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Spin-Hall conductivity due to Rashba spin-orbit interaction in disordered systems
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We consider the spin-Hall current in a disordered two-dimensional electron gas in the presence of Rashba
spin-orbit interaction. We derive a generalized Kubo-Greenwood formula for the spin-Hall conduo@yity
and evaluate it in a systematic way using standard diagrammatic techniques for disordered systems. We find
that in the diffusive regime both Boltzmann and the weak localization contributiong,tare of the same
order and vanish in the zero-frequency limit. We show that the uniform spin current is given by the total time
derivative of the magnetization, from which we can conclude that the spin current vanishes exactly in the
stationary limit. This conclusion is valid for arbitrary spin-independent disorder, external electric field strength,
and also for interacting electrons.
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[. INTRODUCTION for our argument are two observations. First, the uniform
spin current is given by the total time derivative of the
The idea of using the spin degrees of freedom of electronsagnetizatiorf® which, in turn, provides a straightforward
in semiconductor systems instead of their charge has atnterpretation of the spin current and its observable effect in
tracted wide interest in recent yedrd.Of particular interest terms of magnetization and its change in time. Second, a
are systems with spin-orbit interaction, as this allows accessystem driven by an external force which is constant in time
to spin via charge and vice versa. A number of effects in sucimormally reaches a steady state, implying then that the spin
systems have been studied theoreticafty, and current vanishes under rather general conditions.
experimentally;*2324and most recently by Katet al,?®
who report the first observation o_f spin-HaII effect_in GaAs Il. MODEL SYSTEM
and InGaAs samples of the extrinsic typIn particular,
there has been considerable interest in Rashba spin-orbit in- We consider noninteracting electrons of massand
teraction?® in two-dimensional electron systems, since thischargee moving in a disordered two-dimensional system in
type of spin-charge coupling can be controlled by electricathe presence of Rashba spin-orbit interaction with amplitude
gates. Moreover, it has been pointed out by Sinevall®  «.131826This system is described by the Hamiltoniave set
that clean(without impurities systems with spin-orbit inter- #=1)
action carry spin currents and show a spin-Hall effect: apply-
ing an electric fieldE, in the x direction generates a spin
current in the perpendiculardirection. In a number of sub-
sequent papers the corresponding spin-Hall conductbuﬁ];y
has been calculated, and there seems to be agreement nafiere p denotes the momentum operator, aird are the
that the spin-Hall conductivity at zero frequency vanishes inPauli matrices. FurthetJ(r) is a short-ranged disorder po-
an infinite systent?1921.27-29 this paper we present a sys- tential with the property thalU(r)u(r’)=(mn)™2s8(r-r’),
tematic calculation oblyx by using well-known perturbative where the overbar indicates average over the disorder con-
techniques for disordered systefisThe systematic expan- figuration, andr the mean free time between collisions.
sion is performed in powers of the small parametepgl/ The spin-orbit term in the Hamiltonia(l) changes the
with pr the Fermi momentum anddthe mean free path. In expression for the charge-current density operétorstan-
addition to confirming the results of earlier work!%2%27.29  dard second quantization notatjéh
which were obtained in the Boltzmanisemiclassical re-
gime, we go beyond this limit and also include the weak
localization correction diagrams. We show that this latter
contribution is of the same order in §d and Rashba am-
plitude as the Boltzmann value, and vanishes as well at zer¢here together with an electromagnetic vector poterAial
frequency. This demonstration requires us to consider thécoupling to the charge) a fictitious spin-dependent vector
various contributions to the Hikami box in the weak local- potentialﬂ is introduced
ization contribution, as well as the renormalization of the
current vertices. A = - (amde)(- 62,61,0), (3)
We then go on and show that the vanishing of the spin
current is expected on rather general grounds and under gewherec is the speed of light. On the other hand, the spin-
eral conditions, such as arbitraigpin-independendisorder,  current density operatdz component of spinremains the
electric field strength, and for interacting electrons. Crucialsame as in the case without spin-orbit interacfich

~2
A= %n +a(5p, - %) + U(r), (1)
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Ill. SPIN-HALL CURRENT FIG. 1. Diagrams for the spin-Hall conductivity in the zero-loop
approximation: The right diagram represents the vertex correction.
Considering now a linear response regime for the spirDashed lines denote averaging over the impurities.
current in the presence of an electric fidlg we derive a

generalized Kubo-Greenwood formula for the spin-Hall con-cogperons. In this formalisi;*the resulting diagrams can
ductivity. In the Keldysh approaghthe spin current can be pe estimated according to the number of loops, composed by

expressed as Cooperon and diffuson linggoop expansioh In the follow-
Lk 3 ing sections we will expandf,X in powers of 1pgl, where
%) = - L —Tr{ (f, - EA)iéK(E,E— w)}' |=vpT denotes the mean free path, and evaluate it up to order
2mJ_, 2m c /2 lel/(peh)°, that is, we will neglect all terms with=1 in the
(5) expansion
where Gy is the Keldysh component of thex22 matrix - S s
Green function; Tr stands for the trace in both momentum e |e|§n: (peh™ pel > 1. (10

and spin space. Due to the Pauli matfik the diamagnetic ) ] ] )
term«A gives a vanishing contributidto the spin current 1hus, in our diagrammatic loop expansion we have to con-

in Eq. (5). Then, in first-order perturbation iA we find sider two classes of diagramé) diagrams with no loops
(semiclassical approximatignand (ii) diagrams with one
SG(E,E - w) = (hg — hg_,) loop (weak localization correctiopsThis is so because of

the nonstandard situation arising from the spin dependence

v éE[— mic(f’ B g'&)A(w)]é/E_w, ©) of the charge current vertex iT), which can be written as

oes [ e
wherehg=taniE/2kgT), with ks T < Er the temperature and Px= EAX = Pelc* (p" PFMX CAX)’ 1D

Er the Fermi energy, and whe@@f, , =(E~H+Ex+i0") ™ are. wherepg is the Fermi momentum, arft=p/p is an operator
the retarded and advanced Green functions, respectivelys e girection of momentunp. The contribution in the
From Egs.(5) and (6) we obtain a generalized Kubo- ackets on the right-hand side ¢£1) is a correction of
Greenwood formula for the spin-Hall conductivity order (pel)"1<1 to the main termpef,. Thus, in zero-loop
PR o\ - approxima}tior_(see Sec. IYthis correction leads to a pontri—
Tr|:_ﬁyGE<f)x_ -AX)GE—M], (7) buAtlon which is of the same ordgr_as the one coming from
2 c peny in the one-loop approximatiofi.e., weak localization
correction—see Sec.)VHence, both of them are expected to
give contributions of the same order ing! to the spin-Hall
conductivity. The spin current vertéxp,, on the other hand,
can always be approximated laypgh, in the order consid-

e
Gilx(w) - 27rm?
whereE, w<Eg. In deriving (7) we have assumed that the
electric fieldE,(w)=iwA(w)/c is applied along the direc-

tion, producing a perpendicular spin current along yhai-

rection, 1.e.. _ ered in this work.
jj(@) = o (@) Ey(w). (8)
Next, after averaging over the random disorder, the spin- IV. ZERO-LOOP APPROXIMATION
dependent Green functiorém become diagonal in mo- In zero-loop approximation we need to retain only the

mentum  representatidi, (p|GE,.|p’)=(2m)2GE S diagrams depicted in Fig. 1 with no loops. This approxima-
P (PICRiAlP")= (27 "Cria(P) AP tion corresponds to the semiclassi¢Bbltzmann limit. To

-p’), with ’
P A calculate the first diagram, we simply substit@gr in (7)
£ 1 o+ sM by the averaged Green functiof®). One can see that the
Gria(p) = 2 > i 9) main term of the charge current vertélXl) does not contrib-
SHE- &p)—sapt — ute in the first diagram. The remaining terms in the brackets
27 in (12) give

where M=(p,ot-p,d?)/p with M?=¢°=1, &p)=p?/2m o 2
—-Eg. The expression9) has been obtained in the self- ff)z/g()(w)
consistent Born approximation.

The diagrams of the standard perturbative apprfacdn  where x=2apg7 is the dimensionless spin-orbit parameter
be generated frorfi) by expanding in the disorder potential which measures the spin rotation between two consecutive

U and “dressing” the Green function lines with diffusons andimpurity collisions. Fore=0 this expression agrees with the

e
87 xX2+\%

AN=1l-iwT, (12
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qualitative result of Ref. 18 in the limit of small spin-orbit a) b) 9
interactionma?7<1, as well as in the ballistic limit—s o.

Next, we turn to the vertex correction, described by the . '
second diagram in Fig. 1. Again, it is crudiato retain the

entire correction of the charge current vertedd) (which
amounts to include curvature effects of the Fermi susface  FIG. 2. Weak localization diagrams. The wavy line represents
since it will turn out now that this correction term leads to anthe Cooperon(23). Each diagram contains one spin current vertex
exact cancellation cxfr;(xo) given in Eq.(12). We note that the  (left) and one charge current vertéxght).
scattering off impurities is spin independent, so that dashed

lines do not alter the spin direction, which simplifies the R

calculation considerably. For further evaluation it is conve- Tf[azG (p)(px )G/E\ “(p )}
nient to apply the following identity for the Pauli matric&s:

3

amzr X2
TN Y
(19

(13)  Inserting these expressions intb6), we finally obtain for
the vertex correction of the spin-Hall conductivity

~ 0 ~ 0 I ~ ~
Ts15,7558, = 2?:0 0157555

to every dashed line in the vertex diagram Fig. 1, with le 2 X2/2

A0 . - : ol (w)=—— (20)
a,B=0,...,3, and where, again, is the unity matrix. This % 8732 + \2 2 :
trick reduces the vertex diagram to a geometric series con- 1- Zin)E —iw7\?

sisting of terms where the momentum and spin summation
can be performed separately. These terms are given by  Adding now Egs.(12) and (20), we obtain the spin-Hall
conductivity in zero-loop approximation

1
aB:_ ~ o~E ~ B3, -
X5 2mrTr[U Gr(p)o”G, “(p)], (14 U)zlx(w) =0'ZO)(a))+ z(l (o)
where from now on Tr stands fof{d?p/(27)?]Trepin The _ H X2 _ X212
off-diagonal elements ok vanish, while the diagonal ones 87X+ \? (1-200x2 —iwm\?
are given by (21)
%00 = 1 X33 = A which is the same result as obtained in Ref[48e Eq(25)
D\ D y24\2 therein by the equation of motion approach. Thus, in zero-
loop approximation the two diagrams in Fig. 1 cancel each
1M1 A other, so that the leading contribution to the spin-Hall con-
xit=x22= —[— + ﬁ] . (15)  ductivity vanishes in the limito=0, in agreement with Refs.
2[N XA 12, 19, 21, and 27-29. A similar cancellation has been ob-

The expression for the vertex diagram can be split into thre§€rved for the case of the electric conductivityin both
parts, and the vertex diagram can be represented by twitiese cases the “anomalous” ternA in the charge current
“bubbles” with a diffusion wavy line in between operator(2) is canceled by the vertex correction at0.
3 Thus, the second diagram in Fig. 1 can be interpreted as a
A A i o ; -
i, = E j;:.]x renormahzaﬂ_on of the c‘;‘harge curre”nt ver~tex which results in
=0 the cancellation of the “anomalous” termA,.
3

e ojp o
= %sz Tr{ 5 LGR(p)6+GY, (p)] V. WEAK LOCALIZATION CORRECTION
2mm?

At the end of Sec. Il we argued that, in order to reach a
xD,U«,U«Tr|:O-,U«G (P)(Px Ax)Gi_w(P)}, given accuracy, we have to include the contribution of one-
(16) loop diagrams in our calculation Qf;x. In this section we
demonstrate this now by calculating the weak localization
correction tooy, explicitly.
1 1 Similar to the case of the charge conductivitghe weak
Dt = — , a7 localization correction to the spin-Hall conductivity is given
2mr1 -Xp* by three diagrams depicted in Fig. 2. For simplicity, we cal-

with X& given in(15). Only the term withu=2 contributes ~ Culate them at zero frequenay=0 only; to simplify nota-

whereD#* denotes the diffuson

to (16). The two bubbles i16) are explicitly given by tions_ we omit thg energy superscript of Green functions, as-
sumingGgrp = Gy, below.
: Eeo _ Xmmpg/2 Using (13), we may separate the spin indices of a Hikami
Tr GR(P)T*GR “(p) | = N2 (18)  pox from those of the Cooperon, like we did above(16).
Then, the total contribution of the three diagrams in Fig. 2
and can be written as
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FIG. 3. The weak localization diagrams from Fig. 2 with the
renormalized spin current vertéxL(p)]; see Eq(36). The analo-
gous renormalization of the current vertexR(p)] is of higher
order in(pgl)~ and can be neglected.

O.Z(2>( __°¢ i Jﬂcw’ Vw’() 29
yx w)_277m2%71:0 (277_)2 (a) a), (22

whereCW'(q) are the matrix elements of the Cooperon, de-

fined as

1 [ X
= 2mr[ 1-Xo(@)

:| ., %Y =0,...3, (23
vy

1 R “
X&) = Z—TF[U”GR(IO)UB[GA(Q -pl'l. (29
mr
In Eq. (22), V?”'(q) denotes the Hikami box
V(@) =V (@) + V) (@) + V(). (25)

Each of the three terms in ER5) corresponds to one dia-
gram in Fig. 2 plus the corresponding diagram in Figs&e
Eq. (36) below].

In the rest of this section we assunxe<1. This permits
us to approximaté22) by

d’q

0<qg<1/I (277)2

3
ol (w) = ﬁﬁovw(o) C™q). (26)
7=

Here, we have neglected the off-diagonal elements of th
Cooperon, as well as thge# 0 corrections to the Hikami box
in (25). This is justified since those terms do not contain
logarithms inx (or dephasing lengthin contrast to the di-
agonal Cooperon contributions i26) [see Eqs.(38) and
(39) below].

For g=0, the three contributions to the Hikami box in Eq.
(25) become

V'=Tr{L(p)a"[6"R(-p)]T, (27)

3

1
o2 Ao BbG - (28)

where for the left(L) and right(R) vertex parts we use the
notations

~3

L(p) = Ga(P)Py 5 Gr(P). 29)

PHYSICAL REVIEW B71, 245318(2009

R(-p) = Gg(- p)(— Py - E“Z\) Ga(-p)

~ Ggr(~ p)(= NPp)Ga (= p). (30)

Retaining only leading order, we have approximated the
charge current vertex ifB0) in accordance with the discus-
sion at the end of Sec. ll[The same approximation is made
in the calculation of the weak localization correction to the
charge conductivit§*] The quantitiesA and B in (28) are
defined as

AP = THL(P)37Ga(- p) o™}, (31)
B = Tr{o"R(- p)[Ga(p) 5]}, (32
Al =TrH{L(p)o*[67Gr(-p)]'}, (33
BL” = Tr{5*Gr(p)"[R(- p)]'}. (34
Due to the symmetry properties
(M) =-A, (BEH) =-BY,
(A=A, (BE") =BL7, y#2, (35)

we see that for alpV)7=(V2??)" in (28).

In addition, for every diagram in Fig. 2 one needs to con-
sider the corresponding renormalization of the spin current
vertices, which turns out to be of the same ordefpid)™* as
the bareL(p)

3
L(p) =L(p) + X Ga(p)5*“Gr(p)D**TH{G*L(p)}. (36)

n=0

The corresponding diagrams are depicted in Fig. 3. Their
contributions add to the ones of the bare diagrams in Fig. 2.
Note that the symmetry properti€85) remain valid when
the renormalizatior36) is taken into account in the expres-
8ions forA andB.

Similary, the charge current vertgxR(p)] gets renor-
malized, but unlike before this renormalization is of higher
order in(pgl)~! [see the end of Sec. [Vand hence can be
neglected. Still, we note that, like in Sec. IV, one can dem-
onstrate that this renormalization Bfp) results in cancella-

tion of the anomalous termA, in the charge current vertex
in (30).

Now, we have to obtain an expression for
[[d2q/(2)?]C”(q) in (26). For this we can make use of the
results of Ref. 35, where an analogous approach has been
used to study the weak localization correction to the charge
conductivity in the same model system. The Cooperon de-
rived in Ref. 35 is connected witB in Eq. (23) via

1

2 (37)

2
arsy oy
2 Clguo'ﬂao')\,,,,
a,B,u,\=1

C(q) =

whereC% is the Cooperon from Ref. 35. Then, from Egs.
(13 andg(u14) in Ref. 35 we obtain
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2 L = oA — A =T &

f qzcw(q): : (f,f,log—‘é,f>, (38) 0/2 of the electron., i.e.s(t) (d/dt);(t) i[H ,;](t), we

2m) °mr I obtain a simple relation between spin precession and spin
current

where® L, stands for the dephasing length, and

nte forx<- 80 = - 2maf(t), Kk=xy, (42)
. =

|
f= I ’ (39 which is valid also for disordered systems, and, moreover, in
In X for L <x<1. the presence of a constant external electric ftélth this
) (,,. ] case we havd;l’:l:|+e3d£x, where an electric field, is ap-
We note that, due to this logarithmic dependencexothe  plied along thex direction, as considered in the previous
Cooperon itself can become large for sufficiently smahd section(zero-frequency limit anddl is given in Eq.(1). The

large dephasing length,,. However, this has no conse- uniform spin current operatdz component of the spjnis

quences for the spin-Hall conductivity E(R6), since the . ; S S .
Hikami box contributions add up to zero, as we shall see.obtamed from(4) and given in first quantization notation by

next. Indeed, after some lengthy but straightforward calculal = (1/2)1V,5,}=pS;, with (spin-dependentvelocity opera-
tion we find for the diagonal terms of the Hikami 48x tor V=i[H’,X]. The exact relation42) provides a simple
vy 4 physical interpretation of the spin current: The spatial
Va7=(0,0,0,0 +O(XY), (40) (y)-component of the spin current which carries theom-
ponent of the spin is, up to a coupling constant, given by the
total time derivative of thex (y)-component of the spin.
Thus, the spin current can be experimentally accessed by
(41) measuring the spin precession or the change of magnetiza-
tion in time, which can be done, e.g., with optical
Quite remarkably, the terms independenkafome from the  methods:3-2°
vertex renormalizatiofisecond term on the right-hand side  Next, let us consider the expectation valirecluding dis-

of Eq. (36)], where the only r;(zanzerg contribution arises from order averageof (42), @)(t):—Zma(]@(t), for t—o. The
the diffuson matrix elemerd*“< 1/x°. Each of the term¥,  yragence of disorder is expected to provide a relaxation

ag(%vc, when inserted into E¢26), gives a contribution t0 e chanism such that the system can reach a steady nonequi-

oyy € which corresponds to the tem+0 in (10). Adding  |ibrium state(after some transientsvhen driven by an ex-

up all three terms of the Hikami box, we obtaf”(0)=0in  teral electric field(assumed to be constant in timéhe

(25). Thus, we see that the weak localization contribution toweaker the disorder the longer it takes to reach this stationary

the spin-Hall conductivity, i.e.cri(xz) [see Eq.26)] vanishes |imit, but for any finite amount of disordéfinite density of

in the limit w=0. random impuritiek it will be reached eventually. In particu-
The evaluation of the zero- and one-loop diagrams pertar, the magnetizatior$)(t) of such a state also reaches a

formed in this and the preceding sections is valid up to thestationary valugpossibly different from zefoand does not

order 1pel. If one would like to go beyond that order gepend on time anymorEPhenomenologically, the approach

(which is not attempted hefemany more correction.g.,  to such a state is described by a Bloch equation for the spin

of the type 1Eg7) and many more diagrams have to be takengynamics; see also beloihus, it immediately follows that

into account. For instance, one would also need to go beyont e rate of magnetization chang@)(t), must vanish in such

the self-consistent Born approximation for the self-energy teadv stat d v th ) ; ish
and to retain crossing diagrams. Of course, the weak locaf Steady staté, and, consequently, the Spin CUrrent vanisnes as

ization contribution which includes the Cooper@esulting we_II. In other wo_rds, upder the sta_ted c.on_d|_t|d:he umfor.m
from time-reversed pathss special in the sense thé&tpart spin current vanishes in the long time limit if and only if the
form the logarithm-dependencé is sensitive to phase co- magnetization reaches a stationary stété.e.
herent effects probed by an Aharonov-Bohm flux. Thus, .
other contributions, even if they are of the same order in lim(jp)(t) =0 < lim(§)(t) =const., k=x,y. (43
1/pgl, could be ignored provided one would be interested in e e
the phase sensitive contributions only. Note that this result holds for any form of the stepin-
independentimpurity potential, including the special case of
VI. SPIN CURRENT AND SPIN PRECESSION isotropic scattering potentials as considered in the previous
. . . ection. Also, the argument is valid for any strength of the
We have seen that in perturbation theory the s m-HaIF e : ; ;
conductivity vanishes in thg Zero-frequency I?/mit N I?aadingelecmc field, and, hence, applies to the speC|aIAcase_of linear
’ i i i igith (i) =%
[o(1/pg)°] and subleading[«(1/pgl)t] order. This result €SPONSE consuilered in the previous secfioith (jy?) =jy].
suggests that the vanishing of the spin current is an exadthus, from 0=} (t—=)=0;,(0=0)E, we conclude that
property of the system under consideration. Indeed, we givéhe spin-Hall conductivitw@x(w:O) vanishes exactlyi.e., in
now a simple argument to support this claim. First, we noteall orders of the disorder potentjdbr any finite amount of
that from the Heisenberg equation of motion for the spin disorder.

2

impér
VY =-VY'=- %(Xz’s - 15¢,- x%,8 - 11¥9).
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L ' ' ' T ' ' ' ] the same argument goes through as well, showing that the
' spin current must vanish in the stationary limit also for in-
- i teracting systems—provided this limit exists, which, again,
. we expect to be the case in the presence of any finite amount
:E 08 8 of disorder.
jo Finally, in the absence of disorder, no stationary limit of
T o6y T (S)(t) can be reached, i.e., the magnetization can change in-
5 0a b | definitely, and thus there can be a finite spin current in this
very particular casgWe note that the physically observable
o2 F 4 quantity, the magnetization change, vanishes for vanishing
Rashba coupling. However, when the spin current ap-
o ; 5 5 ” . p 5 .  proaches a nonzero but constant valuetfer=, as obtained
t/r in the linear response regime for a clean systéthe mag-

_ netization (§)(t) actually grows linearly in time in the
FIG. 4. The time evolution of§,(t)) for x=4. The period of asymptotic regime— . This, of course, shows a break-
oscillation is 1A, and the exponential decay timesisNote that for ~ down of the linear response approximation in this case since
anyx, <§y(t)>=0 att=0. the bound for a spin 1/2, i.6(S)(t)|<1/2, is violated. The
terms beyond linear response would restore the bounded and

The approach o¢§)(t) to its stationary valuéin the linear oscillatory behavior ofSy(t).

response regimecan be easily illustrated by taking the in-
verse Laplace transform of Eq8) and(21) (restricting our-
selves to the Boltzmann valu€élhis involves solving a cubic In conclusion, we have calculated the Boltzmann and
equation for obtaining the poles with respectdoThe re-  weak localization contributions to the spin-Hall conductivity
sulting expression forS)(t) consists of two partstoo af,x in an infinite-size 2D disordered system with Rashba
lengthy to be written down hereone coming from the real Spin-orbit interaction. In our calculation we had to consider
pole and an oscillatory one coming from the pair of complexthe weak localization contribution to thef,, together with
conjugate poles. Fox?<1 andt>r, only the first part is the Boltzmann contribution, since diagrams belonging to

relevant, which has no oscillations and decays exponentialljhese two contributions have the same order of magnitude. In
to zero the diffusive and static limit, the spin-Hall conductivity van-

ishes. We have shown that the spin current is given by the
<§y>(t) __ 2ma<]32>(t) __ H time derivative of the magnetiz.ation change, and have given
y A general arguments why the spin current must vanish for any
(44) finite amount of disorder that permits a stationary limit of the
system to be reached when driven by a constant electric field.
whereT/2=(A%7)"! is the well-known Dyakonov-Perel spin It will be interesting to see how far our arguments can be
relaxation time®® For x¥?>=1 andt=< 7, the oscillatory part in  extended to other types of spin-orbit interaction.

(§)(t) becomes dominant, with period A/and exponential
decay with rate 1#; its time dependence for a particular
value ofx is illustrated in Fig. 4. We thank B. Altshuler, S. Erlingsson, J. Schliemann, M.

The above consideration can be generalized to the casskyortsov, V. Yudson, V. Golovach, and in particular E.
with electron-electron interaction. In this case, the total spinviishchenko and A. Shytov for helpful discussions. This
of the system,%;S, and the total spin currenﬁli]ﬁzk, k  work is supported by the Swiss NF, NCCR Nanoscience
=X,Y, obey the same equation as before, i.e.,(Bd). Thus, Basel, EU Spintronics, US DARPA, and ONR.

VII. CONCLUSIONS

max’EeT, t> 1,
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