to get an
independent value for the matrix element controlling the na-
noobject polarizability.

We will need for the two different systems, bulk and dot
and ring, the following description for the quasiparticle
states:

Wg(r) = e* (r), bulk,

V...(r) = F(r)¢(r), nanoobject, (2)

where the bulk tight binding function ¢(r) uses the conven-
tional unit cell to define the periodic part of the Bloch states.
For InAs the conventional cell consists of four elementary
unit cells, each containing one In and one As atom. This cell
is cubic and its size is given by the lattice constant a.. The
bulk wave function has to be normalized over the volume of
the conventional unit cell V3=af, and the envelope function
over the volume V. This ends up in the conditions

| argeorp=1,
1%

B

| artreriswr =1 3)
\%

We will need them for any quantitative determination of op-
tical properties.

(1)

The first task is to determine the polarizability of a quan-
tum dot or nanoring of volume V in the envelope function
approximation. In this approximation the wave functions
W (r) of the nanoobject have to be written as

\I,uk(r) = Fuk(r) d)u(r) 5

where F,,(r) is the k™ envelope function of the nanoobject
belonging to the u™ Bloch state ¢,(r) of InAs (or any other
II-V compound from which the object is made). For u the
value ¢ will be used to describe the conduction and & to
describe the valence band states, as before. The envelope
function F(r) is dimensionless. In what follows the envelope
function matrix element (F,;|F,;)y, will be defined as

1 .
<Fuk|Ful>V= _J dr Fuk(r)Ful(r) = 5kl'
Vply

The equality follows from combination of both equations in
Eq. (3). Now the general expression for the polarizability of
an arbitrary volume element (1) needs to be applied to a
nanoobject in the envelope function approximation and we
need an expression for the optical matrix element {(hk|r|cl)y.
The Bloch states for the electron and hole states will be
different and orthogonal. Then we have

N¢
<hk|r|01>v = E F:k(ri)Fcl(ri) l l'if dr’ ¢Z(r')¢c(r')
i v,

i

+J dr'qﬁ;i(r')r’(bc(r’)] = <Fhk|Fc|>V1'ch,
Vi

T = f dr’ g, (e )’ (") = (clr|)y,, (4)
Vg

where has been assumed that the entire nanoobject could be
split into N, copies V; of the conventional unit cell. Inside
these cells V; the envelope function is supposed to be con-
stant. Using the expression for the matrix element (4) we can
write the polarizability (1) as

2

P e *

aG=o > (FulF, OV Tr el e et @)
hicl

Since the optical matrix elements {c|r|/) vy depend only upon
the Bloch states ¢,, they do not depend on the indices &, [ of
the envelope states determined by the geometry of the na-
noobjects. Hence,

245332-3



VOSKOBOYNIKOV et al.

0.88 [

0.87

E (eV)

0.86

0.85
(a) B(T)

PHYSICAL REVIEW B 71, 245332 (2005)

0 —c () —

- I (SRS 11
I - | "2 e =2 e i
L - -

dot °
- e w
| 1 0.9
0 5 10 15 20

B(T) (b)

FIG. 3. Transition energy as a function of magnetic field B=(0,0,B) for k=[=0,-1,-2 optical transitions (k—1) .

2

PN e *

ag= %E rchrcThE KElFv (). (5)
h,c k,l

To each bulk state ¢, belong N envelope states. In the cal-
culations to be done further in this paper only a very small
number of these envelope states (typically six, three for the
heavy hole and three for the electron states) being energeti-
cally closest to the energy gap, will be used. This implies that
the summation over ¢ involves only the electronic spin .
Such procedure is a good approximation for the imaginary
part of the polarizability for energies near the band gap. For
energies below this gap the polarizability is predominantly
real and involves a summation over the tails of all pairs of
states. The result of this summation, however, is almost con-
stant as a function of frequency and can therefore be replaced
by a constant value agg. In this approximation we obtain

) 3
P P e =
ag(w) = ags+ % E rchrcThE |<Fhk|Fc1>v|2fhk,c1(w)~ (6)
h,m k,l

The summation over bulk states is over the indices &, m,. For
the nanosized objects investigated here, only transitions from
heavy hole to electronic Bloch states will be taken into ac-
count. The reason is that the dot-ring geometry causes the
heavy and light hole states to be energetically different, even
in the absence of a magnetic field B.

The polarizability expression (6) embodies an intriguing
hybrid of classical and quantum-mechanical thinking. The
key ingredients of Eq. (6) are the static term «gg and any
dynamic single pair contribution in the summation over k/.
The ags dominates the repsonse for frequencies w being far
below the energy gap E; and is explicitly shape and volume
dependent. For any pair kI being at resonance (hw= E};) the
polarizability is dominated by this single pair when the na-
noobject and damping v, are small enough (the basic as-
sumption of this paper). Then the polarizability depends only
weakly, if at all, on shape and volume (there is a volume and
shape effect through the energies Ej, but that effect has no
influence on the strength of the polarizability as such). Any
shape and volume dependence is only in the matrix element
(Fyx| F.)y and that is in general not much different from 1.
This shape and volume insensitivity of the strength of the
polarizability under well observable resonance conditions is

a fully quantum-mechanical effect and finds its mirror in
similar behavior known from conductance quantization.
The apparent and remarkable contrast in behavior of the two
major components of the polarizability can be exploited to
compare directly in one and the same system classical con-
tinuous and quantized electromagnetic response.

To determine theoretically the required polarizabilities,
asks for calculation of the electron and hole energies and
wave functions, adjacent to the energy gap (the edge of op-
tical absorption), for our nanoobjects in the presence of a
magnetic field B (see Fig. 3). It was found recently that
experimentally relevant simulations of the behavior of the
basic elements can only be obtained with three-dimensional
models using the experimentally determined shape, strain
and composition of the semiconductor nanoobjects.®!!* In
the calculation used here, we assume that the electronic
structure of these nanoobjects is governed by the hard-wall
confinement potential due to the discontinuity in effective
mass parameters over the edges of these objects themselves.
This model is commonly used to calculate electron energy
states in quantum heterostructures® and allows us to solve
the 3D Schro dinger equation with a minor number of addi-
tional approximations. This is particularly useful in this
study where we concentrate on the collective optical proper-
ties of systems of dots and rings.

Prior to writing the detailed description of the energetic
structure of dots and rings we introduce the additional geo-
metric index i:

i=(i),(e) (7)

and where index u will be as defined before. If index i has
value (i) it refers to the inner region of the dots and rings and
with value (e) to the surrounding embedding matrix. The
effective envelope function Hamiltonian is given in the form

/ 1 gu(Evr)

H=p,——p.+ Vir) + B,
pczmu(E’r) Pc 1( ) M 2 O

p.=—ihV, +eA(r), ®)

where p, stands for the electronic canonical momentum op-
erator, V, is the spatial gradient, and A(r) is the vector po-
tential (B=V X A). For electrons m (E,r) and g.(E,r) are
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the energy- and position-dependent effective mass and Landé
factor, respectively,

1 _ 2_PZ<;
mJE,x) 3h*\E+ E,(r) - V.(r)

1
T E+E(r) - Vi(r) + A(r) )

and

) my A(r)
8AE.r)= 2(1 ) { 3[E+E,(r) - V.(r)] +2A(r) ] ),

where V.(r) is the confinement potential, E,(r) and A(r)
stand for position-dependent energy band gap and spin-orbit
splitting in the valence band, P is the momentum matrix
element (Kane parameter), and o is the vector of the Pauli
matrices. The free electron mass is m. For the heavy holes
myu(E,r) and ggy(E,r) are assumed to be not energy depen-
dent. The hard-wall confinement potential V, is given for
both electrons and holes by

Vi(r) =0,

Vi(r)=V,. )

We consider cylindrically symmetric nano-objects (dots and
rings), the shape of which is generated by rotating the con-
tours of Fig. 2 around the z axis.**!!2® When the magnetic
field is directed along this z axis we can treat the problem in
cylindrical coordinates (p, ¢,z). The origin of the system is
lying in the center of the object.

Because of the cylindrical symmetry of the system the full
wave function can be represented as

\If(r) = Fuk(r) ¢u(r) 5

F(r) = Fu(p.2)e™?, (10)

where F,(r) is the envelope function and ¢,(r) is the peri-
odic part of the Bloch state at I' for the semiconductor it
belongs to. Labels k=0,+1,+2,..., are the orbital quantum
numbers for the envelope function, of which only three will
be used here for each bulk Bloch state. For the calculations
of this paper we need especially detailed expressions for the
heavy hole band states ¢ij,~ at I' as required by the Kane
model.?” The quantum number / belongs to the orbital angu-
lar momentum, the quantum numbers j, m; determine the
total angular momentum. The hole states are

1
b1 3030 =h3p) = \/;HPQ +ilp )T,

2 1
b13m10=hip) =- \/;P,)T + \/;HPQ +ilp)]l.
1 ) 2
G13n-1n=h_1) =~ \/;HP) —ilp 11— \/;Pz)l,
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1
b130,-30 = h_3pp) = \/;HPQ —ilp)]l, (11)

where the heavy hole states have |m ;1=3/2 and the light hole

states have [m;|=1/2." The electron states in the conduction
band are at I" simple product functions

bo1n1n=lcp) =1s)1,

bo1n-1n=lc) =1 (12)

The quantum number m, determines the projection of the
spin along the z axis with values +%(T), —%(l). The chosen
geometry determines a 2D Schroédinger equation in the (p,z)
coordinates

#? <a2 # 10 k2>
T\ oot ot
2m,(E)\dz" dp~ pdp p

1, (E)

m,(E),(E)p?
8

+ ma/-l’Bg;(E)B + k+ V;0:| Fi«k(P,Z)

= E4Fix(p:2), (13)
where we have introduced the cyclotron frequency Q;(E) as

eB
mi(E)’

QUE) =

The Ben Daniel-Duke boundary conditions for the problem
with the hard-wall potential®> can be written as

Filp.z(p)]1=Flp.z(p)], (14)

I {aF:;k[p,z(p)]]_ 1 {aF:;k[p,zm)]

miEL 1T mEL ap }[Z:Z(’))]’

where z=z(p) represents the generating contour for the dots
or rings in the (p,z) plane. In the expression above we have
omitted the explicit reference to electron and hole states for
reasons of clarity.

B. Polarizability: Optical matrix element

In the expression (6) for the total polarizability «; of the
nanoobjects in the envelope function approximation a crucial
bulk parameter is the optical matrix element r,. This matrix
element connects the bulk valence and conduction band
states at I' as will be worked out here. Despite the advanced
state of the field of optoelectronics?®-3! there is still uncer-
tainty about the correct value of this optical matrix element.
For this paper we will use the value given by Eliseev?' since
it is based upon experimental observations. As will be clear
from the following we will have to assign to r, the value of
0.60 nm.

The optical response of a III-V semiconductor in the Kane
description is governed by transitions between the full states
|h) and |c) and not between the basic states |p,,.) and |s). All
transitions starting from the hole states |h) at the top of the
(bulk) valence band and ending in the |s)] state yield three
matrix elements

245332-5
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| P
I3 = <€T|r|h3/2> = \/;[X +i§]r,,

2,
Ly = <€T|r|h1/2> =- \/;Z Ty,

L, .
1'—1/21=<6’T|r|h—1/2>=— \/;[X—lﬂ’”m (15)

These three elementary matrix elements govern the actual
optical response of III-V semiconductors and have to be used
in a twofold sense. At first we need them to describe the bulk
optical response at the interband transitions onset, where the
light and heavy hole band states are degenerate. For the bulk
response at the interband transitions onset, Eq. (6) can be
used, if we set Fj;=F, =1, with k=[=1 and let 4 scan both
the heavy and light hole bulk states (m f%,%,—%). Then all
three matrix element contribute equally and Eq. (6) yields
effectively a sum of the direct products of the three vectors

2 1 1 2
T _ 2| Za aT . ila 8T ia oT S T
%rmﬁrmﬂ—rv{?)x X +z3x y z3y X +3y y

7

2
5 5T
+-z-7"|. 16
; ] (16)
For transitions to the |s)| state the xy components change
sign. Therefore the total sum of direct vector products over
both spin orientations becomes
> rfn_mr,Tn_m =r§h[§'§T+§I-§7T+i~i7]
s T s
Mg
4
A= —ri. (17)
3
This is indeed the isotropic kind of response which the bulk
of a III-V semiconductor should yield. The quantity r, is the
bulk real space optical matrix element, as (should be) used
elsewhere in the literature.

For the optical response of quantum dots and nanorings
the situation is different. The geometry lifts the degeneracy
of heavy and light hole states. This means, as mentioned
already, that for light hole states the absorption takes place at
higher energies than for the heavy hole states. For frequen-
cies being almost at the gap of the nanoring this means that
only the first matrix element (mj=%) in Eq. (15) contributes
and Eq. (16) now becomes

1 1

T

* T 2 24 A A AT
r,.r, =r | -X-X +17X"
% m;TEm] vlo 2 y

1
— - V- X'+—-vy-
iy 2y y

(18)

Incorporating the other spin orientation to this result then
yields

2, g =& 874957, (19)
m; :

These findings have to be used in Eq. (6) and we have
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-2

- e 3¢, ar s

aglw) = ags+ Z%”zh[x &+ y: YqE |<Fh1|Fe1>V|2fh1,e1(w)~
=0

(20)

The damping term 7y, in expression (2) for yu(w) will be
chosen to be independent from the indices /k in the near
energy gap region. It will be referred to further as 7y and its
value will be chosen such that the experimentally observed
linewidth’s will be replicated.

C. Polarizability: Electromagnetism

The polarizability expressions we have derived until here
are derived straight by using Ref. 23 and are purely theoret-
ical. As mentioned in that paper all issues related to electro-
magnetic self interaction have been discarded. To be of use
for experimental work these issues need to be addressed
here. This holds also for the relationship between continuum
and discrete quantities as used in the hybrid approach of this
paper. The discussion should start with the response of a
single quantum dot or nanoring. If we use the theoretical
polarizability ag, exactly as prescribed by Eq. (5), the in-
duced dipole strength d follows from

d = 3GEA’

E,=Ey+1t-d, (21)

where E, is the average electric field over the volume of the
dot or ring. It is by definition different from the external field
by an amount controlled by the electromagnetic self-
interaction tensor t, as described above. For bodies of revo-
Iution with the z axis as axis of revolution this tensor is given
in general by

o o Ik e

tzts+

6’7760

N,(D)
GOV

tS,uv ==

k)

- Nz(g)

N9 =Ny({) = 5

(22)
where v=x,y,z. Both the static part tg and its k> dependent
dynamic addition have been obtained already by Lorentz. In
the electromagnetic literature, they are commonly known as
the (static) Lorentz field and radiative damping term. Since
only outgoing waves will be considered to be allowed, a
change in sign of w will cause also k to change sign. As a
result the self interaction tensor turns into its complex con-
jugate then.

The self interaction tensor is controlled for bodies of
revolution by their volume V and depolarization factor N,.
For ellipsoids with short axis ¢ in the z direction and long
axis a in the remaining x, y directions, depolarization factor
and volume are given by

1 Lcos™I¢
0= 1—4“2(1 R )
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FIG. 4. Depolarization factors N, , as a function of the aspect
ratio {=c/a for normal and center hole ellipsoid. Dashed line at {
=0.081. Center hole diameter d=0.257 a.

4
V= 577&13, (23)

where {=c/a is the aspect ratio of the ellipsoid. The Lorentz
factor 1/3 is only obtained for the value of {=1, correspond-
ing to a sphere. Notice that N({) is positive. Since 7y, is
negative then, we see that the (average) field inside a dielec-
tric ellipsoid will always be smaller than the external field
applied to the ellipsoid, in agreement with the electromagne-
tism of dielectrics. Along the main axes of the ellipsoid, the
electromagnetic self-interaction tensor is diagonal.

The calculation of the electromagnetic self-interaction for
the case of a ring-shaped body is a considerable numerical
exercise. In the past attempts have been made to derive it for
the case of a torus,’> but a simple approximate analytical
expression can also be obtained by removing a central cyl-
inder with radius d from the ellipsoid treated before. Intro-
ducing the angle 6,=sin"'(d/a), we obtain for this case

1
N.({) = -0

1 +cos 6, — \ylégz[sin‘l(cos OpN1 = 22)
+ COS"I(Z)]},

d2 ) 3/2

= ;—lﬂ'{a3<l -2 (24)

The main assumption, apart from the shape chosen, is that
the polarization density inside this open ellipsoid has to be
constant. Though this is definitely a regula falsi solution, we
do not expect much deviation from the correct result for very
oblate ellipsoids. The depolarization factors for both types of
ellipsoid are shown in Fig. 4. The depolarization factor
hardly depends on the presence of the center hole.

For the case that we want to measure the polarizability of
a single dot or ring, we have to proceed differently. For the
experimental situation we have to use
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d = GEy, (25)

where this experimental polarizability a embodies also the
electromagnetic self-interaction. Combining properly the two
prescriptions for the induction (21) and (25) leads to

al=ag -t (26)

This is a very important relationship, showing that there
should be a serious discrepancy between measured and quan-
tum mechanically calculated polarizabilities.

In expression (20) for @ we need separately an expres-
sion for agg, the quantum-mechanical static polarizability
tensor of the dot or ring. For the special case that we repre-
sent the dot by an strongly oblate homogeneous dielectric
ellipsoid with relative dielectric constant e, this static polar-
izability is isotropic and can easily be obtained. It suffices to
introduce for this ellipsoid its ag as

AGs = Qs = V(€= 1) = af (e~ 1),
ay= 47760612,

eov \%4

V= =
oy 4ma;

; (27)

where we introduce the two normalization factors «; and fy.
Next we use Eq. (26) to determine the measurable polariz-
ability ag:

AGs
aS,UU = = EOV
I —t5,,a6s

—] (28)

The same expression has been obtained along a different line
of derivation by Avelin.?* For arbitrary shapes of the dots and
rings only a full numerical calculation can be done. The re-
sult of such calculation will be «g,,. In Eq. (20) we need
ags.pp and not ag . The expression for g, is simple and
given already in Eq. (27). The numerical determination of
as.,, 18 necessary to obtain the right value for tg for arbi-
trarily shaped bodies from the relation

ty=dgs—as'. (29)
This value for ¢y, determines the expression for the applied
field in case of arbitrarily shaped bodies.

If we surround this individual dot or ring by a (square)
lattice of identical dots and rings, with a; as lattice spacing,
the only difference is that we have to replace the external
field Ey by the local field E;, given for the single lattice
plane by

E, =E,+f -d,

E,=E, +t-d, (30)

where f’ is the intraplanar transfer tensor for the plane. This
transfer tensor f’ can be determined numerically to any pre-
cision using the Ewald one-fold integral transform.'> Vlieger,
however, has derived, after much effort, a more concise
expression:'®
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- - i - ik -
' =a 't c+ ———[K*1-kk! -K*%2-2"]- 1,
%ol 260a1%|kz|[ ki~ k2] 67e
f,S,xx:f,S,yy:_4'516815
f'g..=—2 1., =9.03362, (31)

where parallel (Il) means parallel to the plane of the dots or
rings. The strong aspect of the Vlieger expression is that it
gives the intraplanar transfer tensor as a dynamical correc-
tion to its static counterpart. This guarantees smooth linkage
to the static result, being for a square lattice essentially only
the numbers given above. The induction for a dot or ring
inside a lattice now becomes

d=&[Ey+ (F +9d],

i

f+=a ' (F o+t +
D= e ]

(K1 -Kkk!-K% 2
N, ()
v’

where, as in the Vlieger derivation, the radiation damping
term has disappeared.

tS,vv =- (32)

D. Electromagnetic response

The electromagnetic response of the layer of dots/rings,
has to be determined in two steps. The dipole strength d
induced in the plane is obtained from

d=[1- &, + D] a@Ey. (33)

The reflected electric fields at a remote site R are now given
by

Ex(R) =frd,

PSR L
k=7 [1-k K,
260aLBkz

li = k” - kzi, (34)
where fj is the remote interplanar transfer tensor. Physically
only those electric fields make sense which go in a direction
away from the sources. This means that when the sign of w is
changed also the corresponding wave number or wave vector
has to change sign. Therefore it is easily seen that in the
above expression when w is replaced by —w, both k and k,
have to change sign. Therefore all transfer tensors t, f’, and
fr will always turn into their complex conjugate when w
changes sign. We have shown already in detail that the same
behavior applies also to ag.>* This mathematical property
guarantees that the dipole strength induced in the plane and
the electric field emitted by the plane of dots and rings will
be real according to
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E(r,7) = Re[fr(w)d(w)e ). (35)

This elementary result and Egs. (33) and (34) allow the en-
tire electromagnetic derivation to be done using a single
complex exponential. Also the following relationship is use-
ful, if not indispensable:

T T
(AB) = lf dt A(t)B(t) = lf dt Re[ANOe—iwt]Re[Eoe—iwt]
TJy T),
- SRelA;5,] 56

for any two harmonic fields A(z), B(¢) and further wT=21r.
For electromagnetic derivations, different from the quantum-
mechanical derivations treated in Ref. 23, the complex nota-
tion is only auxiliary in character and allows for the common
smooth usage.

In a further straightforward manner it is easy to show now
that only the following reflection and transmission coeffi-
cients suffice to describe the full electromagnetic response of
a square plane of dots and rings:

I/ S
rSS_ A >
y €08 0; — f

i frcos 6; ~ £y sin6;
PP A~ ficos 0, A, cos 6~ fisin’6;

to=14+rg,

; ficos 6; A, cos 6,

= - , 37
PP A —ficos B, A, cos 6~ f;sin’6, 37

where 6; is the angle of incidence. Further use has been made
of the notation ¢~ for the transmission coefficient to distin-
guish it from the self-interaction 7 and of the following ab-
breviations to make the expressions more concise:

_ -1 ’
AU = aOaG,vu - (fS,vu + tS,UU) B

fr=2miak (38)

with v as defined before. These reflection coefficients are not
directly measurable as they are. Measurable are only the re-
flectances R,, and transmittances 7, defined as

R

.
aq= Tqq"aq>
£

=r 1 (39)

T‘M q99°99°

where ¢ stands for the ellipsometric directions s, p. From the
energy balance point of view these quantities determine the
absorbance A, in the lattice plane according to

W

PR m@ETa),

Ay=1-R,, T, =
“ aiEicosG,-

q9q q9q
where Ey is the amplitude of the externally incoming plane
wave. Measurable, but less directly, are also the ellipsometric
angles W, A, which follow from the commonly used defini-
tion:
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TABLE 1. Basic input parameters for lattices of dots and rings.
For the meaning of the symbols, see text.

Quantum dot Nanoring
ar 80.0 nm 80.0 nm
a 18.45 nm 18.45 nm
c 1.49 nm 1.49 nm
d 0.00 nm 4.75 nm
KF ol Feodvl 0.9454 0.9
K1 [ Feiv] 0.9285 0.9
() 2| Fea)v] 0.9120 0.9
Teh 0.60 nm 0.60 nm
€ 12.2 12.2
Eg(T=0°K) 042 eV 042 eV

r .
p,="L=tan ¥
r

AR

In the next section these experimentally accessible quantities
will be calculated numerically for the plane of dots and rings.

III. NUMERICAL RESULTS

Using the above expressions for reflection coefficients
and related ellipsometric angles W, A, we have determined
the optical response of a square lattice made from nanorings
and, for comparison, from quantum dots. All relevant input
material has been collected in Table .

The optical response for individual dots and rings is com-
pletely controlled by the polarizability g, given by Eq. (20).
The static part of it, agg, is given by Eq. (27) and is com-
pletely determined by the volume V. Volume V is given for
the ellipsoid by Eq. (23) and for the center hole ellipsoid by
Eq. (24). The geometrical data determining these ellipsoids
(see Fig. 1) are a, ¢, and d and have the values given in Table
I. The aspect ratio  for both ellipsoids and center hole ellip-
soids then becomes

{=cla=0.081

and the corresponding depolarization factors N,, N, are for
the ellipsoids (dots):

N,=0.8848, N,=0.0576

and for the center hole ellipsoids (rings)
N,=0.8757, N,=0.0622.

The volume of the ellipsoid (dot) is V=2.125 X 1072* m* and
for the center hole ellipsoid (ring) V=1.917 X 107> m>. To
calculate the static polarizability a;g we need the value of
the dielectric constant € for (InAs), the material making up
the dot or ring and given in Table I. That number belongs to
high-frequency (IR) data at room temperature, since we con-
sider that to be the best choice.

For an single isolated dot or ring, using Eq. (28), we find
the following tensor components ¢y and «,, for dots:

ags=3.711 X 10 3 ay,
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g = 2.256 X 10,

as..=3.401 X 10 ay,
and correspondingly for rings

ags=3.348 X 1073,
g = 2.188 X 10,

ag..=3.434 X 10 ay,

where ay=5.69677 X 10732 F m?. The anisotropy of the static
polarizability ay is entirely due to the electromagnetic self-
interaction of the dot or ring. Quantum mechanics plays no
role in it.

This will change for frequencies near the energy gap of
the dot or ring. Then there is a strong quantum-mechanical
contribution to the anisotropy. To determine numerically the
dynamic quantum-mechanical part of the polarizability ag;
requires knowledge of the overlap matrix elements (F),;|F).
Those were obtained numerically by solving the effective
mass Hamiltonian (13) with the Ben Daniel-Duke boundary
condition (14). The resulting values are in Table I . There is
also the bulk optical matrix element r,. The transition fre-
quencies wy, are shown in Fig. 3, but the damping 7y can only
be used as a free parameter. We have used two values 2 meV
and 5 meV for it. If we take #w=0.86 eV as a typical energy
for the interband transitions of the dots or rings, this corre-
sponds to a wavelength A=1459 nm, well beyond the lattice
spacing a;. This ensures that the Vlieger expressions can be
used as they are and that we do not have to bother about
possible higher order reflections.

The ellipsometric angles W and A are shown for this con-
figuration in Figs. 5 and 6. They are shown in each figure for
dots at the left and for rings at the right. The upper panels
show results for y=2 meV and the lower panels for y
=5 meV. The crucial difference between dots and rings is in
the crossing of energy levels. For dots there are no crossings
for varying magnetic field strength B, opposite to the behav-
ior of the rings. So the W data display quite monotonous
ridgelike patterns for dots but a clear “hill/valley” pattern for
rings. This represents a typical manifestation of the optical
Aharonov-Bohm effect. This more remarked dependence of
the rings upon changes in the magnetic field strength gives
them better characteristics for practical use than dots.

This behavior becomes even more manifest for the other
ellipsometric angle A as shown in Fig. 6. In degrees the peak
to peak values for A are about five times larger than the
corresponding variation in W. Rings in general respond
stronger for both angles than dots. This is remarkable, since
the volume fraction fy is smaller for rings than for dots. Yet
the understanding of this behavior is quite down to earth: the
crossings cause two pairs to contribute in resonance simulta-
neously and this effectively doubles the response. All values
drop by about the same factor as the damping vy is increased
for all cases. This is due and in agreement with the general
behavior of the frequency dependent functions fy(w), as
given by Eq. (1). All values for ¥ and A have variations of
the order of magnitude of degrees and are therefore easily
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WV (deg)

7.9

E (eV)

(©

within range of any modern ellipsometer. Yet it should be
mentioned that the variations in W, A will reduce drastically,
when the embedding is taken into account also, as we hope
to show in a forthcoming publication.

The ellipsometric parameters W, A are relative quantities
and do not contain knowledge about the absolute values of
optical response coefficients. Therefore also reflectance and
absorbance have been determined for a case where both the
ring and the dot lattice have a maximum in the imaginary
part of their polarizability (resonance). For both systems we
chose a magnetic field strength of B=7 T and a damping of
fiy=5 meV. The selected resonance frequencies were fiw
=0.867 eV for the dot and Zw=0.854 eV for the ring lattice.
The reflectance for those settings is shown in Fig. 7. Typi-
cally the values are in the 107> range, so pretty weak. The
ring lattice has a slightly weaker reflectance than the dot
lattice, but both systems display the usual angular dependent
behavior. The most outspoken aspect is the occurrence for p
polarization of the Brewster minimum at about 68°. For bulk
InAs the Brewster angle has the value of 74° for comparison.

By means of Eq. (40) we have also calculated the absor-
bance. This quantity has the most direct connection to the
detailed treatment of the microscopic behavior given in this

¥ (deg)
75 r
: iyt
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I setttigiitasaniniiting
ettt AT \\\\‘\\ iyt
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FIG. 5. Ellipsometric angle W
for a monolayer of InAs quantum
dots and nanorings. (a),(b) ¥ for
0;=60° and 7iy=2 meV. (c),(d) ¥
for ;=60° and iy=5 meV. Left
panels (a),(c): dots, right panels
(b),(d): rings.

paper, both electromagnetically and quantum mechanically.
The results are shown in Fig. 8. The overall picture is that the
absorbance in the ring system is stronger than for the dot
system. This is the consequence of the enlargement at reso-
nance of the imaginary part of the polarizability due to the
crossing of energy levels in the ring system. Indeed the en-
largement is about a factor of 2. The most remarkable aspect
of the absorbance is the strongly increased dichroism for
increasing angles of incidence. For the hypothetical case that
the dots or rings would have had an isotropic polarizability,
both polarization directions s and p would behave similar to
the s components in Fig. 8 . Although the anisotropic behav-
ior of the polarizability of the elements goes back both to
electromagnetism (through the electromagnetic self-tensor)
and to quantum mechanics (through the expectation value of
the position vector), the dichroism is governed in the first
place by quantum mechanics. For light components in the z
direction the dots and rings will be transparent, for the re-
maining x, y direction they will be absorbing. So it looks as
if research concerning the shape and volume independence
of the optical response for isolated levels at resonance,
should focus upon absorbance and the dichroism found here.
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A (deg)

3 r
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IV. SUMMARY AND CONCLUSIONS

In this paper we have performed a comparative study of
the optical response functions (such as reflectance and absor-
bance and the ellipsometric angles W, A) for quantum dots
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FIG. 7. Reflectance R for a monolayer of InAs quantum dots
and nanorings. B=7 T. Dots: hw=0.867 eV, rings: hw=0.854 eV.
Both: iy=5 meV.
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for a monolayer of InAs quantum
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and nanorings, when they are arranged in a square lattice. We
have developed accurate and workable expressions for the
response terms of separate quantum dots and nanorings as
given by the polarizability. The polarizability is determined

20

15

10% A

10

FIG. 8. Absorbance A for a monolayer of InAs quantum dots
and nanorings. B=7 T. Dots: 2w=0.867 eV, rings: Aw=0.854 eV.
Both: iy=5 meV.
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by both quantum-mechanical and electromagnetic interac-
tions. For nano-objects an outspoken consequence of these
two aspects of the polarizability is that far below the energy
gap the strength of the polarizability is volume and shape
dependent, whereas for separately observable resonant tran-
sitions at the absorption edge the strength is volume and
shape independent. For the optical response of the square
lattices made up from these nano-objects only the electro-
magnetic interaction needs to be taken into account. The re-
mote response, as represented by reflection and transmission
coefficients has been obtained by remote propagators as
usual in discrete optics and these coeficients build a key in-
strument for the quantitative analysis of the magneto-optical
response of lattices made from nanosized objects. The calcu-
lations clearly show that rings are more effective to exploit
the dependence from magnetic fields than dots. Despite a
lower volume fraction rings have stronger variation in any of
the ellipsometric angles than the dots. The crossing of the
transition energies, being characteristic for rings and known
as the optical Aharonov-Bohm effect, results in a pronounced
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variation of the ellipsometric angles for varying magnetic
field. The reflectances for both types of lattice are weak, as
can be expected from such thin layerlike systems. Remark-
able is the strongly increasing dichroism for increasing
angles of incidence. Since the origin of this dichroism is in
the dynamic part of the anisotropy of the polarizability of the
nano-objects, this dichroism can be of use to investigate the
size- and shape-dependent behavior of the polarizability. The
theoretical findings obtained here, yield also the essential
starting point for future work to incorporate the influence of
the embedding (capped quantum-dot or nanoring systems).
This comparative study shows that use of nano-rings or
quantum dots in both the investigation and use of magneto-
optical response is in favor of the first.
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