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We consider the spin-Hall current in a disordered two-dimensional electron gas in the presence of Rashba
spin-orbit interaction. We derive a generalized Kubo-Greenwood formula for the spin-Hall conductivitysyx

z

and evaluate it in a systematic way using standard diagrammatic techniques for disordered systems. We find
that in the diffusive regime both Boltzmann and the weak localization contributions tosyx

z are of the same
order and vanish in the zero-frequency limit. We show that the uniform spin current is given by the total time
derivative of the magnetization, from which we can conclude that the spin current vanishes exactly in the
stationary limit. This conclusion is valid for arbitrary spin-independent disorder, external electric field strength,
and also for interacting electrons.
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I. INTRODUCTION

The idea of using the spin degrees of freedom of electrons
in semiconductor systems instead of their charge has at-
tracted wide interest in recent years.1–4 Of particular interest
are systems with spin-orbit interaction, as this allows access
to spin via charge and vice versa. A number of effects in such
systems have been studied theoretically,5–22 and
experimentally,1–4,23,24 and most recently by Katoet al.,25

who report the first observation of spin-Hall effect in GaAs
and InGaAs samples of the extrinsic type.5,6 In particular,
there has been considerable interest in Rashba spin-orbit in-
teraction26 in two-dimensional electron systems, since this
type of spin-charge coupling can be controlled by electrical
gates. Moreover, it has been pointed out by Sinovaet al.13

that cleanswithout impuritiesd systems with spin-orbit inter-
action carry spin currents and show a spin-Hall effect: apply-
ing an electric fieldEx in the x direction generates a spin
current in the perpendiculary direction. In a number of sub-
sequent papers the corresponding spin-Hall conductivitysyx

z

has been calculated, and there seems to be agreement now
that the spin-Hall conductivity at zero frequency vanishes in
an infinite system.12,19,21,27–29In this paper we present a sys-
tematic calculation ofsyx

z by using well-known perturbative
techniques for disordered systems.30 The systematic expan-
sion is performed in powers of the small parameter 1/pFl,
with pF the Fermi momentum andl the mean free path. In
addition to confirming the results of earlier work,12,19,21,27,29

which were obtained in the Boltzmannssemiclassicald re-
gime, we go beyond this limit and also include the weak
localization correction diagrams. We show that this latter
contribution is of the same order in 1/pFl and Rashba am-
plitude as the Boltzmann value, and vanishes as well at zero
frequency. This demonstration requires us to consider the
various contributions to the Hikami box in the weak local-
ization contribution, as well as the renormalization of the
current vertices.

We then go on and show that the vanishing of the spin
current is expected on rather general grounds and under gen-
eral conditions, such as arbitrarysspin-independentd disorder,
electric field strength, and for interacting electrons. Crucial

for our argument are two observations. First, the uniform
spin current is given by the total time derivative of the
magnetization,20 which, in turn, provides a straightforward
interpretation of the spin current and its observable effect in
terms of magnetization and its change in time. Second, a
system driven by an external force which is constant in time
normally reaches a steady state, implying then that the spin
current vanishes under rather general conditions.

II. MODEL SYSTEM

We consider noninteracting electrons of massm and
chargee moving in a disordered two-dimensional system in
the presence of Rashba spin-orbit interaction with amplitude
a.13,18,26This system is described by the Hamiltonianswe set
"=1d

Ĥ =
p̂2

2m
+ asŝ1p̂y − ŝ2p̂xd + Usr d, s1d

where p̂ denotes the momentum operator, andŝm are the
Pauli matrices. Further,Usr d is a short-ranged disorder po-
tential with the property thatUsr dUsr 8d=smtd−1dsr −r 8d,
where the overbar indicates average over the disorder con-
figuration, andt the mean free time between collisions.

The spin-orbit term in the Hamiltonians1d changes the
expression for the charge-current density operatorsin stan-
dard second quantization notationd20

ĵ sr d =
ie

2m
fs¹ĉ†dĉ − ĉ† ¹ ĉg −

e2

mc
ĉ†sA + Ãdĉ, s2d

where together with an electromagnetic vector potentialA
scoupling to the chargeed a fictitious spin-dependent vector

potentialÃ is introduced

Ã = − samc/eds− ŝ2,ŝ1,0d, s3d

wherec is the speed of light. On the other hand, the spin-
current density operatorsz component of spind remains the
same as in the case without spin-orbit interaction20,31
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ĵ szsr d = −
i

4m
Fĉ†ŝ3 ¹ ĉ − s¹ĉ†dŝ3ĉ −

2ie

c
Aĉ†sr dŝ3ĉsr dG .

s4d

III. SPIN-HALL CURRENT

Considering now a linear response regime for the spin
current in the presence of an electric fieldEx, we derive a
generalized Kubo-Greenwood formula for the spin-Hall con-
ductivity. In the Keldysh approach32 the spin current can be
expressed as

j szsvd = −
i

2m
E

−`

` E

2p
TrHSp̂ −

e

c
AD ŝ3

2
ĜKsE,E − vdJ ,

s5d

where GK is the Keldysh component of the 232 matrix
Green function; Tr stands for the trace in both momentum
and spin space. Due to the Pauli matrixŝ3 the diamagnetic
term ~A gives a vanishing contribution33 to the spin current
in Eq. s5d. Then, in first-order perturbation inA we find

dĜKsE,E − vd = shE − hE−vd

3 ĜR
EF−

e

mc
Sp̂ −

e

c
ÃDAsvdGĜA

E−v, s6d

wherehE=tanhsE/2kBTd, with kBT!EF the temperature and

EF the Fermi energy, and whereĜR/A
E =sE−Ĥ+EF± i0+d−1 are

the retarded and advanced Green functions, respectively.
From Eqs. s5d and s6d we obtain a generalized Kubo-
Greenwood formula for the spin-Hall conductivity34

syx
z svd =

e

2pm2TrF ŝ3

2
p̂yĜR

ESp̂x −
e

c
ÃxDĜA

E−vG , s7d

whereE,v!EF. In deriving s7d we have assumed that the
electric fieldExsvd= ivAxsvd /c is applied along thex direc-
tion, producing a perpendicular spin current along they di-
rection, i.e.,

j y
szsvd = syx

z svdExsvd. s8d

Next, after averaging over the random disorder, the spin-

dependent Green functionsĜR/A become diagonal in mo-

mentum representation,35 kpuĜR/A
E up8l=s2pd2GR/A

E spddsp
−p8d, with

GR/A
E spd =

1

2 o
s=±1

ŝ0 + sM̂

E − jspd − sap ±
i

2t

, s9d

where M̂ =spyŝ
1−pxŝ

2d /p with M̂2=ŝ0;1, jspd=p2/2m
−EF. The expressions9d has been obtained in the self-
consistent Born approximation.

The diagrams of the standard perturbative approach30 can
be generated froms7d by expanding in the disorder potential
U and “dressing” the Green function lines with diffusons and

Cooperons. In this formalism,30,36 the resulting diagrams can
be estimated according to the number of loops, composed by
Cooperon and diffuson linessloop expansiond. In the follow-
ing sections we will expandsyx

z in powers of 1/pFl, where
l =vFt denotes the mean free path, and evaluate it up to order
ueu / spFld0, that is, we will neglect all terms withnù1 in the
expansion

syx
z = ueuo

n

sn

spFldn, pFl @ 1. s10d

Thus, in our diagrammatic loop expansion we have to con-
sider two classes of diagrams:sid diagrams with no loops
ssemiclassical approximationd, and sii d diagrams with one
loop sweak localization correctionsd. This is so because of
the nonstandard situation arising from the spin dependence
of the charge current vertex ins7d, which can be written as

p̂x −
e

c
Ãx = pFn̂x + Sp̂x − pFn̂x −

e

c
ÃxD , s11d

wherepF is the Fermi momentum, andn̂= p̂ /p is an operator
of the direction of momentump̂. The contribution in the
brackets on the right-hand side ofs11d is a correction of
order spFld−1!1 to the main termpFn̂x. Thus, in zero-loop
approximationssee Sec. IVd this correction leads to a contri-
bution which is of the same order as the one coming from
pFn̂x in the one-loop approximationsi.e., weak localization
correction—see Sec. Vd. Hence, both of them are expected to
give contributions of the same order in 1/pFl to the spin-Hall
conductivity. The spin current vertexŝzp̂y, on the other hand,
can always be approximated byŝzpFn̂y in the order consid-
ered in this work.

IV. ZERO-LOOP APPROXIMATION

In zero-loop approximation we need to retain only the
diagrams depicted in Fig. 1 with no loops. This approxima-
tion corresponds to the semiclassicalsBoltzmannd limit. To

calculate the first diagram, we simply substituteĜA/R in s7d
by the averaged Green functionss9d. One can see that the
main term of the charge current vertexs11d does not contrib-
ute in the first diagram. The remaining terms in the brackets
in s11d give

syx
zs0dsvd =

ueu
8p

3
x2

x2 + l2, l = 1 − ivt, s12d

where x;2apFt is the dimensionless spin-orbit parameter
which measures the spin rotation between two consecutive
impurity collisions. Forv=0 this expression agrees with the

FIG. 1. Diagrams for the spin-Hall conductivity in the zero-loop
approximation: The right diagram represents the vertex correction.
Dashed lines denote averaging over the impurities.
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qualitative result of Ref. 18 in the limit of small spin-orbit
interactionma2t!1, as well as in the ballistic limitt→`.

Next, we turn to the vertex correction, described by the
second diagram in Fig. 1. Again, it is crucial37 to retain the
entire correction of the charge current vertexs11d swhich
amounts to include curvature effects of the Fermi surfaced,
since it will turn out now that this correction term leads to an
exact cancellation ofsyx

zs0d given in Eq.s12d. We note that the
scattering off impurities is spin independent, so that dashed
lines do not alter the spin direction, which simplifies the
calculation considerably. For further evaluation it is conve-
nient to apply the following identity for the Pauli matrices:38

ŝs1s2

0 ŝs3s4

0 =
1

2o
m=0

3

ŝs1s3

m ŝs4s2

m , s13d

to every dashed line in the vertex diagram Fig. 1, with
a ,b=0, . . . ,3, and where, again,ŝ0 is the unity matrix. This
trick reduces the vertex diagram to a geometric series con-
sisting of terms where the momentum and spin summation
can be performed separately. These terms are given by

XD
ab =

1

2mt
TrfŝaGR

EspdŝbGA
E−vspdg, s14d

where from now on Tr stands forefd2p/ s2pd2gTrspin. The
off-diagonal elements ofXD

ab vanish, while the diagonal ones
are given by

XD
00 =

1

l
, XD

33 =
l

x2 + l2 ,

XD
11 = XD

22 =
1

2
F1

l
+

l

x2 + l2G . s15d

The expression for the vertex diagram can be split into three
parts, and the vertex diagram can be represented by two
“bubbles” with a diffusion wavy line in between

s16d

whereDmm denotes the diffuson

Dmm =
1

2mt

1

1 − XD
mm , s17d

with XD
mm given in s15d. Only the term withm=2 contributes

to s16d. The two bubbles ins16d are explicitly given by

TrF ŝ3py

2
GR

Espdŝ2GA
E−vspdG =

xmtpF/2

x2 + l2 , s18d

and

TrFŝ2GR
EspdSpx −

e

c
ÃxDGA

E−vspdG =
am2t

l

x2

x2 + l2 .

s19d

Inserting these expressions intos16d, we finally obtain for
the vertex correction of the spin-Hall conductivity

syx
zs1dsvd = −

ueu
8p

x2

x2 + l2

x2/2

s1 − 2ivtd
x2

2
− ivtl2

. s20d

Adding now Eqs.s12d and s20d, we obtain the spin-Hall
conductivity in zero-loop approximation

syx
z svd = syx

zs0dsvd + syx
zs1dsvd

=
ueu
8p

x2

x2 + l2H1 −
x2/2

s1 − 2ivtdx2/2 − ivtl2J ,

s21d

which is the same result as obtained in Ref. 19fsee Eq.s25d
thereing by the equation of motion approach. Thus, in zero-
loop approximation the two diagrams in Fig. 1 cancel each
other, so that the leading contribution to the spin-Hall con-
ductivity vanishes in the limitv=0, in agreement with Refs.
12, 19, 21, and 27–29. A similar cancellation has been ob-
served for the case of the electric conductivity.39 In both

these cases the “anomalous” term~Ã in the charge current
operators2d is canceled by the vertex correction atv=0.
Thus, the second diagram in Fig. 1 can be interpreted as a
renormalization of the charge current vertex which results in

the cancellation of the “anomalous” term~Ãx.

V. WEAK LOCALIZATION CORRECTION

At the end of Sec. III we argued that, in order to reach a
given accuracy, we have to include the contribution of one-
loop diagrams in our calculation ofsyx

z . In this section we
demonstrate this now by calculating the weak localization
correction tosyx

z explicitly.
Similar to the case of the charge conductivity,40 the weak

localization correction to the spin-Hall conductivity is given
by three diagrams depicted in Fig. 2. For simplicity, we cal-
culate them at zero frequencyv=0 only; to simplify nota-
tions we omit the energy superscript of Green functions, as-
sumingGR/A;GR/A

E below.
Using s13d, we may separate the spin indices of a Hikami

box from those of the Cooperon, like we did above ins16d.
Then, the total contribution of the three diagrams in Fig. 2
can be written as

FIG. 2. Weak localization diagrams. The wavy line represents
the Cooperons23d. Each diagram contains one spin current vertex
sleftd and one charge current vertexsrightd.
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syx
zs2dsvd =

e

2pm2 o
g,g8=0

3 E d2q

s2pd2Cgg8sqdVgg8sqd, s22d

whereCgg8sqd are the matrix elements of the Cooperon, de-
fined as

Cgg8sqd =
1

2mt
F XCsqd

1 − XCsqdGgg8
, g,g8 = 0, . . . 3, s23d

XC
absqd =

1

2mt
TrfŝaGRspdŝbfGAsq − pdgTg. s24d

In Eq. s22d, Vgg8sqd denotes the Hikami box

Vgg8sqd = Va
gg8sqd + Vb

gg8sqd + Vc
gg8sqd. s25d

Each of the three terms in Eq.s25d corresponds to one dia-
gram in Fig. 2 plus the corresponding diagram in Fig. 3fsee
Eq. s36d belowg.

In the rest of this section we assumex2!1. This permits
us to approximates22d by

syx
zs2dsvd =

e

2pm2o
g=0

3

Vggs0dE
0,q,1/l

d2q

s2pd2Cggsqd. s26d

Here, we have neglected the off-diagonal elements of the
Cooperon, as well as theqÞ0 corrections to the Hikami box
in s25d. This is justified since those terms do not contain
logarithms inx sor dephasing lengthd, in contrast to the di-
agonal Cooperon contributions ins26d fsee Eqs.s38d and
s39d belowg.

For q=0, the three contributions to the Hikami box in Eq.
s25d become

Va
gg = TrhLspdŝgfŝgRs− pdgTj, s27d

Vbscd
gg =

1

2mt
o
m=0

3

Abscd
gm Bbscd

mg , s28d

where for the leftsLd and rightsRd vertex parts we use the
notations

Lspd = GAspdpy
ŝ3

2
GRspd, s29d

Rs− pd = GRs− pdS− px −
e

c
ÃxDGAs− pd

< GRs− pds− nxpFdGAs− pd. s30d

Retaining only leading order, we have approximated the
charge current vertex ins30d in accordance with the discus-
sion at the end of Sec. III.fThe same approximation is made
in the calculation of the weak localization correction to the
charge conductivity.41g The quantitiesA and B in s28d are
defined as

Ab
gm = TrhLspdŝgGA

Ts− pdŝmj, s31d

Bb
mg = TrhŝgRs− pdfGAspdŝmgTj, s32d

Ac
gm = TrhLspdŝmfŝgGRs− pdgTj, s33d

Bc
mg = TrhŝmGRspdŝgfRs− pdgTj. s34d

Due to the symmetry properties

sAb
2md* = − Ac

2m, sBb
m2d* = − Bc

m2,

sAb
gmd* = Ac

gm, sBb
mgd* = Bc

mg, g Þ 2, s35d

we see that for allgVb
gg=sVc

ggd* in s28d.
In addition, for every diagram in Fig. 2 one needs to con-

sider the corresponding renormalization of the spin current
vertices, which turns out to be of the same order inspFld−1 as
the bareLspd

L̃spd = Lspd + o
m=0

3

GAspdŝmGRspdDmmTrhŝmLspdj. s36d

The corresponding diagrams are depicted in Fig. 3. Their
contributions add to the ones of the bare diagrams in Fig. 2.
Note that the symmetry propertiess35d remain valid when
the renormalizations36d is taken into account in the expres-
sions forA andB.

Similary, the charge current vertexf~Rspdg gets renor-
malized, but unlike before this renormalization is of higher
order in spFld−1 fsee the end of Sec. IVg, and hence can be
neglected. Still, we note that, like in Sec. IV, one can dem-
onstrate that this renormalization ofRspd results in cancella-

tion of the anomalous term~Ãx in the charge current vertex
in s30d.

Now, we have to obtain an expression for
efd2q/ s2pd2gCggsqd in s26d. For this we can make use of the
results of Ref. 35, where an analogous approach has been
used to study the weak localization correction to the charge
conductivity in the same model system. The Cooperon de-
rived in Ref. 35 is connected withC in Eq. s23d via

Cgg8sqd =
1

4 o
a,b,m,l=1

2

Cbu
alŝba

g ŝlm
g8 , s37d

whereCbm
al is the Cooperon from Ref. 35. Then, from Eqs.

s13d and s14d in Ref. 35 we obtain

FIG. 3. The weak localization diagrams from Fig. 2 with the
renormalized spin current vertexf~Lspdg; see Eq.s36d. The analo-
gous renormalization of the current vertexf~Rspdg is of higher
order in spFld−1 and can be neglected.

O. CHALAEV AND D. LOSS PHYSICAL REVIEW B71, 245318s2005d

245318-4



E d2q

s2pd2Cggsqd =
2

pl2mt
S f, f, log

Lf

l
, fD , s38d

where35 Lw stands for the dephasing length, and

f =5ln
Lw

l
, for x !

l

Lw

,

ln
1

x
, for

l

Lw

! x ! 1.6 s39d

We note that, due to this logarithmic dependence onx, the
Cooperon itself can become large for sufficiently smallx and
large dephasing lengthLf. However, this has no conse-
quences for the spin-Hall conductivity Eq.s26d, since the
Hikami box contributions add up to zero, as we shall see
next. Indeed, after some lengthy but straightforward calcula-
tion we find for the diagonal terms of the Hikami box42

Va
gg = s0,0,0,0d + Osx4d, s40d

Vb
gg = − Vc

gg = −
impF

2t3

16
sx2,8 − 15x2,− x2,8 − 11x2d.

s41d

Quite remarkably, the terms independent ofx come from the
vertex renormalizationfsecond term on the right-hand side
of Eq. s36dg, where the only nonzero contribution arises from
the diffuson matrix elementD22~1/x2. Each of the termsVb
andVc, when inserted into Eq.s26d, gives a contribution to
syx

zs2d~e, which corresponds to the termn=0 in s10d. Adding
up all three terms of the Hikami box, we obtainVggs0d=0 in
s25d. Thus, we see that the weak localization contribution to
the spin-Hall conductivity, i.e.,syx

zs2d fsee Eq.s26dg vanishes
in the limit v=0.

The evaluation of the zero- and one-loop diagrams per-
formed in this and the preceding sections is valid up to the
order 1/pFl. If one would like to go beyond that order
swhich is not attempted hered, many more correctionsse.g.,
of the type 1/EFtd and many more diagrams have to be taken
into account. For instance, one would also need to go beyond
the self-consistent Born approximation for the self-energy
and to retain crossing diagrams. Of course, the weak local-
ization contribution which includes the Cooperonsresulting
from time-reversed pathsd is special in the sense thatsapart
form the logarithm-dependenced it is sensitive to phase co-
herent effects probed by an Aharonov-Bohm flux. Thus,
other contributions, even if they are of the same order in
1/pFl, could be ignored provided one would be interested in
the phase sensitive contributions only.

VI. SPIN CURRENT AND SPIN PRECESSION

We have seen that in perturbation theory the spin-Hall
conductivity vanishes in the zero-frequency limit, in leading
f~s1/pFld0g and subleadingf~s1/pFld1g order. This result
suggests that the vanishing of the spin current is an exact
property of the system under consideration. Indeed, we give
now a simple argument to support this claim. First, we note
that from the Heisenberg equation of motion for the spinŝ

=ŝ /2 of the electron, i.e.,ṡ̂std;sd/dtdŝstd= ifĤ8 , ŝgstd, we
obtain a simple relation between spin precession and spin
current

ṡ̂kstd = − 2ma ĵ k
szstd, k = x,y, s42d

which is valid also for disordered systems, and, moreover, in
the presence of a constant external electric field.43 In this

case we haveĤ8=Ĥ+ex̂Ex, where an electric fieldEx is ap-
plied along thex direction, as considered in the previous

sectionszero-frequency limitd, andĤ is given in Eq.s1d. The
uniform spin current operatorsz component of the spind is
obtained froms4d and given in first quantization notation by
ĵ sz=s1/2dhv̂ , ŝzj= p̂ŝz, with sspin-dependentd velocity opera-

tor v̂= ifĤ8 , x̂g. The exact relations42d provides a simple
physical interpretation of the spin current: The spatialx
syd-component of the spin current which carries thez com-
ponent of the spin is, up to a coupling constant, given by the
total time derivative of thex syd-component of the spin.
Thus, the spin current can be experimentally accessed by
measuring the spin precession or the change of magnetiza-
tion in time, which can be done, e.g., with optical
methods.23–25

Next, let us consider the expectation valuesincluding dis-

order averaged of s42d, kṡ̂klstd=−2mak ĵ k
szlstd, for t→`. The

presence of disorder is expected to provide a relaxation
mechanism such that the system can reach a steady nonequi-
librium statesafter some transientsd when driven by an ex-
ternal electric fieldsassumed to be constant in timed. The
weaker the disorder the longer it takes to reach this stationary
limit, but for any finite amount of disordersfinite density of
random impuritiesd, it will be reached eventually. In particu-
lar, the magnetizationkŝlstd of such a state also reaches a
stationary valuespossibly different from zerod and does not
depend on time anymore.fPhenomenologically, the approach
to such a state is described by a Bloch equation for the spin
dynamics; see also below.g Thus, it immediately follows that

the rate of magnetization change,kṡ̂lstd, must vanish in such
a steady state, and, consequently, the spin current vanishes as
well. In other words, under the stated conditionsthe uniform
spin current vanishes in the long time limit if and only if the
magnetization reaches a stationary state,44 i.e.

lim
t→`

k ĵ k
szlstd = 0 ⇔ lim

t→`
kŝklstd = const., k = x,y. s43d

Note that this result holds for any form of the staticsspin-
independentd impurity potential, including the special case of
isotropic scattering potentials as considered in the previous
section. Also, the argument is valid for any strength of the
electric field, and, hence, applies to the special case of linear
response considered in the previous sectionfwith k ĵ y

szl; j y
szg.

Thus, from 0=k ĵ y
szlst→`d=syx

z sv=0dEx we conclude that
the spin-Hall conductivitysyx

z sv=0d vanishes exactlysi.e., in
all orders of the disorder potentiald for any finite amount of
disorder.
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The approach ofkṡ̂lstd to its stationary valuesin the linear
response regimed can be easily illustrated by taking the in-
verse Laplace transform of Eqs.s8d ands21d srestricting our-
selves to the Boltzmann valued. This involves solving a cubic
equation for obtaining the poles with respect tov. The re-

sulting expression forkṡ̂ylstd consists of two partsstoo
lengthy to be written down hered, one coming from the real
pole and an oscillatory one coming from the pair of complex
conjugate poles. Forx2!1 and t@t, only the first part is
relevant, which has no oscillations and decays exponentially
to zero

kṡ̂ylstd = − 2mak ĵ y
szlstd = −

ueu
4p

max2Exe
−t/T, t @ t,

s44d

whereT/2=sD2td−1 is the well-known Dyakonov-Perel spin
relaxation time.45 For x2*1 andt&t, the oscillatory part in

kṡ̂ylstd becomes dominant, with period 1/D and exponential
decay with rate 1/t ; its time dependence for a particular
value ofx is illustrated in Fig. 4.

The above consideration can be generalized to the case
with electron-electron interaction. In this case, the total spin
of the system,Siŝi,k, and the total spin current,Si ĵ i,k

sz , k
=x,y, obey the same equation as before, i.e., Eq.s44d. Thus,

the same argument goes through as well, showing that the
spin current must vanish in the stationary limit also for in-
teracting systems—provided this limit exists, which, again,
we expect to be the case in the presence of any finite amount
of disorder.

Finally, in the absence of disorder, no stationary limit of
kŝlstd can be reached, i.e., the magnetization can change in-
definitely, and thus there can be a finite spin current in this
very particular case.fWe note that the physically observable
quantity, the magnetization change, vanishes for vanishing
Rashba coupling.g However, when the spin current ap-
proaches a nonzero but constant value fort→`, as obtained
in the linear response regime for a clean system,16 the mag-
netization kŝklstd actually grows linearly in time in the
asymptotic regimet→`. This, of course, shows a break-
down of the linear response approximation in this case since
the bound for a spin 1/2, i.e.,ukŝklstduø1/2, is violated. The
terms beyond linear response would restore the bounded and
oscillatory behavior ofkŝklstd.

VII. CONCLUSIONS

In conclusion, we have calculated the Boltzmann and
weak localization contributions to the spin-Hall conductivity
syx

z in an infinite-size 2D disordered system with Rashba
spin-orbit interaction. In our calculation we had to consider
the weak localization contribution to thesyx

z , together with
the Boltzmann contribution, since diagrams belonging to
these two contributions have the same order of magnitude. In
the diffusive and static limit, the spin-Hall conductivity van-
ishes. We have shown that the spin current is given by the
time derivative of the magnetization change, and have given
general arguments why the spin current must vanish for any
finite amount of disorder that permits a stationary limit of the
system to be reached when driven by a constant electric field.
It will be interesting to see how far our arguments can be
extended to other types of spin-orbit interaction.
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