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A method is presented for quantum-mechanical ballistic transport calculations of realistic two- and three-
dimensional open devices that may have any shape and any number of leads. Observables of the open system
can be calculated with an effort comparable to a single calculation of a suitably defined closed system. The
method is based on a previously developed scheme for calculating transmission functions, the contact block
reduction method, and is shown to be applicable to the density matrix, the density of states, and the local
carrier density. The electronic system may be characterized by a single or multiband Hamiltonian. We illustrate
the method for the four-band GaAs hole transport through a two-dimensional three-terminal T-junction device
and for the electron tunneling through a three-dimensional InAs quantum dot molecule embedded into an InP
heterostructure.
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I. INTRODUCTION

With the recent advances in semiconductor technology it
became possible to fabricate nanodevices with dimensions
less than the mean free path and the dephasing length, so that
ballistic transport effects dominate the overall device behav-
ior. These devices include very different structures, such as
nano-MOSFETs, modulation doped 2DEGs, resonant tunnel-
ing devices, etc. Simultaneously to the progress of the ex-
perimental fabrication and characterization techniques, sig-
nificant effort has been dedicated to the theoretical prediction
of the transport properties of such open quantum systems.

The most widely used scheme to calculate the ballistic
transport through an open system is the Landauer-Buttiker
formalism.1,2 With this method, the current is calculated from
the transmission function that is obtained from the solution
of the Schrödinger equation with scattering boundary condi-
tions. While this is a significant simplification compared to a
calculation that includes the relaxation of carriers, even this
approach becomes computationally very challenging for
higher dimensional nanostructures with a complex geometry.

Several methods have been developed to calculate the bal-
listic transport through quantum devices. A well-known ap-
proach is the transfer matrix method.3,4 While this scheme
has been found to become unstable5 for larger devices in its
original form, this drawback has been overcome by a series
of generalizations developed by Frensley,6,7 Lent et al.,8 and
Ting et al.9,10 These approaches use the quantum transmitting
boundary method8 �QTBM� to account for the coupling to
the leads, and can handle structures of arbitrary geometry.
The price to be paid, however, is that the size of the linear
systems that need to be solved repeatedly is of the order of
the area or the volume of the entire device. Therefore, pub-
lished implementations of the QTBM still appear to be lim-
ited to one-dimensional tight-binding9,11,12 or k · p based10

multiband calculations, or two-dimensional �2D� single-band
calculations.8,13 Recently, a three-dimensional self-consistent

scheme has been published14 that is applicable to quasi-two-
dimensional structures. However, this approach is limited to
separable problems and single band Hamiltonians. The
boundary element method15 is computationally more effi-
cient, but so far the published applications are limited to
waveguide structures, i.e., structures possessing a flat
potential16 or consisting of piecewise homogeneous materials
with constant potentials.17 Another efficient and widely used
algorithm is the recursive Green’s function method18,19 that
has been successfully implemented for two-dimensional
devices20,21 and for small three-dimensional structures such
as nanowires.22 It is very well suited for two-terminal de-
vices that can be discretized into cross-sectional slices with
nearest neighbor interactions but has difficulties dealing with
additional contacts that inevitably couple more distant slices
with one another. A closely related modular recursive
Green’s function method23 is applicable to devices that can
be divided into regions of sufficiently high symmetry, where
the Schrödinger equation is separable, and has been recently
adopted to include magnetic fields.24 Very recently, a modi-
fied version of the QTBM has been developed that expands
the scattering solutions in terms of two different closed sys-
tem wave functions in an efficient way.25 This scheme is
charge self-consistent and has been implemented for single-
band situations so far. Thus, the quantum-mechanical ballis-
tic multiband transport calculation of large two- and three-
dimensional structures or devices with more than two Ohmic
contacts still presents a significant challenge.

In this work, we present an efficient Green’s function
method to calculate the electronic properties of open quan-
tum systems such as the transmission, the density of states,
and the carrier density in the ballistic limit. The presently
developed scheme is applicable to multiterminal two- and
three-dimensional structures without geometric constraints
and can handle single and as well as multiband k ·p or tight-
binding Hamiltonians. The method rests on a Green’s func-
tion approach that rigorously separates the open system
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problem into the single solution of a suitably defined closed
system and the repeated solution of a small linear system of
equations of size determined by the contact regions that
couple the closed system to the leads. We have termed this
method the contact block reduction method �CBR� in an ear-
lier paper that focused solely on the calculation of the ballis-
tic transmission function. We show in this paper that the
calculation of the charge density of the open system through-
out the device can be performed with an effort comparable to
a single calculation of a small percentage of the eigenstates
of a closed system.

This paper is organized as follows. In Sec. II a brief sum-
mary of the CBR method in terms of the Green’s function
formalism is provided. A general expression for the density
matrix of an open system in terms of the eigenstates of the
corresponding closed system is derived in Sec. III. The gen-
eralization of the method to multiband Hamiltonians is pre-
sented in Sec. IV. A further significant reduction of the com-
putational effort can be achieved for the special case of
single band Hamiltonians by transforming the basis into the
space of propagating modes of the leads, as it is shown in
Sec. V. In Secs. VI and VII, respectively, we present two
numerical examples. We predict the hole conductance in a
GaAs based T-junction device and the resonant current
through an InAs quantum dot molecule that is embedded
within InP barrier material. These examples highlight the ap-
plicability of the CBR method to multiband k ·p Hamilto-
nians and realistic three-dimensional devices.

II. GREEN’S FUNCTIONS FOR OPEN DEVICES

In this section we briefly review the key ingredients of the
contact block reduction method28 and set up the notation that
is used throughout the paper. We consider a system that con-
sists of some n-dimensional �n=1, 2, 3� region that we term
”device” and an arbitrary number of leads that couple the
device to reservoirs. The device may be under applied bias
and contain some spatially varying potential. The total
Hamiltonian operator of the system, including the device and
the leads, can be written in the symbolic matrix form

Htot =�
H1 0 0 W1

0 � 0 �
0 0 HL WL

W1
†

¯ WL
† H0

� , �1�

where H� represents the Hamiltonian of lead �, the Hamil-
tonian H0 corresponds to the device region, and W� is the
coupling between the device and this lead ��=1,… ,L�. The
leads �acting as reservoirs� are semi-infinite and, therefore,
the total Hamiltonian Htot is infinite dimensional. Since we
are interested in ballistic transport of electrons through the
finite device region, it is convenient to describe the device
including its coupling to the leads in the following manner.26

It is represented by a finite effective �non-Hermitian� Hamil-
tonian H=H0+� of the open device, where the influence of
the external leads is included through a finite-dimensional
operator � that can be derived from Eq. �1� as will be ex-
plained below. The Hermitian Hamiltonian H0 represents, by

contrast, a closed system, i.e., the device with no coupling to
the leads or decoupled device. We assume throughout this
work that the Hamiltonian H does not contain scattering
terms. In this ballistic case, all observables of interest can, in
principle, be obtained from the retarded Green’s function GR

of the open device, which is defined by

GR = �E − H�−1 = �E − H0 − ��−1, �2�

where �=�1+�2+ ¯ +�L, and �� represents the complex
self-energy due to the coupling W� between lead � and the
device. We can express Eq. �2� in terms of the Green’s func-
tion G0 of the decoupled device in the following manner:

GR = �1 − G0��−1G0,

G0 = �E − H0 + i��−1, � → 0 + . �3�

The Green’s function G0 can also be expressed in terms of
the eigenstates ��� of the decoupled device Hamiltonian H0

as follows:

G0 = �
�

���	��
E − �� + i�

, � → 0 + ,

H0��� = ����� . �4�

Contact block reduction formalism

The evaluation of the retarded Green’s function in Eq. �2�
requires the inversion of a large matrix that is proportional to
the number of grid points or cells of the device,6,8,27 which
can be quite demanding even in two spatial dimensions. The
essence of the contact block reduction method consists in the
decomposition of GR into blocks such that the transmission
function of the open device can be calculated by inverting
only small matrices.28

The first step in this procedure is to choose a real space
discretization of the device region and subdivide the total
grid space of NT points into NL boundary grid points that
overlap with the leads—contacts—and the interior region
with ND=NT−NL points. Typically the number NT exceeds
NL by several orders of magnitude. The real space Hamil-
tonian matrix that corresponds to this discretization is as-
sumed to couple only sites within some finite range with one
another, typically only nearest neighbors. The contact grid
points associated with lead � form the set C� of all points
where the coupling matrix W� in Eq. �1� is nonzero. The
number of grid points in this set that links the device with the
lead � is denoted by N�. The total number NL of boundary
grid points that overlap with leads is given by

NL = �
�=1

L

N�. �5�

It is convenient to number the grid points, denoted by letters
i , j ,k , l ,…, in such a way that the total grid space is given by
the following ordered set:
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� = 
C1 � C2 � ¯ CL� � 
D = interior part of device� .

�6�

The self-energy in Eq. �2� reflects the coupling of the device
to the leads and is given by the expression26

���i, j� = ��W�G�
RW�

†�ij, i, j � C�,

0, i, j � C�,
 �7�

where �� and G�
R are the self-energy matrix and the retarded

Green’s function matrix of lead �, respectively. Note that we
indicate all real space representations of operators, i.e., ma-
trices, by bold letters. In the basis of the ordered set, Eq. �6�,
the total self-energy matrix � is given by a block-diagonal
matrix of the form

� = ��C 0

0 0D
� , �8�

�C = �1 � �2 � ¯ �L. �9�

The submatrix �C is of dimension NL and 0D is a square null
submatrix of dimension ND associated with the interior part
of the device. In addition, we define the Hermitian matrix

� = i�� − �†� , �10�

which has the same structure as the self-energy matrix.
Analogously, we define GC

R to be the submatrix of the open
device’s retarded Green’s function GR within the contact re-
gions. Now, let us write the Dyson equation �Eq. �3�� for GR

in matrix form,

GR = �1 − G0��−1G0 = A−1G0, �11�

A = 1 − G0� . �12�

We now subdivide the matrix G0 into blocks corresponding
to the contact portion GC

0 and the interior device portion GD
0 ,

in analogy to the self-energy matrix defined in Eq. �8�. Then,

G0 = � GC
0 GCD

0

GDC
0 GD

0 � . �13�

Note that GC
0 is a small matrix of size NL, in contrast to GD

0

which has size ND�NL. Similarly, we subdivide the matrix
A into blocks which leads to

A = �1C − GC
0 �C 0

− GDC
0 �C 1D

� . �14�

Here, the submatrix AC=1−GC
0 �C is a square matrix of di-

mension NL, whereas the lower diagonal block of A is a
square unit matrix of dimension ND. The inverse of the full
matrix A possesses exactly the same structure as A itself,
namely

A−1 = � AC
−1 0

GDC
0 �CAC

−1 1D
� . �15�

Using this result Eq. �15� and Eq. �11�, the full retarded
Green’s function of the open device can be finally written as

GR = � AC
−1GC

0 AC
−1GCD

0

GDC
0 �CAC

−1GC
0 + GDC

0 GDC
0 �CAC

−1GCD
0 + GD

0 � .

�16�

This important relation shows that any block of GR can be
calculated by inverting only the small submatrix AC. Based
on this result, it is now easy to show28 that the transmission
and the reflection function can be entirely expressed in terms
of the small submatrix GC

R =AC
−1GC

0 ,

T����E� = Tr��C
�GC

R�C
��GC

R†�, � � �� �17�

T���E� = R��E� = Tr��1C
� − i�C

�GC
R��1C

� − i�C
�GC

R�†� ,

�18�

�C
� = i��C

� − �C
�†� . �19�

The contact elements of the decoupled Green’s function
GC

0 are to be determined through the spectral representation
given in Eq. �4�.

III. CONTACT BLOCK REDUCTION METHOD FOR THE
DENSITY MATRIX

In this section we show that the CBR method can be
extended to observables that are functions of the carrier den-
sity in a way that maintains the advantages and the compu-
tational efficiency of this scheme. This generalization is a
prequisite for charge self-consistent calculations. The results
presented in this section apply equally well to single-band
and multiband k ·P or tight-binding Hamiltonians. The only
assumption we make is that the basis is localized in real
space so that nearest-neighbor interactions provide an ad-
equate representation of the Hamiltonian matrix.

In order to derive a general expression for the density
matrix, we first consider the spectral function S of the open
device that is defined by26

S � GR�GR†. �20�

Since � in Eq. �10� is nonzero only within the contact region,
S can be written as

S = � GC
R GCD

R

GDC
R GD

R ���C 0

0 0
��GC

R† GDC
R†

GCD
R† GD

R† � �21�

=� GC
R�CGC

R† GC
R�CGDC

R†

GDC
R �CGC

R† GDC
R �CGDC

R† � . �22�

This matrix consists of four blocks that may be denoted by
SXX� with elements X ,X�� 
C ,D�. One can easily see that
the left column of the matrix in Eq. �16� can be expressed in
the form29

GXC
R = GXC

0 BC
−1,

BC � 1C − �CGC
0 , �23�

where again X� 
C ,D�. Inserting this into Eq. �21� leads to
the following expression for the spectral function:
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SXX� = GXC
0 BC

−1�C�BC
−1�†�GX�C

0 �†. �24�

Using spectral representations for the decoupled Green’s
functions GXC

0 , Eq. �4�, we can rewrite the matrix elements of
S in terms of the discrete real space basis as follows:

Sij = �
k,l�C

��
�

	i���	��k�
�E − �a + i���

	�BC
−1�C�BC

−1�†�kl���



	l�
�	
�j�
�E − �a − i����

�→0+

= 2��
�,


	i���	
�j���
�E� , �25�

��
�E� =
1

2�
� Tr
��
�	���CBC

−1�CBC
−1†�

�E − �a + i���E − �
 − i��
�

�→0+
. �26�

Equation �25� for the spectral function is our starting point
for the derivations of the characteristics of the open system,
such as the local density of states, the density matrix, and the
charge density. Note that this expression only contains the
inverse of the small matrix BC of size NL that is associated
with the contact-device coupling. The term ��
�E� plays the
role of a generalized density of states of the open system and
is expressed in terms of the eigenstates ��� , �
� of the decou-
pled device, i.e., the closed system. In the limiting case of
�C→0 �closed system�, one gets ��
�E�=��
��E−E�� as
shown in Appendix A. The local density of states i�E�
= �1/2��Sii�E� at grid point i follows now from

i�E� = �
�,


	i���	
�i���
�E� . �27�

By integrating this expression over real space, the density of
states is obtained as

N�E� = Tr ��E� . �28�

Finally, we can express the density in terms of ��
�E�. The
device is connected to L leads that represent particle reser-
voirs in local equilibrium and are characterized by lead dis-
tribution functions f��E� ,�=1,… ,L. It has been shown be-
fore that the particle density of an open system can be
expressed for such a situation in the form27,30

ni =
1

2�
� dE�

�=1

L

f��E�	i�GR��GR†�i� , �29�

where �� is the matrix defined in Eq. �10� with self-energies
associated with lead �. Note that a direct calculation of this
expression would involve the solution of a very large linear
system of equations. Using the contact block reduction
method and the results given by Eq. �25�, by contrast, yields
a computationally efficient expression for the particle density
ni,

ni = �
�,


	i���	
�i���
, �30�

��
 = �
�=1

L � ��

� �E�f��E�dE , �31�

where ��
 is the density matrix, and the matrix ��

� is de-

fined analogously to Eq. �26�, with �C being replaced by �C
�

as defined in Eq. �19�.
Numerical details and computational costs: The CBR

method expresses the problem of ballistic scattering through
an open nanostructure in terms of those parts of the retarded
Green’s function that connect the contacts to the interior de-
vice. Here we assess the numerical cost of calculating the
density or local density of states in this approach. All of the
matrices involved in Eq. �26� are of small size NL	NL. Ini-
tially, we solve the Hermitian eigenvalue problem for the
decoupled device which requires O�NTNeigen

2 � operations for
Neigen eigenstates, Neigen�NT. The cost for the calculation of
the transmission function28 given by Eq. �17� is NE
	 �O�NL

3�+NL
2Neigen�, where NE is the number of energy grid

points. The calculation of the local density of states in Eq.
�27� or the particle density ni requires NCBR=NE	NL

2Neigen
2

+NTNeigen
2 operations, since the matrix elements of ��
�E�

need to be calculated only once for all grid points i. As we
will show below, it suffices for a mesoscopic device to cal-
culate only a few percent of all NT eigenvalues so that
NCBR�NENT. This leads to a dramatic additional reduction
in computer time.

IV. MULTIBAND LEAD MODE DISPERSION AND SELF-
ENERGY

In this section, we set up a concrete model for the self-
energy Eq. �7� that couples the device to the leads, taking
into account a general multiband Hamiltonian and a two- or
three-dimensional device. Several ballistic lead models have
been proposed. A recently published paper22 treats the lead of
a three-dimensional device as infinitely extended bulk in the
two directions parallel to the contact surface so that the lead
eigenstates are two-dimensional plane waves. In this paper,
we adopt the more common approach26 to treat the lead as a
semi-infinite straight quantum wire of finite circumference.
For the following discussion, we pick out an individual lead
of that type and calculate its self-energy. It is convenient to
express it in terms of the eigenmodes ��y ,z� of an infinitely
extended and homogeneous quantum wire. These modes
propagate along the wire direction ẑ and are confined states
in the perpendicular directions. All cross-sectional coordi-
nates including band indices are lumped into the index y.
With these assumptions, the wire modes are product states of
one-dimensional plane waves along the lead wire and cross-
sectional localized wave functions that are independent of
the position z, i.e.,

��y,z� = eikz��y� . �32�

Let us discretize the quantum wire by introducing cross-
sectional slices at positions z= la, where l=0, ±1, ±2,… is
an integer and a is the grid spacing. To keep the notation
simple, we only include nearest-neighbor coupling in the
Hamiltonian. We adopt a vector notation so that the wire
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eigenfunctions ��y ,z� are replaced by vectors �l of dimen-
sion M, where M cycles through all degrees of freedom ex-
cept the position l along the wire. These wave functions obey
the Schrödinger equation,

�Hl,l − E1��l + W†�l−1 + W�l+1 = 0, �33�

where the matrix Hl,l is the cross-sectional part of the wire
Hamiltonian, and W denotes the coupling between adjacent
slices. To simplify notation and without loss of generality, we
assume here the coupling constant between the lead slices to
be the same as between the contact slice of the device and
the lead. Note that Hl,l is the same for all slices l and is set up
in such a way that the wave functions vanish at the circum-
ference of the quantum wire. By employing the Bloch con-
dition �l=exp�ik�a��l−1, Eq. �33� can be rewritten in the
form of a non-Hermitian linear eigenvalue problem for the
complex wire band structure k��E� and the wire eigenfunc-
tions �l

�,

��Hl,l − E1� W

1 0
�� �l

�l+1
�

�

= e−ik�a�− W† 0

0 1
�� �l

�l+1
�

�

.

�34�

The solution of Eq. �34� yields the wire mode dispersion
k��E� of the 2M linearly independent modes �l

� which are
propagating or decaying to the right and to the left, respec-
tively. Now we consider the semi-infinite lead that extends
from the contact at l=0 to l→ +� �see Fig. 1�.

The self-energy couples the device with this semi-infinite
lead and can be expressed in terms of those M modes �l

� that
propagate or decay into the leads �l→ +��. Within these M
modes, the evanescent ones have Im�k���0 whereas the
propagating ones are characterized by Im�k��=0 and group
velocity vg

��0. The latter can be calculated from12

vg
��E� = −

2a

q��l
��2

Im���l
��†W†�l

�eik�a� , �35�

which is independent of l. Finally, the self-energy can be
written in the following form:22

�C = − WK−1�K , �36�

where K is the M 	M matrix of the column vectors �0
� at the

contact site �l=0�, and � is a diagonal matrix,

� = diag
exp�− ik1�E�a�,…,exp�− ikM�E�a�� . �37�

We note that the wire dispersion relation can be solved ana-
lytically if the wire Hamiltonian describes either a single
energy band or decoupled bands. In that case, the Hamil-
tonian is separable and has the form

HL�y,z� = H��y� + T��z� , �38�

where H� is the cross-sectional lead Hamiltonian that obeys
a 1D or 2D Schrödinger equation

H����� = ������ , �39�

and the term T� represents the kinetic energy along the propa-
gation direction. In addition, in this case, the coupling matrix
W in Eq. �36� is proportional to the unit matrix, W=W1.
This gives the following expression for the self-energy � at a
contact:26

�C�i, j� = − W�
�

M

	i����exp�ik�a�	���j� �i, j � C�� ,

�40�

where the wire dispersion k��E� is given analytically by the
relation

E = �� + 2W�1 − cos�k�a�� . �41�

Thus, the cross-sectional lead modes must be calculated only
once in the single band case.

Boundary condition for device Hamiltonian: The splitting
of the Hamiltonian H into a decoupled device Hamiltonian
H0 and the self-energy � is not unique. This degree of free-
dom can be exploited such that the low-lying eigenstates of
H0 mimic the scattering states of the open system which
greatly reduces the effort to calculate the retarded Green’s
function of the open device.28 If we simply truncate the in-
finite system’s Hamiltonian right at the contacts to define H0,
we obtain the self-energy as given by Eq. �36�. This corre-
sponds to Dirichlet �i.e., infinite barrier� boundary conditions
for H0. For single-band Hamiltonians, we have found previ-
ously that it is significantly more efficient to include the
energy-independent part of the self-energy into H0 and to
redefine the self-energy correspondingly. This procedure is
equivalent to applying von Neumann boundary conditions to
H0 at the contacts. In this section, we generalize this proce-
dure to multiband Hamiltonians.

By using a formal series expansion of the exponents, we
decompose the diagonal matrix � for an individual lead into
the unit matrix plus an energy-dependent term,

��E� = 1 + ���E� ,

�� = diag
exp�− ik1�E�a� − 1,…,exp�− ikM�E�a� − 1� .

�42�

We substitute this back into the self-energy to get

FIG. 1. Schematic picture of local coordinate system of an in-
dividual semi-infinite lead attached to the device. The dots indicate
the two- or three-dimensional discrete grid points. Along the lead
axis z, the lattice spacing is a. The origin of the z axis lies at the
contact boundary.
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�C = − W − WK−1��K . �43�

Since W is not Hermitian, we symmetrize it as

WH = 1
2 �W + W†� , �44�

and redefine the decoupled device Hamiltonian and the self-
energy, respectively, as

HN = H0 − WH, �45�

�C
N = �C + WH. �46�

The multiband Hamiltonian HN corresponds to a closed sys-
tem with generalized von Neumann boundary conditions at
the contact boundaries. Thus, the eigenfunctions of the
Hamiltonian HN are approximate solutions of the open-
boundary problem in the low energy limit.28 As a conse-
quence, by solving the Dyson equation �Eq. �3�� with HN

instead of H0, it suffices to include an incomplete set of
eigenfunctions in the spectral representation of HN for some
limited energy range. From a numerical point of view, this is
the most crucial time-saving step in the CBR method that
will be illustrated in Sec. VI.

V. MODE SPACE REDUCTION IN SINGLE-BAND CASE

In this section, we show that the numerical effort of cal-
culating the transmission function and the density matrix of
the open system can be further reduced in the single-band
case by transforming the Green’s functions and the self-
energy into a basis of propagating mode states. Since the
cross-sectional mode eigenfunctions �� of a given lead in
Eq. �40� are orthogonal and complete, we can transform the
real space matrices GC,ij

0 ,�C,ij, and �C,ij into mode space,
where the indices i , j are elements of the contact set C. This
leads to diagonal matrices ��� �and ���� and full matrices
G��

0 with �greek� mode indices � ,�,

�C,�� = �
i,j�C

	���i��C,ij	j���� = − W exp�ik�a� , �47�

GC,��
0 = �

i,j�C

	���i�GC,ij
0 	j���� . �48�

Correspondingly, one has ���=2 Im �C,��. Therefore, the
purely real elements �C,�� correspond to ���=0 and do not
contribute to the traces in the transmission function given by
Eq. �17� and the density matrix determined from Eq. �26�,
because they correspond to decaying modes. In contrast to
the transmission, the Green’s function of the open device GR

is determined, in principle, by the full self-energy �C includ-
ing purely real elements.31 Here we show, however, that the
error introduced by neglecting the decaying modes in the
calculation of GR is negligible. Generally speaking, this is a
consequence of lateral momentum conservation or, equiva-
lently, matching between lead and device modes. We write
Eq. �48� in terms of the eigenstates ��� of the Hermitian
Hamiltonian HN,

GC,��
0 = �

�

	�����	�����
E − E�

N + i�
. �49�

Assume for a moment that the leads and the device are lat-
erally planar, infinitely extended heterostructures. Then, both
the lead states ���� , ���� and the eigenstates ��� of the decou-
pled system are eigenfunctions of the lateral momentum and
the matrix GC,��

0 �E� is diagonal. This strict conservation law
gets softened gradually for leads of finite diameter as we will
discuss below; it becomes invalid only for extremely narrow
leads but then the matrix GC,ij

0 is already of small size in real
space and no transformation to mode space is necessary.

We will illustrate the effect of mode matching by a simple
example. Consider a two-dimensional two-terminal device of
width WD in the interior of the device and length L as sche-
matically illustrated in the inset of Fig. 2. The two leads may
have a width WL that can be larger or smaller than WD �Fig.
2 shows the situation WL�WD�. The grey-shaded areas in-
side the device represent impenetrable barriers, and the inte-
rior potential is considered to be constant. For the arguments
given below, only the potential near the contacts matters.
Since devices are usually designed to have flat potentials
near contacts, this model mimics realistic situations at least
qualitatively.

Assume first that WL=WD. In that case, the cross-sectional
lead and device states are trivially orthogonal to each other
so that only a single mode contributes to the sum in Eq. �49�
and the matrix GC,��

0 �E� is diagonal again. Now consider the
more realistic situation WL�WD and we first study the situ-
ation WL�WD as depicted in the inset of Fig. 2. This figure
depicts a contour plot of the difference in magnitude between
the exactly calculated transmission function T12,exact�E� �see
Eq. �17�� and the truncated transmission function T12,m�E�.
The latter includes only a fixed number m�M of lead modes
in the matrix G��

0 in Eq. �48� and the Dyson equation Eq.
�11�. The horizontal axis shows the energy, and the number
of modes included in Tm�E� is plotted along the vertical axis.

FIG. 2. Contour plot of the difference between the exact and
mode truncated transmission function for the device shown in the
inset. The parameters used are WD=5 nm, WL=10 nm, L=10 nm,
m*=0.3 m0, and a constant grid spacing of 0.167 nm. The total
number of modes is M =61.
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The thick line marks the border line between the propagating
and the decaying lead modes. As one can see, the neglect of
all decaying lead modes leads only to an error of the order of
0.1% in the transmission coefficient. For this simple device,
the difference in the transmission functions between the two
leads as shown in Fig. 2 equals the corresponding difference
in the reflection functions of one lead, �R1,exact�E�−R1,m�E�
+m−M�. In Appendix C, we are analyzing this simple box
device analytically and evaluate the matrix elements of G��

0

for modes � ,� belonging to the same lead. This analysis
makes it clear that the dominant matrix elements 	�� ��� in
Eq. �49� are those that correspond to propagating lead states
since the decaying ones are poorly matched and almost or-
thogonal to the device states.

We have additionally analyzed this device for the situa-
tion where WL�WD. This must be done numerically since
the two-dimensional eigenstates of the open device are no
longer separable into one-dimensional ones in this case. We
find that for WL /WD�0.5, the error in the transmission due
to the neglect of all but the propagating lead states is of the
order of 10%. It suffices, however, to include a few decaying
states in addition to the propagating lead states in order to
obtain well converged results.

These results grossly reduce the numerical effort in calcu-
lating the inverse of the matrix BC as defined in Eq. �23�.
Similarly, the density in Eq. �29� can be calculated efficiently
by employing a mixed real space/mode representation for
GR.

VI. ASSESSMENT OF MULTIBAND CBR METHOD: HOLE
TRANSPORT IN T-SHAPED JUNCTION

The efficiency of the CBR method for the fully quantum
mechanical calculation of the transmission function, the den-
sity of states, and the carrier density, as developed in this
paper, rests on three key points: �i� the evaluation of all of
theses observables requires only that part of the retarded
Green’s function GR that connects the contacts to the interior
device; �ii� GR can be evaluated efficiently by calculating
only a few percent of the eigenstates of a suitably defined
Hermitian Hamiltonian HN, Eq. �45�; �iii� for single-band
Hamiltonians, the size of the contact part of the GR matrix
can be grossly reduced by transforming into the basis of all
propagating lead modes which amount to only a few percent
of all modes.

To illustrate the applicability of the method in the multi-
band case, we consider a T-junction that is formed by two
crossing GaAs quantum wells. Such a device can be realized
by the cleaved edge overgrowth technique32 and has been
investigated experimentally extensively.33–37 However, the
complicated geometry has hampered realistic theoretical
studies on transport properties so far.38,39

To be concrete, we assume the barrier material to be
p-doped and analyze the ballistic quantum transport charac-
teristics of holes in the GaAs wells. We assume the two
perpendicular GaAs quantum wells to be embedded within
Al0.3Ga0.7As barrier material. One quantum well consists of a
6 nm thick GaAs layer that is grown along the �100� direc-
tion. After cleavage along the �011� surface, a second quan-

tum well of 4 nm thickness is grown, followed by a cap layer
of Al0.3Ga0.7As �see Fig. 3�.

Since this device possesses three contacts, it is not pos-
sible to reduce the problem size to one-dimensional slicing,
which is a prerequisite for the recursive Green’s function
method.18 We have discretized the two-dimensional structure
shown in Fig. 3, using a 20 nm by 20 nm mesh with constant
grid spacing of 0.5 nm. The leads are indicated by the striped
regions and labeled L1 to L3. Since the valence band offset
�barrier height� is only 140 meV, the transverse wave func-
tions of the leads penetrate into the barrier regions �indicated
by the diagonal stripes� in Fig. 3. Therefore, the diameter of
the semi-infinite lead wires must be considerably larger than
the quantum well thickness such that the wire modes are
completely decayed at the wire boundaries. We employ a
four band k ·p Hamiltonian �see Appendix B� to calculate the
band structure for the holes. The Hamiltonian includes the
p3/2 spinor states and couples the light and heavy hole bands
but neglects the p1/2 states. With the exception of the valence
band offset, the k ·p parameters are taken to be the same
throughout the structure.

The strong coupling between heavy and light hole bands
induced by the lateral confinement results in a complicated
dispersion function in the leads that must be evaluated nu-
merically at each energy step. We first analyze the properties
of the leads—such as dispersion and group velocity—for the
case of zero wave vector along the free k�011̄� direction and
then
perform the integration over k space along the �011̄� direc-
tion to obtain the conductance and the local carrier density.

A. Lead dispersion

For the first lead L1 �see Fig. 3�, the quantization axis lies
parallel to �100�, whereas the propagation direction is �011�.
Figure 4 shows the dispersion k�011��E�, and the correspond-
ing group velocity vg�E� for this lead. The pronounced quan-
tization strongly mixes the heavy and light holes. Some
propagating modes only exist within a certain energy interval
and then decay, leading to the maxima and semiparabolas in
the group velocity. Thus, the number of propagating modes
is no longer monotonously rising with increasing energy as is
the case for parabolic bands.

FIG. 3. Sketch of the T-junction device used in the calculation.
The leads are indicated by the patterned regions.
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The second lead L2 �see Fig. 3� is quantized in the �011�
direction, and the carriers propagate along the �100� direc-
tion. Figure 5 shows the dispersion k�100��E�, and the corre-
sponding group velocity. As in lead L1, the bands are
strongly coupled, but exhibit a slightly higher group velocity
due to the smaller effective mass in the �100� direction. The
third lead L3 has identical properties, as is obvious from Fig.
4.

It is interesting to note that the onset of the first propagat-
ing mode occurs at almost the same energy for the L1 and L2
leads in spite of their different width of 6 and 4 nm, respec-
tively. This is due to the highly anisotropic mass of the heavy
hole band that reaches its maximum along the �011� direc-
tion. This result would not be obtained in a single-band
analysis with parabolic masses which would lead to incorrect
transmission characteristics.

B. Transmission function and density of states

Using the CBR method, the transmission function be-
tween the three leads can be calculated very efficiently. The
transmission function T�E� shown in Fig. 6 is a spiky func-
tion due to the reflections caused by the sharp edges in the
T-junction potential. The density of states provides informa-
tion regarding the total number of carriers in the device and
is depicted in Fig. 7.

As we have pointed out in Sec. IV, we compute the de-
coupled Green function by employing a transformation that

corresponds to generalized von Neumann boundary condi-
tions. We performed a series of calculations that included
either all or only a fraction of the eigenstates of HN in the
spectral representation of G0. Figure 6 compares the trans-
mission functions T12 and T23 calculated exactly �solid lines�
with those obtained by including only a subset of eigenstates,
namely the lowest 25 �dashed lines� or 10% �dotted lines� of
all states. This reduction corresponds to cutoff energies of
1.5 and 0.6 eV, respectively. As one can deduce from Figs. 6
and 7, the inclusion of 25% of the eigenstates still guarantees
basically exact results for low energies.

Thus, the reduction of the problem size that can be
achieved by neglecting high energy eigenstates in G0 is com-
parable for multiband Hamiltonians and for single-band
Hamiltonians,28 although the strong coupling between the
bands requires a higher cutoff energy in the former case.

C. Conductance

So far, we only presented auxiliary quantities such as
transmission and density of states. In this section, we present
concrete predictions of the conductance for the T-junction
shown in Fig. 3. So far, no experimental data on this struc-
ture seem to be available; however, hole transport in AlGaAs

FIG. 4. Lower box, subband structure of the lead L1. Energy is
in eV, the wave vector k lies along the �011� direction. Upper box,
corresponding group velocity in 105 cm/s as a function of energy in

each band. The perpendicular wave vector along �011̄� has been set
equal to zero.

FIG. 5. Lower box, subband structure of the lead L2. Energy is
in eV, the wave vector k lies along the �100� direction. Upper box,
corresponding group velocity in 105 cm/s as a function of energy in

each band. The perpendicular wave vector along �011̄� has been set
equal to zero.

FIG. 6. The transmission functions T12�E�=T13�E� and T23�E� of
the T-junction, plotted as a function of energy in eV. The perpen-

dicular wave vector along �011̄� has been set equal to zero. The
exact calculations �solid curves� are compared to results with a
reduced set of eigenstates, either using 25% �dashed curves� or
using 10% �dotted curves� of all eigenstates.

FIG. 7. Density of states of the T-junction in units of 103 eV−1

as a function of energy in eV. The perpendicular wave vector along

�011̄� has been set equal to zero. The exact calculations �solid
curves� are compared to results with a reduced set of eigenstates,
either using 25% �dashed curves� or using 10% �dotted curves� of
all eigenstates.

MAMALUY et al. PHYSICAL REVIEW B 71, 245321 �2005�

245321-8



heterostructures with mean free paths of the order of �m has
been reported.40,41 We have calculated the differential con-
ductance at the Fermi edge EF between the different leads.
To this end, we have integrated the transmission in k space

along the �011̄� direction from k=0 up to the Fermi wave
vector. In this calculation, the Fermi levels are identical for
all leads. Numerically, this is achieved by computing the
transmission function for different values of k�011̄� from 0 to
0.1 Å−1, using a homogeneous k spacing of 2	10−3 Å−1.
Figure 8 displays the resulting conductance that exhibits a
highly nonmonotonic behavior. For Fermi energies below 40
meV, the calculations show that the preferred transport chan-
nel is T12 for Fermi energies below 24 meV. For higher en-
ergies, however, we see a switch towards the T23 channel.
The sharp drop of the T12 conductance at the transition en-
ergy gives even rise to a negative differential resistance. For
energies higher than 40 meV, the holes with higher energy
and correspondingly larger momentum are less likely to be
scattered at the junction than low energy holes which ex-
plains the larger conductance in the T23 channel.

The dashed lines in Fig. 8 show that the resulting conduc-
tance when only 10% of all eigenstates are taken into ac-
count. The comparison with the exact results �full lines�
shows that the integrated conductance is even less sensitive
to an energy cutoff that the transmission function.

D. Carrier density

The T-junction contains not only propagating states that
couple to the leads with some nonzero self-energy Eq. �36�,
but also bound states �b� of energy �b that belong to the
following subset of eigenstates ��� of the decoupled device:

�b � 
��������� = 0 ∀ �� . �50�

In a strictly ballistic calculation, these bound states would
not get occupied since all of their lead self-energies are zero.
In order to include these bound states, we have extended Eq.
�30� for the density at grid point i,

ni = �
�,


	i���	
�i���
 + �
b

	i�b�	b�i�f��b� , �51�

where we have used the result of Appendix A for the density
matrix ��
 of a decoupled state. Note that this expression

assumes all lead Fermi levels to be the same which is appro-
priate for the present example.

We have calculated this total local carrier density for a
Fermi level of 0.05 eV at zero temperature. Note that the
potential is assumed to be constant within the entire well
region within the device, since this calculation is not charge
self-consistent. The integrated hole density of the device is
plotted in Fig. 9. It shows a high density of holes in the lower
quantum well that exhibits small oscillations along the �011�
axis which is due to reflections at the upper barrier. The main
feature of interest is the peak in the density right at the junc-
tion which reflects a bound state. A contour plot of this lat-
erally localized state is shown in Fig. 10. It is bound only for
small values of k�011̄� with a binding energy of 1 meV at k
=0.

In the calculation of this density, we have included only a
fraction of the eigenstates in evaluating GR. Since the contri-
bution of the eigenstates to the density matrix scales with
1/ ����
�, where ��,
=E−��,
 according to Eq. �26�, it is
possible to introduce a cutoff energy Ecutoff that obeys the
condition Ecutoff

2 � ��E−����E−�
��. For given Ecutoff, only
states � and 
 are taken into account in the calculation of the
density that obey this condition. The magnitude of this cutoff
energy has been set to 0.1 eV which is larger than the Fermi
energy of 0.05 eV. This cutoff reduces the computational
effort by almost a factor of 1000. Even when we reduce the
cutoff energy to 0.05 eV, the resulting density differs by less
then 2% throughout the device from the one with the larger
cutoff. This indicates excellent convergence of this proce-
dure.

FIG. 8. The total conductance is calculated via the integration of
the transmission in k space. The exact result �solid curves� is com-
pared to the transmission obtained using only the lowest 10% of all
eigenstates �dashed curves�.

FIG. 9. Contour plot of the hole density in units of 1018 cm−3 for
the T-junction at zero temperature. The Fermi level is set to 0.05 eV.

FIG. 10. Contour plot of the lateral bound state for holes. The
density is given in units of 1017 cm−3, the other parameters are the
same as in the preceding figure.
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E. k-space distribution of the density of states

Further insight into the physics of this three-terminal de-
vice is obtained by studying the k-resolved density of states
�k-DOS�. For some device geometries, it has been shown that
this property is accessible experimentally by resonant mag-
netotunneling spectroscopy.42,43 In Fig. 11, the k-DOS is
shown as a function of the energy and of the wave vector
k�011̄� perpendicular to the device plane. The dark regions
indicate high values of the k-DOS. Generally, this density of
states possesses features that can be attributed to the indi-
vidual quantum wells and others that arise from the interfer-
ence between the quantum wells. The former states can be
identified in Fig. 11 by the white circles and squares, respec-
tively, which represent the subband edges of the isolated 6
nm and 4 nm quantum wells in the absence of the T-junction.
The position of the two bound states is marked by solid
squares in this figure; they are spin degenerate at k�011̄�=0.

This degeneracy is lifted by the structure inversion asym-
metry that splits the two states linearly proportional to k. For
k values below 0.01 �1/Å�, the dispersion is approximately
parabolic, and we can extract the spin-splitting to be
0.07±6	10−4 �eV Å�. For larger values of k, the bound
states eventually merge into the continuum.

This example demonstrates that the CBR method is an
efficient technique to calculate the carrier density in an arbi-
trary shaped open device structure accurately. The main prac-
tical limitation is given by the need to take into account all
lead modes in the case of multiband Hamiltonians, in con-
trast to the CBR method for the single-band case.

VII. ASSESSMENT OF SINGLE-BAND CBR MODE
REDUCTION: RESONANT TUNNELING THROUGH A 3D

QUANTUM DOT MOLECULE

To demonstrate the applicability of the CBR method to
realistic 3D problems we consider a resonant tunneling diode
that consists of two vertically stacked quantum dots. This
structure is depicted in Fig. 12 and is composed of a 33 nm
wide InP barrier layer with two embedded InAs dots that are
grown on 0.5 nm thick InAs wetting layers. On both sides of

the InP layer, there are thick layers of doped In0.6Ga0.4As that
act as contacts. This structure has been investigated experi-
mentally recently.44,45 Using the device-simulator
nextnano,46 we have calculated the three-dimensional strain
field and the corresponding piezoelectric potential. The elec-
tronic states are represented by an effective mass Hamil-
tonian with spatially varying masses and band offsets for the
conduction band. The potential includes the strain induced
deformation potential. In the present calculation, the quan-
tum dots have been modeled by truncated pyramids of 2.5
nm height and 12 nm base width for the right dot in Fig. 12
and of 6 nm height and 16 nm base width for the left dot,
respectively.

We have chosen a grid spacing of 1 nm in the two lateral
directions and 0.5 nm along the propagation direction, result-
ing in a total number of 128 000 grid points. In spite of the
large size of this device, we find the electric current to be
well converged by including as few as 100 eigenstates in the
computation of G0 in Eq. �48� and 50 propagating lead
modes out of a total of 1600 modes in the relevant bias
range. The calculated resonant current is shown in Fig. 13
and exhibits a very high peak-to-valley ratio in accord with
the experiment. The two ground states are in resonance with
one another only for a small range of voltages. The position

FIG. 11. The wave vector resolved density of states of the
T-junction as a function of energy in eV and wave vector k�011̄� in
units of Å−1. Dark regions indicate a high density of states on a
linear scale. The open circles and squares indicate the subband
edges of the isolated 6 nm and 4 nm quantum wells, respectively.
The solid squares depict the location of the bound states.

FIG. 12. The two InAs quantum dots �QDs� on top of the InAs
wetting layers �WLs� are embedded within InP barrier material. The
two faces in growth direction act as source and drain contacts and
consist of doped In0.6Ga0.4As.

FIG. 13. Current in units of pA for the quantum dot molecule
based resonant tunneling structure as a function of the applied bias
in V. The scale for the experimentally observed and the calculated
current is shown on the left-hand and right-hand vertical axis,
respectively.
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of the peak agrees very well with the experiment, whereas
the maximum current and peak width exceed the measured
data by one order of magnitude. Since the tunneling current
depends exponentially on the barrier thickness, already small
discrepancies between the assumed and the real dot shape
may account for this difference, in addition to charging and
scattering effects that have been ignored in these calcula-
tions.

We note that the results are well converged with respect to
the lateral dimension of the structure. A more detailed de-
scription of the transport characteristics of this quantum dot
molecule will be presented elsewhere.

VIII. CONCLUSION

In this work, we have shown that the electronic properties
of a general two- or three-dimensional ballistic open system
can be calculated efficiently in terms of a small number of
eigenstates of a properly defined closed system and a few
additional linear systems of small size. Any kind of open
system can be arranged into an inner part of the device,
contact regions, and the leads. We have shown that the
Green’s function formalism allows one to exploit the fact
that the contact regions constitute a small fraction of the
entire system very efficiently. In particular, we have found
that the open device problem can be solved rigorously by
breaking it down into three separate problems that can be
tackled consecutively, namely a large Hermitian problem for
the decoupled �closed� device, and two small non-Hermitian
problems for the leads and the contacts. We have termed this
method as the contact block reduction method.28 We have
shown here that this method not only applies to the transmis-
sion function,28 but basically to any electronic observable
such as the local charge density and the local density of
states. As a result, this scheme avoids the repetitive solution
of the entire device problem for each energy that has ham-
pered calculations of ballistic transport for realistic devices
so far.

We have shown that the CBR method is well suited to
deal with multiband Hamiltonians, either in a k ·p represen-
tation or in a tight-binding basis, and is applicable to devices
of any shape and any number of leads in two or three spatial
dimensions. The computational effort of the calculation of
the transmission function and the carrier density is deter-
mined by the effort required to diagonalize the closed sys-
tem’s Hamiltonian. This effort can be grossly further reduced
since we found that it suffices for the open system observ-
ables to include only a few percent of this Hamiltonian’s
eigenstates. For the special case of single-band Hamilto-
nians, a further significant reduction of the problem size can
be achieved by transforming into the basis of all propagating
lead modes. We have shown that the neglect of the decaying
lead modes in the Green’s function introduces only negli-
gible errors.

As one concrete application, we have predicted the hole
conductance, density, and electronic bound state in a GaAs
T-junction. In addition, we have studied the ballistic trans-
port through a resonant tunneling diode consisting of two
aligned InAs quantum dots and found a single sharp reso-

nance for tunneling between the ground states of the quan-
tum dots, in agreement with experiment.
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APPENDIX A: CLOSED SYSTEM LIMIT FOR THE
DENSITY MATRIX EXPRESSION

In this appendix we derive an expression for the general-
ized density of states in Eq. �26� in the limit of the decoupled
device. In this limit, the self-energy can be written as �=
−i�1 where �→0+ is an infinitesimal positive constant. Cor-
respondingly, the matrix in Eq. �10� becomes �=2�1, and
the matrix BC

−1= �1−�G0�−1 tends towards the unit matrix.
This leads to

��
�E� =
1

2�
� Tr���
�	���2��

�E − �a − i���E − �
 + i��
� �A1�

=Tr�����	
�����
��E − ��� = ��
��E − ��� ,

�A2�

where the relation

lim
�→0+

� 1

�

�

�E − �a − i���E − �
 + i��� = ��
��E − ��� ,

�A3�

has been used.

APPENDIX B: HAMILTONIAN FOR k·p CALCULATIONS

In our multiband example, we employ a four-band
Luttinger-Kohn Hamilton represented in the p3/2 spinor
basis,10

Hkp = �
P + Q − S R 0

− S* P − Q 0 R

R* 0 P − Q S

0 R* S* P + Q
� ,

For convenience, we set q2 / �2m�=1 in this appendix. We
denote the Cartesian wave-number components along the
principal axes of the crystal by ki. Because of the orientation
of the cleaved edge structure in Fig. 3, we introduce addi-
tionally the rotated components ky�= �ky +kz� /�2 that lies

along �011�, and kz�= �ky −kz� /�2 along the �011̄� direction.
With these wave vectors, the Hamiltonian matrix elements
can be written as

P = �1�kx
2 + ky�

2 + kz�
2� − Ev, �B1�

Q = �2�kx
2 − 1

2ky�
2 − 1

2kz�
2 + 3ky�kz�� , �B2�
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S = 2�3�3� 1
�2

ky�kx −
1
�2

kz�kx − i
1

2
�ky�

2 − kz�
2�� , �B3�

R = �3�− �2�kx
2 − 1

2ky�
2 − 1

2kz�
2 − ky�kz�� + �2i�3�kxky� + kxkz��� .

�B4�

Here, �1 ,�2, and �3 are the Luttinger parameters. For the
discretization in real space, we quantize the x and the y axis
by replacing the scalars kx and ky by the differentials kx→
−i� /�x ,ky→−i� /�y, whereas kz� remains a scalar parameter.
We use a finite difference mesh with constant grid spacing
�x and spatially constant Luttinger parameters �1=6.98,�2
=2.06,�3=2.93. The discrete first and second order deriva-
tives of the wave function ��x ,y�→�i,j can be written as

��

�x
=

�i+1,j − �i−1,j

2�x
, �B5�

�2�

�x2 =
1

�x2 ��i−1,j − 2�i,j + �i+1,j� , �B6�

�2�

�x � y
=

1

4�x2 ��i−1,j−1 − �i+1,j−1 − �i−1,j+1 + �i+1,j+1� .

�B7�

Correspondingly, the Hamiltonian can be divided into six
Hermitian matrices as follows:

H� �

�x
,

�

�y
,kz�� = H0�kz�� − iHx�kz��

�

�x
− Hxx

�2

�x2 − iHy�kz��
�

�y

− Hyy
�2

�y2 − Hxy
�2

�x � y
, �B8�

H0�kz�� = kz�
2�

�1 − 1
2�2 − i�3�3

1
2
�3�2 0

�1 + 1
2�2 0 1

2
�3�2

�1 + 1
2�2 i�3�3

�1 − 1
2�2

� ,

�B9�

Hx�kz� = kz��
0 �6�3

�6i�3 0

0 0 �6i�3

0 − �6�3

0
� , �B10�

Hxx = �
�1 + �2 0 − �3�2 0

�1 − �2 0 − �3�2

�1 − �2 0

�1 + �2

� , �B11�

Hy�kz� = kz��
3�2 0 �3�2 0

− 3�2 0 �3�2

− 3�2 0

3�2

� , �B12�

Hyy = �
�1 − 1

2�2 i�3�3
1
2
�3�2 0

�1 + 1
2�2 0 1

2
�3�2

�1 + 1
2�2 − i�3�3

�1 − 1
2�2

� ,

�B13�

Hxy = �
0 − �6�3 i�6�3 0

0 0 i�6�3

0 �6�3

0
� . �B14�

APPENDIX C: MODE SPACE GREEN’S FUNCTION:
AN ANALYTICAL MODEL

In this appendix, we analyze the Green’s function of the
simple 2D device depicted in the inset of Fig. 2 analytically.
In contrast to the numerical studies that are based on a dis-
cretization of real space, here we employ a continuum real
space representation of the Schrödinger equation. For WL
�WD, both the lead states and the states of the decoupled
device are separable in coordinate space. The wire modes are
product states of one-dimensional plane waves along the ver-
tical z direction and confined modes along the lateral y di-
rection. The wire dispersion kl�E� at energy E inside the
leads �=1,2 follows from

kl�
= ±�2m*

q2 �E − �l�
� ,

�l�
=

q2�2

2m*WL
2 l�

2 , �C1�

where l�=1,2,… . The decoupled device is characterized by
the Hermitian Hamiltonian HN that obeys von Neumann
boundary conditions at the contacts and Dirichlet boundary
conditions everywhere else. Its eigenstates are product states
of lateral confined modes along the y direction �labeled by ��
and vertically confined modes along the z axis �labeled by
��. The eigenvalues of the decoupled device are given by

En�n�
= En�

+ En�
� E�n�

2 + E�n�
2 �C2�

=
q2�2

2m*L2n�
2 +

q2�2

2m*WD
2 n�

2, �C3�

where n�=0,1 ,2 ,… and n� =1,2,… . After some algebra, the
matrix elements of G0 in the left contact region, expressed in
terms of the lead modes l1 , l2=1 ,… ,M, can be written
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	l1z = 0�G0�l2z = 0� = Podd�
n�

odd

M�l1,l2,n��V�E,n��

+ Peven�
n�

even

M�l1,l2,n��V�E,n�� , �C4�

Podd =
16r

L�2cos�WDl1�

2WL
�sin� l1�

2
�cos�WDl2�

2WL
�sin� l2�

2
� ,

Peven =
16r

L�2sin�WDl1�

2WL
�cos� l1�

2
�sin�WDl2�

2WL
�

	cos� l2�

2
� ,

M�l1,l2,n�� =
En�

��l1
− En�

���l2
− En�

�
, �C5�

V�E,n�� =
�

E�

cot��R��
�R

, R =
E − En�

E�

. �C6�

There are two factors in this expression that ensure con-
vergence for given energy E. The factor V ensures exponen-
tial convergence as a function of n� because it tends to zero
exponentially for nonpropagating device modes with En�

�E. Indeed, for R�0 we have V�coth���R��� /��R�→0 for
R→−�. This result is a consequence of the chosen von Neu-
mann boundary conditions of the decoupled device. This ex-
plains why it suffices to calculate the decoupled device’s
Green’s function with a small number of device eigenstates.

The factor M, on the other hand, expresses lateral wave
vector matching. Obviously, this factor attains a maximum
for lead energies �l�En�

with the influence of other modes
decreasing quadratically. Since only the propagating device
modes En�

�E contribute significantly to the matrix element
of G0 as we have just seen, the same result holds for the lead
modes which explains why only a few modes need to be
taken into account in calculating G0. Finally, the prefactors
Podd, Peven are geometry dependent terms. Note that they
vanish for WD=WL and l�n� which expresses exact lateral
momentum conservation in this limiting case.

In order to show that the arguments for mode reduction
also apply to the full GR of the open device, we note that the
self-energy Eq. �46� reads in lead mode space

	l�z�����l�z�� = −
i

2

q2kl�

m* , �C7�

which is not small and actually increases linearly with l� for
l�→�. However, since G0 decreases quadratically with l, the
products �GC

0 �CGC
0 �ll� and higher order terms are also con-

vergent quadratically in the outermost mode indices l , l�.
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