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A microscopic description based on the density matrix formalism is developed to describe the dynamics of
photoemission of hot electrons at semiconductor surfaces, including the interaction of bulk and surface states.
The equations of motion for the electronic occupations and transitions include the interaction with arbitrary
optical fields as well as the electron-phonon coupling. Model wave functions are used to qualitatively describe
the bulk-surface dynamics and the subsequent time resolved two-photon photoemissions2PPEd spectra. Our
results suggest that it is possible to extract energetic and temporal information of the underlying dynamical
occupations of the intermediate states from the 2PPE spectra.
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I. INTRODUCTION

Time resolved two-color two-photon photoemissionsTR-
2PPEd provides a powerful method for the investigation of
dynamic processes in condensed matter, especially at sur-
faces. In TR-2PPE two pulses of variable temporal delay and
different center frequenciessphoton energiesd interact with
the sample. The first pulse excites electrons from occupied
into unoccupied states and the second pulse eventually
causes emission of these hot electrons into unbound vacuum
states. The energy and emission angle of the electrons can be
measured and by allowing a variable time delay between the
pulses one obtains a time resolved picture of the hot electron
distribution.

The TR-2PPE technique has been applied to a variety of
situations, ranging from image potential states,1–5

molecules6,7 on metal surfaces, bulk states of semiconductors
and metals8–12 to combined dynamics of semiconductor bulk
states, surface states,13–15 and adsorbate states.16,17 Theoreti-
cal descriptions for 2PPE at metals have employed multi-
level optical Bloch equations,1 including phenomenological
energy relaxation18,19 and stationary 2PPE spectra.20 Dy-
namical calculations involving photoemission spectra of
semiconductors for coherent pulse excitation have been
done,21,22 discussing the influence of final states as well as a
phenomenological coupling of bulk and surface states. On
the other hand, the microscopic origin of electron transfer
due to electron-phonon coupling between bulk and surface
has been investigated for incoherent initial conditions.23

In this work, a microscopic theory based on the correla-
tion expansion of the dynamical density matrix in second
quantization,24,25 including relevant many particle interac-
tions, will be used to derive equations of motion which de-
termine the surface electron dynamics and the TR-2PPE
spectra at semiconductor surfaces. The description includes
three-dimensional bulk states, two-dimensional surface
states, as well as three-dimensional finalsvacuumd states.
The many-body interactions are restricted to the electron-
phonon interaction sboth three-dimensional and two-
dimensional phonon modesd; however, an extension to in-

clude electron-electron interaction is—even if numerically
very demanding—straightforward. The coupling to external
optical laser fields is treated on a semiclassical basis. Al-
though the second quantization formalism is not necessary
for the examination of the optical interaction, thus leading to
the same equations as a single particle approach,26 it is of
central importance in the treatment of the phonon-electron
interaction, which is necessary to understand recent
experiments.27 Before being specified to a certain material
system, the derived equations represent a general description
of the electron dynamics at semiconductor surfaces. For the
numerical evaluation, typically the restriction to a few-band
system is necessary. For this purpose, the single particle
states should be calculated fromab initio methods.28 For
simplicity and to obtain a first insight in the dynamics of
surface electrons, we construct a model system with charac-
teristic model wave functions. A detailed investigation by
numerical simulation for different excitation conditions is
done to show the interplay of the bulk and surface states after
excitation with an electrical field. Finally, to obtain observ-
ables, 2PPE spectra are calculated numerically.

Our results suggest that it is possible to extract informa-
tion of the dynamical populations of the intermediate states
sbulk conduction band and surface bandd from the 2PPE
spectra. Hence, typical time scales of many-body interactions
can be derived from a detailed comparison of a series of
spectra.

The paper is organized as follows: In Sec. II we introduce
our basic surface model for the description of two-
dimensional and three-dimensional electronic states. After-
wards, Heisenberg equations for the relevant observables are
applied to describe the reduced dynamics of the system using
a bath and Markovian approximation for the electron-phonon
interactionsSec. IIId. Finally, in Sec. IV the model system
and wave functions are introduced and numerical results are
discussed for various excitation conditionssSec. Vd.

II. BASIC SURFACE MODEL

The modeling of the semiconductor surface is done in half
space geometry28–30 interfacing vacuum. Semiconductor and
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vacuum are assumed to have the lengthL, large compared to
an elementary cell of the infinite semiconductor. For the de-
scription we set up a coordinate system withz perpendicular
to the surface, also referred to as the perpendicular part of the
position vectorr , r'=z. The two other directions—x,y—are
labeled as the parallel partr i=sx,ydT.

By introduction of a surface, the atomic layer at the sur-
face will reorganize, forming a different structure compared
to the infinite crystal.28 However, a translational symmetry in
the plane of the surface can be assumed, but none in the
perpendicular direction. This is a slightly different approach
than that used inab initio state calculations, where a periodi-
cal boundary condition at the limits of a slab also induces a
translational symmetry perpendicular to the surface. Never-
theless, the symmetry is a subgroup of the translational
group of the infinite crystal. Furthermore a reference areaS
is introduced in the parallel direction.S is large compared to
the smallest translational vectors of the surface. The transla-
tional symmetry is provided by imposing periodic boundary
conditions. Because of this fact, we can use the Bloch theo-
rem in two dimensions to express the wave function as28

ck
asr d =

eik·r

ÎS
vk

asr d, s1d

wherev is the Bloch function.k is a two-dimensional wave
vector restricted to the two-dimensional surface Brillouin
zone. Furthermore,a labels these two-dimensional bands. In
general,a is a multidimensional index.

Surface bands—being two dimensional—can be labeled
by a single-component indexa. For the bulk bands the de-
scription of semiconductors as infinite crystals works well,
despite their surfaces. Therefore it is plausible to assume,
that the pairsl ,k3dd, wherel is a three-dimensional band
index se.g., valence bandd andk3d a three-dimensional wave
vector can be used for a approximate description of a bulk
band. Thus, the wave function of the bulk state will be very
similar inside the solid; however, near the surface it will be
perturbed and decay outside. In terms of two-dimensional
bands, we can expresssl ,k3dd as a=sl ,kz

3dd and k
=skx

3d,ky
3ddT. Thereby, we have not accounted for the fact that

the surface Brillouin zone will be smaller than the projected
bulk Brillouin zone, because of the reconstruction. This
means, that there is not a bijective relation between
skx

3d,ky
3ddT andk. However, since in the following we focus

on optical excitation close to theG resp. Ḡ point, we can
assume local bijectivity.

Similar arguments can be applied for the description of
the phonon modes. Again three-dimensional modes are char-
acterized using a two-dimensional band indexk composed of
the original mode and the perpendicular part of the wave
vectorq3d.

All in all, both three-dimensional-like states as well as
two-dimensional states can be expressed in terms of a band
index a and a two-dimensional wave vectork. In the next
section, we will derive the governing dynamical equations of
such a multiband system, including electron-phonon interac-
tion.

III. EQUATIONS OF MOTION

The correlation expansion for the density matrix24,25,31,32

is applied to describe the dynamics of the system. Using
Heisenberg’s equations of motion for the expectation values

kÂl=trsrÂd

− i"
d

dt
kÂl = kfĤ,Âgl, s2d

a set of coupled differential equations for the experimentally

observable quantitiesÂ can be derived. The HamiltonianĤ
includes the free electron and phonon systems, the semi-
classical electron-electromagnetic field interaction and
electron-phonon contributions

Ĥ = o
a,k

"ek
aak

a†ak
a + o

k,q
"vq

kbq
k†bq

k − o
a,a8
k,k8

"Vk,k8
a,a8ak

a†ak8
a8

+ o
a,a8,k

k,k8,q

Dk,k8,q
a,a8,kak

a†ak8
a8sbq

k + b−q
k †d. s3d

Here,a and a† sb and b†d are the creation and annihilation
operators of the electronssphononsd, respectively.a is a
band index for two-dimensional electronic bands and labels
in conjunction with the two-dimensional wave vectork an
electronic state, discussed in Sec. II. Similarly,k is a two-
dimensional phonon mode andq is a two-dimensional wave
vector. The corresponding energies are given by"e and"v,
respectively. The coupling elements areV sRabi frequency
of the electron-light interactiond and D smatrix element of
the electron-phonon interactiond and will be specified later
sSec. IV B 2d. Expectation values of typical observables are
the electronic occupationskak

a†ak
al and transitionskak8

b †ak
al,

aÞb or k Þk8. For example,kak
sf,kzd†ak

sf,kzdl, i.e., the occupa-
tion of the vacuum band with wave vectorsk ,kzd is propor-
tional to the photoemission signal. Due to the many body
character of the electron-phonon coupling, the equations of
motion for the observables are truncated in the correlation
expansion24,25,33 fcf. Appendix A, Eq.sA1dg. Here we only
consider correlations up to single phonon assisted density

matriceskak8
a8†ak

abq
ks†dlc, corresponding to second order Born

approximation. Furthermore, we assume that the phonon oc-
cupations remain in a thermal equilibrium determined by the
temperatureT. Thus

kbq
ks†dl = 0, kbq

k†bq8
k8†l = 0,

kbq
kbq8

k8l = 0, kbq
k†bq8

k8l = dq,q8
k,k8nq

ksTd,

where the Bose-Einstein distribution

nq
ksTd = FexpS"vq

k

kBT
D − 1G−1

s4d

is used for the expectation values of the phonon occupations,
i.e., nq

ksTd.
The electrons are treated in a full nonequilibrium situa-

tion. We briefly illustrate the derivation of equations of mo-
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tion for the observable quantities directly for the electron

transitionkak8
a8†ak

al: The equation of motion for the transition

couples to the phonon assisted transitionkak
a†ak8

a8bq
ks†dlc fcf.

Appendix A, Eq. sA1dg. The Markovian approximation is
used to eliminate these quantities from the dynamics. This
procedure leads to a closed system of differential equations
for the electronic occupations and transitionsfcf. Appendix
A, Eq. sA2dg, which can be separated into two parts

d

dt
kak

a†al
bl = U d

dt
kak

a†al
blU

field
+ U d

dt
kak

a†al
blU

coll
.

The first partsfieldd includes the free motion and the in-
teraction with the electric fieldsVk,l

a,bd. This contribution
reads

U d

dt
kak

a†al
blU

field
= isek

a − el
bdkak

a†al
bl − o

a8,k8

Vk8,k
a8,akak8

a8†ak
al

+ o
b8,l8

Vl,l8
b,b8kal

b†al8
b l.

Here, the Rabi frequencyVk8,k
a8,a determines the transition

strength between different quantum statessa8k8d→ sa ,kd.
The second partscolld contains the electron-phonon inter-

action and is labeled collision part. As an example, the intui-
tive contribution of the diagonal scattering terms are dis-
cussed here in detail; the general equations are given in
Appendix A, Eq.sA2d:

U d

dt
kak

a†al
blU

coll

diag

= − sGk
adoutkak

a†al
bl + sGk

adinsdk,l
a,b − kak

a†al
bld

− sGl
bdoutkak

a†al
bl + sGl

bdinsdk,l
a,b − kak

a†al
bld.

The scattering rates read

sGk
adout =

p

"2 o
b,k,±

l,q

uDk,l,q
a,b,ku2dsek

a − el
b 7 vq

kd

3 SnPhon+
1

2
±

1

2
Ds1 − kal

b†al
bld,

sGk
adin =

p

"2 o
b,k,±

l,q

uDk,l,q
a,bku2dsek

a − el
b 7 vq

kd

3 SnPhon+
1

2
7

1

2
Dkal

b†al
bl.

The scattering rates are proportional touDu2 ssecond order
Born approximationd, whereD is the electron-phonon inter-
action matrix element. The delta function results from the
Markovian approximation and leads to strict energy conser-
vation in the electron-phonon scattering process. The terms
1−kak

b†ak
bl ensure that the occupations always stay below 1

sPauli blockingd.
Until now, there are no restrictions with respect to the

involved electronic states and phonon modes. Hence, speci-
fying these equationsselectronic states, phonon modes, and

their interactiond to a certain material system and a limited
number of relevant states is of use for the description of a
photoemission process. Obviously, the best choice to calcu-
late the matricesD and V is to use ab initio wave
functions;28 however, corresponding calculations are very
involved.34 Therefore, to test our approach within a model
situation, the matrix elements have been evaluated for single
particle model states. Such an approximation allows a quali-
tative insight into the coupled dynamics of bulk and surface
states as well as their relation to TR-2PPE spectra.

IV. MODEL SYSTEM

The purpose of the model system is to qualitatively illus-
trate how the many-body coupling between the bulk and sur-
face states influences the hot electron dynamics as well as the
TR-2PPE spectra. For this purpose we introduce a more or
less realistic system similar to the reconstructed InPs100d
s234d mixed dimer surface. There, an unoccupied surface
state exists about 0.25 eV above the conduction band mini-

mum with a minimum at theḠ point.29,30 There are various
reasons that can give rise to the existence of such a surface
state. Surface states can be, e.g., explained in rather simple
models by the termination of a periodic potential at the
surface.35 Time resolved two-photon photoemission experi-
ments suggest that this surface state couples to the bulk con-
duction band.14 Furthermore, the calculated dynamics is re-

stricted to the neighborhood of theḠ resp.G point of the
Brillouin zone of direct semiconductors where the energy
dispersion can be described within the effective mass ap-
proximation. The model system contains four bands as illus-
trated in Fig. 1.

The electrons initially occupy the three-dimensional va-
lence band. They are excited by the pump pulse into the
intermediate and initially unoccupied states consisting of the
conduction bandsthree-dimensionald and the surface band
stwo-dimensionald. The second pulsesprobe pulsed partially
excites these hot, relaxing electrons to final vacuum states.
The occupations in the latter states correspond to the 2PPE
signal, which is measured in experiments.14 As discussed in
Sec. II the three three-dimensional bands are labeled asa
=sl ,kzd, wherel is the usual band index of an infinite semi-
conductor. Thus we consider the following bands: the three-
dimensional bulk bandsa=sl ,kzd with l=v ,c, f svalence,

FIG. 1. Sketch of the four band model system.
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conduction, vacuumd and one two-dimensional surface band
a=s ssurfaced, all with a two-dimensional wave vectork.

Typically, these bands are coupled via many-body inter-
actions such as electron-electron and electron-phonon scat-
tering. To illustrate the basic dynamics induced in a many-
particle surface problem, only the coupling of electrons to
LO-phonons is chosen to show the salient features of the
coupling as well as their influence on the spectra.

A. Energies and wave functions

We assume that the energy dispersion is isotropic in the

directions parallel to the surface and has an extremum atḠ.
Thus the energy for all involved states can be written as

Ek
a =

"2

2meff
a k2 + E0

a, s5d

whereE0
a is the energy offset of the two-dimensional banda

andmeff
a is a scalar effective mass. Again,a=sl ,kzd for the

bulk statesl=v ,c, f and a=s for the surface state. For the
bulk bands we assume that the original band structure of the
infinite semiconductor is retained

E0
sl,kzd = E0

l +
"2

2meff
l kz

2,

usingE0
l as the original energy offset of the infinite semicon-

ductor and also the original effective massmeff
l . For this case

meff
a in Eq. s5d equalsmeff

l . For the vacuum electrons the
effective mass equals the free electron mass.

The main idea for the construction of the wave functions
inside the solid is to take Bloch functions from the infinite
crystal with slowly modulated envelope functions, thus con-
serving many features of the wave functions from the bulk.
Outside the solid, the wave functions are either set to zero
ssurface and bulk bound statesd or free electron behavior is
assumedsvacuum statesd. This accounts for the fact that
surface-induced effects decay rapidly on the outside of the
semiconductor for the bound states. For bulk valence and
conduction bands we take the usual Bloch wave functions
truncated at the surface. This leads to

vsl,kzdsr d = 5eikzz

ÎL
ulsr d, z. 0

0 z, 0,
6

for l=c,v. Similarly, the surface state is also truncated at the
surface. Inspired by the density functional theorysDFTd cal-
culations for the InP system under consideration,29,30 the
wave function is modeled to decay exponentiallysconstant
Lsd inside the crystal, which leads to

vssr d = HLs
−1/2e−Ls/2 zussr d z. 0

0 zø 0.
J

This ansatz is supported byab initio calculations of the wave
functions for InP.36 Here, us approximates the real surface
wave function and is assumed to be Blochlike. Note, that in
first order of the Fröhlich interaction, the orthogonality to the
bulk statesul is not containedsSec. IV B 2d in this approach.

Nevertheless, the use of the model wave functions is a useful
assumption if they reproduce the basic system properties,
even if they are not strictly orthogonal wave functions. Fi-
nally, the free electrons are modeled as incoming waves,
which hit the potential barrier of the crystalsfinite step po-
tentiald. In addition, low-energy electron diffractionsLEEDd
experiments suggest that the free electrons can only penetrate
into the crystal to a finite length. Following Mahan,37 we use
incoming LEED states to model the photoemission process.
Corresponding wave functions have been calculated.38 The
finite penetration length is reflected by a phenomenological
dampingsconstantL fd of the wave function inside the crystal

v̄ff,kz
sidgsr d =HCfcf

s2de+ikz
sidzuf,kz

sodsr de−Lf/2 z z. 0

Cffe+ikz
sodz + cf

s1de−ikz
sodzg zø 0,

J
wherekzù0. The perpendicular part of the innerfkz

sidg and
outerfkz

sodg wave vector are connected by the energy conser-
vation condition

"2

2me
fkz

sodg2 =
"2

2me
fkz

sid + Gfg2 + V0,

whereas the parallel part is constant:k i
sod=k i

sid. Here,V0 is
the height of the finite step potential. Note that, in order to
keepk sid inside the first Brillouin zone, one must eventually
add a reciprocal lattice vectorGf. The other terms read

cf
s1d = − fkz

sid + Gf − kz
sodg/fkz

sid + Gf + kz
sodg,

cf
s2d = 2kz

sod/fkz
sid + Gf + kz

sodg,

Cf = sLh1 + fcf
s1dg2j + fcf

s2dg2/L fd−1/2,

ufsr d = eiGfz.

Obviously, the model wave functions are not continuously
differentiable svacuum statesd or even not continuoussv ,
c, s bandsd. However, they qualitatively reflect the basic fea-
tures of the real wave functions.29,30

B. Interaction matrix elements

With the given set of wave functions from the previous
subsection, all matrix elements in the equations of motion,
Eqs.sA2d can be calculated. Basically, this is done by split-
ting the integral into two parts:31 First, the integral of the
slowly varying partsenvelopesd and second, the integral over
the elementary cellslabeled EC and the corresponding vol-
umeVECd. Here we consider the coupling to an external elec-
tric field spump and probe pulsed and the coupling to LO
phonons described by the Fröhlich coupling. The detailed
calculation for the matrix elements is outlined in the follow-
ing subsections.

1. Electron-field interaction

Both pump and probe pulse are described as classical
electric fields. The interaction with the electronic system is
treated via dipole coupling31
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Hel−E = − er ·Estd,

neglecting the spatial variation of the electric fieldE. This is
justified by the fact that the reference length of the solid is
smaller than the penetration depth of the light.

Introducing the dipole element

dk,k8
a,a8 =E d3r c̄k

asr dser dck8
a8sr d

and the Rabi frequency

Vk,k8
a,a8 = "−1dk,k8

a,a8 ·Estd,

the interaction Hamiltonian, Eq.s3d, can be written in second
quantization as

Ĥel−E = − " o
a,a8
k,k8

Vk,k8
a,a8ak

a†ak8
a8.

Using the introduced Bloch functions, Eq.s1d, one can
simplify the coupling element

dk,k8
a,a8 = dk,k8SEC

−1 E d3r v̄asr dser dva8sr d, s6d

whereSEC is the area of the surface elementary cell. Thus,
the electric field only couples states with the same parallel
wave vectork. The detailed matrix elements are given in
Appendix B, Eqs.sB1d. As an example, the dipole matrix
elements of the conduction band free electron states transi-
tion reads

dkscd,ksfd
fc,kz

scdg,ff,kz
sfdg = dkscd,ksfdsLzd−1/2 iCfT

kz
sf,id − kz

scd + iL f/2
dc,f .

As the Kronecker Delta applies only to the parallel partsk scd

and k sfd, the transition does not conserve the perpendicular
part kz

scd and kz
sfd in general. This is a direct consequence of

the surface system and is not valid for bulk materials. Also
transitions from statesfsc,kzd ,kg to ss,kd for every kz are
possiblefcf. the corresponding dipole element in Eq.sB1dg.
The remaining terms are defined as

dl,l8 = VEC
−1 E d3r ūlsr ds− er dul8sr d,

and are assumed to be known similar to bulk semiconductor
optics.31 In particular, the interband dipole moment between
the bulk valence and bulk conduction band can be obtained
from literature; all others are chosen to be in the same order
of magnitudescf. Sec. Vd.

2. Electron-phonon interaction

Here we restrict ourselves to the interaction matrix ele-
ments of electrons with longitudinal optical bulk phonons
sthree-dimensionald and assume a constant energy dispersion
relation"vq3d

LO ="vLO.
Similar to the bulk electrons, the phonon field is expanded

into modes which are represented by traveling waves. We
assume for simplicity that the modes are not disturbed by the

surface. In this approximation, the Fröhlich coupling leads to

Dk,k8,q3d
a,a8,LO =Î e2"vLO

2SL«0ePhon
E d3r c̄k

asr d
eiq·r

uq3du
ck8

a8sr d.

Here, ephon=se`
−1−e0

−1d−1, with e0 se`d being the lower
shigherd frequency limit of the dielectric function and«0 the
vacuum dielectric constant. Again using the Bloch functions
Eq. s1d, one obtains

The remaining integralDqz
3d

a,a8 can be evaluated using the ex-

plicit wave functions of Sec. IV A and is given in Eq.sB2d.
The remaining constant

Dc,s = VEC
−1 E d3r ūcsr dussr d s7d

affects the coupling strength of the phononic bulk-surface
band coupling. If orthogonality between the Bloch function
of the bulk conduction band and the surface band is assumed,
the two bands would not couple. Since it is normalized, the
Cauchy-Schwartz inequality restricts the coupling touDc,su
ø1. In Sec. V, this value will be varied to discuss the influ-
ence of the coupling strength. A more sophisticated approach
will obtain these values fromab initio calculations.

C. Equations of motion for the model system

Using the calculated matrix elementsfEqs.sB1d andsB2dg
the equation of motion, Eqs.sA2d, can be further simplified
for the considered four-band system. First of all, due to Eq.

s6d, only transitionskak8
a8†ak

al with the same parallel wave
vector k8=k are excited. However, interband polarizations
with different kz sincluded in the indexad have to be taken
into account. For spatially homogeneous excitation of bulk
material, such terms are typically zero. Thus, a type of quan-
tum coherence occurs in the description of a surface. Second,
the process induced by the pump and the probe pulses can be
separated: The photon energy of the pump pulse is of the
order of the band gap energy, exciting electrons from the
bulk valence band into the surface and bulk conduction band,
leaving the vacuum states almost unpopulated because of the
large detuning. Similar arguments apply to the second pulse
sprobe pulsed, which is energetically close to the transition
energy between surface/conduction bulk band and vacuum
states. Hence, it does not excite electrons from the bulk va-
lence band. Therefore, for the numerical evaluation, both ex-
citation processes can be calculated in separated subsystems.
The first subsystemspump pulsed includes valence, conduc-
tion bulk, and surface band, while the second systemsprobe
pulsed is composed of conduction bulk and conduction sur-
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face band, as well as free electron states. Third, the probe
pulse is assumed to be weak enough to not affect the popu-
lations of the bulk and the surface band. Finally, the equa-
tions of motion are treated in the rotating wave approxima-
tion sRWAd,39 considerably reducing the computational
effort. For the second systemsconduction bulk and surface
band, vacuum electronsd the equations of motion caused by
the free motion and the electric field are given in Appendix
C. The treatment of the other subsystem is analogous.

The only difference between the investigated subsystems
is that the electron-phonon interaction occurs within and in
between the bulk valence and conduction bands, and the sur-
face bandsthe phonon interaction can be restricted to the first
subsystemd. One example of the corresponding diagonal
equations of the collision partsbulk-surface scatteringd is
given in Appendix D, Eq.sD1d. There, the constant disper-
sion of the LO phonons and the isotropy can be used to
simplify the equations.

All in all, the pump pulse is calculated in the first sub-
system containing bulk valence and conduction, and surface
band including the electron-phonon scattering. The occupa-
tions of the bulk conduction band, as well as for the surface
band, which vary in time, are used as input parameters for
the calculation of the response to the second pulse. This has
proved to be very advantageous for the numerical computa-
tion, since the RWA can be applied to each subsystem.

V. NUMERICAL SIMULATION

In this section the derived equations of motion for the four
band system, cf. Appendix C and Appendix D, will be solved
numerically for different excitation conditions, applying a
fourth order Runge-Kutta algorithm with a time step of 1 fs.
The wave numberk space skz and uk iud has been dis-
cretized by 2013101 points for the areaf−1 nm−1,
1 nm−1g3 f0 nm−1,1 nm−1g. This discretization leads to a
length of the crystal of approximately 600 nm. Note thatDkz
should be chosen, according to the total lengthL correspond-
ing to the penetration length of the pump pulse. Furthermore,
only diagonal scattering termsscf. Sec. IIId have been taken
into account. The set of used parameters is given in Table I.

In the following, two different excitation situations are
investigated:sid resonant excitation into the surface band
sEpump=1.614 eVd, sii d excitation into the conduction band,
energetically well above the surface bandsEpump

=1.839 eVd. In both cases, the dynamics of the carrier dis-
tribution is investigated as well as the resulting 2PPE spectra
at several delay times between the pump and the probe pulse.
For both investigated situations the pump pulse has 40 fs full
width at half maximumsFWHMd and is centered at 0 fs
while the probe pulse has its mean energy atEprobe
=6.461 eV and has a width of 60 fssFWHMd.

To understand the subsequently calculated 2PPE-spectra,
first the carrier dynamics induced by the pump pulse is in-
vestigatedsSec. V Ad. Here, the focus is on the coupling and
the electron transfer dynamics between the conduction bulk
and surface band. Afterwards, Sec. V B is focused on the
TR-2PPE spectra of the emitted electronssinduced by the
probe pulsed. The simultaneous consideration of the temporal

dynamics of the spectra and the carriers allows us to clarify
to what extent electron transfer rates can be extracted from
experimental observables.

A. Photoinduced surface-bulk dynamics

To obtain a first insight into the dynamics, Fig. 2 shows
the total number of electrons in the surface bandntotal

s

=okkak
s†ak

sl as a function of time for both model situations
sid andsii d. Due to the different time scales for both cases, it
can be recognized, that the initial growth of the electron
number in the surface band is caused by the pump pulsesid
or electron-phonon scattering from bulk into surface states
sii d. The subsequent decay of both signals is determined by
the electron scattering from surface into bulk states.

For discussion of the detailed dynamics, we focus first on
situation sid. Here the pump pulse populates the surface
states directly and the maximum population is reached at
approximately the same time as the peak of the pump pulse
sdashed vertical line in Fig. 2d. Subsequently, the electrons
scatter from the surface into the bulk conduction band and

TABLE I. Parameters used.

Unit Value

E0
v eV 0a

E0
c eV 1.339a

E0
s eV 1.589b

E0
f eV 7.7c

meff
v me −0.45a

meff
c me 0.078a

meff
s me 0.2

meff
f me 1

Ls nm−1 0.5b

L f nm−1 2.4d

e0 1 9.52a

e` 1 12.35a

T K 300

"vLO meV 43a

dv,c e nm 0.3e

dv,s e nm 1.2/0.0e

dc,f e nm 0.3f

ds,f e nm 0.09f

aSee Ref. 40.
bSee Ref. 30.
cSee Ref. 41.
dSee Ref. 42.
eTo reproduce experimental resultssRef. 14d, the dipole moment of
the transition valence-surface band is set four times the dipole mo-
ment valence-conduction band for situationsid. This ensures that
mainly the surface state is occupied and not the isoenergetic bulk
states. However, for situationsii d, the dipole moment is set zero to
ensure a clean initial condition.
fThese parameters affect the strength of the signal in the 2PPE
spectra, and are chosen so that both signalsssurface and bulkd are
balanced.
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vacate the surface band, causing the exponential decay of the
electron occupation on a 200 fs time scale. In Fig. 3, the
carrier occupations of the surface states and the bulk conduc-
tion band are plotted as a function of energysfor the bulk
conduction band we takeE=Ek

c,kzukz=0, see below for the dis-
cussion of the usefulness of this quantityd and time. It can be
recognized that initially populated surface statesspeak at
0.25 eV above the conduction band minimumd are depopu-
lated due to an energetically favored effective scattering
from the surface band into the bulk conduction bandsevolv-
ing peak at zero energyd. In the course of timesseveral hun-
dred femtosecondsd, all carriers equilibrate into a Fermi
Dirac distribution at the bottom of the conduction band. The
distributions shown in Fig. 3 are plotted forkz=0, i.e., only
the in-plane component is depicted. Although in general,
quantities that involve three-dimensional bands depend not
only on the magnitude of the wave vectork3d but in general
also on the angle betweenskx

3d,ky
3dd andkz

3d, the discussion of
the occupation atkz=0 is a useful approach since it can be
shown numerically that those anisotropy effects are of minor
importance. In Fig. 3, however, the occupations for the bulk
conduction band are taken forkz=0; this reduction of infor-
mation assumes that the discussed anisotropy is not of major
importance. To investigate the strength of this anisotropy, the
occupations for the bulk conduction band are given at a fixed
time in Fig. 4, for the extreme situationski=0 or kz=0, re-
spectively, hardly showing anisotropy. The small anisotropy
can be explained by the fact that typically more electrons
occupy the bulk conduction band compared to the occupa-
tion of the surface bandscf. Fig. 5d.

A detailed numerical analysis shows that the dominance
of the three-dimensional bulk conduction band prevents a
distinct formation of anisotropy.

After the discussion of the direct surface state excitation
sid, second, the dominant excitation of the bulk conduction
band states is analyzedfsituationsii dg. Because of the richer
dynamics, we focus on excitation of continuum states well
above the position of the surface state. Additionally, to have
a clean initial situation, i.e., to prevent direct excitation of
valence electrons into the surface state, the corresponding
dipole element has been set to zero. In Fig. 6 it can be seen
that at the beginning of the dynamics, the carriers are in-
jected into high energy states in the conduction bandspeak at
t=0 andE=0.4 eVd. The subsequent dynamicssFig. 6d can
be characterized as follows: The optically excited bulk elec-
trons relax within several tens of femtoseconds in the bulk
conduction band and undergo a transfer process from ener-
getically higher states into states which are isoenergeticsor
within the phonon energyd with the surface band. Therefore,
the surface band can be populatedsE=0.25 eV, t=100 fsd.
At the same time also electron-phonon scattering in the sur-
face band takes place, leading to electron equilibration inside
the surface band. Later on, the carriers undergo a transfer
from the surface state to the conduction band minimum
sthird peak evolving after about 400 fs at 0 eVd. As a conse-
quence of these back and forth scattering processes between
the bands, the electrons are temporarily trapped at the surface
and a delay occurs in the total equilibration and cooling pro-

FIG. 2. Total number of electrons in the surface band for reso-
nant excitation into the surface bandfsituationsidg and bulk excita-
tion fsituationsii dg.

FIG. 3. Occupation of bulk statesskz=0, minimum at 0 eVd and
surface statessminimum at 0.25 eVd for resonant surface band ex-
citation fsituationsidg.

FIG. 4. Anisotropy for excitation into the conduction band att
=200 fs. Occupations forkz=0 andk i=0.

FIG. 5. Logarithmic plot of total number of electrons in the
surface and bulk conduction band for resonant excitation into the
surface bandfsituationsidg.
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cess of the initially excited bulk states. Again, investigation
of the surface induced spatial anisotropy shows nearly no
difference for different directionssnot shownd. Similar to
situationsid, this can again be explained by the small number
of states in the surface band compared to the conduction
band.

B. TR-2PPE spectra

After the discussion of the carrier dynamics for the two
different excitation situationssid and sii d, the question arises
whether the observed occupation dynamics is also reflected
in the experimentally observable 2PPE spectra. This would
allow one to draw conclusions from the experimental spectra
concerning the energetics and the time scales of microscopic
scattering and electron transfer mechanisms. For example,
the electron transfer dynamics between different bands is de-
termined by the coupling strength between the involved
bands.

To investigate the effect of different coupling strengths in
the TR-2PPE spectra, the coupling constant between the sur-
face and the conduction banduDc,su2, cf. Eq.s7d, is varied for
all calculated spectra from 0.1 up to 4.0. The strong coupling
limit is treated to examine a even stronger coupling than the
LO phonons allow on their ownsCauchy-Schwartz inequal-
ityd, thus modeling the influence of more involved phonon
modes. For the spectra we have chosen electron emission
perpendicular to the surfacesk i=0d. The probe pulse has its
mean energy atEprobe=6.461 eV and has a width of 60 fs
sFWHMd.

Again, we start with the analysis of situationsid, i.e., the
direct surface state excitation via the pump pulse. In Fig. 7
the resulting 2PPE spectra for the resonant excitation of the
surface band are displayed for various delay times and cou-
pling strengthsscompare figure captiond.

The two peaks at 0.1 and 0.35 eV arise from the minimum
of the bulk conduction band and surface band, respectively.
The conduction band minimum appears at 0.1 eV since the
energy of the probe pulse,Eprobe, is chosen 100 meV larger
than the difference betweenE0

c sconduction band minimumd
andV0 sheight of the step potentiald. Since only perpendicu-
lar emission is treatedk =0, only the electron emission from
the surface band minimumsat k =0d can be observed in the
spectra. 0.25 eV above the bulk conduction band minimum

corresponding to the used probe pulse, the evaluated surface
band minimum appears at 0.35 eV in the photoemission
spectra. Strict energy conservation in the electron-photon in-
teraction would lead to an abrupt truncation below 0.1 eV
and a Dirac delta-like peak at 0.35 eV, but because of the
finite duration of the probe pulse, the peaks are broadened
mainly by the spectral width of the probe pulse. In the fol-
lowing, we first focus on the thick line in Fig. 7, correspond-
ing to the standardsSec. V Ad coupling strength ofuDc,su2
=1.0. At the beginning, as the peaks of both pulses coincide
st=0 fsd, almost all electrons populate the surface band or
isoenergetic bulk conduction band states. Hence, only a sig-
nal at 0.35 eV occurs. The surface state related peak devel-
ops its maximum at a time delay oft=75 fs, occurring from
the time convolution of the 40 fs pump and the 60 fs probe
pulse. Later on, the signal decay at 0.35 eV can be related to
the electron relaxation into the bulk conduction band. A sig-
nal at 0.2–0.3 eV indicates the occupation of the correspond-
ing bulk conduction band states reaching appreciable values
from 250 to 500 fs. In the final spectras1000 fsd, the equi-
librium situationsall electrons in a Fermi-Dirac distribution
in the bulk conduction bandd has been reached.

The time dependence of the signal peak that results from
the surface band emissions0.35 eVd is separately displayed
in Fig. 8 slogarithmic scaled.

It can be recognized that this signal is clearly affected by
the coupling strength between bulk and surface band. There-
fore we may conclude, that the temporal decay of the surface
signal allows the extraction of typical coupling strength from
the time dependence of the 2PPE signals. To illustrate this in

FIG. 6. Occupation of bulk statesskz=0, minimum at 0 eVd and
surface statessminimum at 0.25 eVd for conduction band excitation
fsituation sii dg. To illustrate the dynamics more clearly, the bulk
contribution for the band minimumsEø0.2 eVd has been multi-
plied by a factor 0.1.

FIG. 7. Photoemission spectra for coupling strengthuDc,su2
=1.0 ssolid thick lined, uDc,su2=0.1 sdotted lined, and uDc,su2=4.0
sdashed lined and various time delaysssee insetsd for resonant ex-
citation into the surface statefsituation sidg. The minimum of the
surfacesbulk conductiond band is located at 0.35 eVs0.1 eVd.
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more detail, the depopulation of the total numbers of surface
electrons,ntotal

s scf. Sec. V Ad, as well as the TR-2PPE signal
at 0.35 eV are fitted with an exponential function. The ob-
tained decay rates are shown in Table II.

Both constants are in good agreement, and the decay rate
G is approximately given by

G < 5.53 10−3uDc,su2 fs−1.

Such a result may even validate future rate equation treat-
ments of the 2PPE signal. The simple picture of an exponen-
tial decay proportional touDc,su2 holds, as long as the scatter-
ing out of the surface dominates the depopulation: For the
strong coupling uDc,su2=4.0, the decay slows down after
about 170 fs. Here, surface band and bulk conduction band
states are in a dynamical quasiequilibrium, reducing the scat-
tering rates: The faster coupling between the surface band
and the bulk conduction band allows the occupation of the
surface band to follow only adiabatically the slower relax-
ation inside the bulk conduction band. Hence, the intraband
relaxation within the bulk conduction band determines the
depopulation of the surface band.

In contrast to the signal from the surface band, the signal
which arises from the minimum of the bulk conduction band
scf. Fig. 7, at about 0.1 eVd is hardly affected by the coupling
constant between surface and bulk states, because the small
number of electrons in the surface state barely effect the
electron relaxation in the bulk conduction band.

After the discussion of the direct excitation of the surface
state, we focus on the excitation of bulk states energetically
well above the surface states using a pump pulse with energy

Epump=1.839 eV fsituation sii dg. Figure 9 shows the corre-
sponding TR-2PPE spectra. The corresponding logarithmic
plot of the peak of the surface signal peak at 0.35 eV is
displayed in Fig. 10.

Again, the TR-2PPE signal at the conduction band mini-
mum does not differ for the various coupling strengths, as
the dynamics of the electrons in the bulk conduction band is
hardly affected by the interaction with the surface states.
Furthermore, the dynamics of the bulk conduction band elec-
trons having larger energies than the surface states can hardly
be seen in the spectrasonly a weak energy shoulder above
the surface band minimum is observedd. Note, however, that

TABLE II. Exponential decay constantsfexps−Gtdg of the total
numbers of electronsntotal

s sGntotal
s d and of the TR-2PPE signal at 0.35

eV sGsignald.

uDc,su2 Gntotal
s sfs−1d Gsignal sfs−1d

0.1 5.39·10−4 5.59·10−4

1.0 5.48·10−3 5.28·10−3

4.0 1.86·10−2 1.55·10−2

FIG. 8. 2PPE-signal at 0.35eVsoriginated from surface bandd
for resonant excitation into the surface statefsituationsidg over de-
lay time for different coupling strengths:uDc,su2=0.1, uDc,su2=1.0,
and uDc,su2=4.0.

FIG. 9. Photoemission spectra for coupling strengthuDc,su2
=1.0 ssolid thick lined, uDc,su2=0.1 sdashed lined, and uDc,su2=4.0
sdotted lined and various time delaysssee insetsd for excitation into
bulk conduction bandfsituationsii dg. The minimum of the surface
sbulk conductiond band is located at 0.35 eVs0.1 eVd.

FIG. 10. 2PPE signal at 0.35 eVsoriginated from surface bandd
for resonant excitation into the surface statefsituation sii dg over
delay time for different coupling strengths:uDc,su2=1.0, uDc,su2
=0.1, anduDc,su2=4.0.
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this may change if the probe excitation strength is increased
or the density of states is increased in a more realistic band
structure calculation. Furthermore, Coulomb interaction
might change the relative weight of the different contribu-
tions since it reduces the quasi-one-dimensional density of
states at normal emission from the surface.

However, the most dominant signature for the off-
resonant excitation is, that in strong contrast to situationsid,
the signal dynamics arising from the surface band peak can-
not be related in a simple way to a interband coupling
strength because the signal decay does not scale directly with
the coupling strengthscf. uDc,su2=1.0 anduDc,su2=4.0 in Fig.
10d. The nonsystematic behavior, observed in Fig. 10, can
only be explained by the interplay between the scattering
into and out of the surface band, as well as the relaxation
inside the surface and the bulk band. Therefore, the dynam-
ics is in general not determined by the coupling constant
uDc,su2 alone. For example, the surface signal, depicted in Fig.
10, shows for the intermediatesuDc,su2=1.0d and the strong
suDc,su2=4.0d coupling a very similar rises0–100 fsd and de-
cay s600–1000 fsd. In contrast, in the case of weak coupling
suDc,su2=0.1d, the signal rise is drastically slowersup to 1 psd
compared to all other time scales observed. This indicates,
that the relaxation dynamics within the bulk conduction band
transferring electrons to the conduction band minimum
swhich is slower than the surface-bulk couplingd dominates
the depopulation of the surface band in the case of the inter-
mediate and strong coupling. Furthermore, the surface-bulk
scattering for the weak coupling is apparently even slower
than the intraband scattering in the bulk conduction band. All
in all, Fig. 10 demonstrates that the scattering times can not
be extracted as easily as in the case of an initial population of
the surface bandfsituationsidg, because the signal from the
surface states are strongly affected by the relaxation inside
the bulk conduction band, which—vice versa—is not influ-
enced by the bulk-surface coupling.

VI. CONCLUSION

In the present work, we have developed a model for the
ultrafast surface dynamics of electrons in semiconductors,
taking into account two-dimensional surface states and three-
dimensional semiconductor states as well as vacuum states.
The coupling to a phonon bath and a classical electric field
has been taken into account. The equations of motion for
electronic transitions and occupations have been derived
within Markovian and second-order Born approximations.

Using a model four band system, including one surface band,
the electron dynamics after optical excitation and corre-
sponding TR-2PPE spectra have been investigated. It has
been shown that if the surface state is resonantly excited, the
resulting time resolved two pulse photoemission spectra can
directly reveal the information of the underlying occupation
dynamics and provide a measure for the coupling strength.

Our results should be viewed as a qualitative approach
which can be improved later on by calculating the matrix
elements in Eqs.sB1d andsB2d with ab initio wave functions
and further interaction mechanisms such as electron-electron
interaction.
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APPENDIX A: CORRELATION EXPANSION AND
EQUATIONS OF MOTION

The correlation expansion33 of the operators leads to

kak
a†ak8

a8l = kak
a†ak8

a8lc, kbq
k†l = kbq

k†lc,

kbq
ks†dbq8

k8s†dl = kbq
ks†dbq8

k8s†dlc + kbq
ks†dlckbq8

k8s†dlc,

kak
a†ak8

a8bq
ks†dl = kak

a†ak8
a8bq

ks†dlc + kak
a†ak8

a8lckbq
ks†dlc,

kak
a†ak8

a8bq
ks†dbq8

k8s†dl

= kak
a†ak8

a8bq
ks†d

q8
k8s†dlc + kak

a†ak8
a8lckbq

ks†dbq8
k8s†dlc

+ kak
a†ak8

a8bq8
k8s†dlckbq

ks†dlc + kak
a†ak8

a8bq
ks†dlckbq8

k8s†dlc

+ kak
a†ak8

a8lckbq
ks†dlckbq8

k8s†dlc,

kak
a†al

b†ak8
a8al8

b8l = kak
a†al

b†ak8
a8al8

b8lc + kak
a†al8

b8lckal
b†ak8

a8lc

− kak
a†ak8

a8lckal
b†al8

b8lc. sA1d

The equation of motion of the electronic occupations and
transitions, assuming that the energies include the polaron
shift, read

d

dt
kak

a†al
bl = isek

a − el
bdkak

a†al
bl − o

a8,k8

Vk8,k
a8a kak8

a8†ak
al + o

b8,l8

Vll8
b,b8kal

b†al8
b l −

p

"2 o
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Dl,l8,q
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2
±
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Dkak
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APPENDIX B: MATRIX ELEMENTS

The dipole moments

dk8,k
a8,a = SEC

−1 E d3r c̄k8
a8sr dser dck

asr d

of the model wave equations, Sec. IV, give

dksvd,kscd
fv,kz

svdg,fc,kz
scdg = dksvd,kscddkz

svd,kz
scddv,c,

dkscd,kssd
fc,kz

scdg,s = dkscd,kssdsLzd−1/2 iLs
1/2

− kz
scd + iLs/2

dc,s,

dkscd,ksfd
fc,kz

scdg,ff,kz
sfdg = dkscd,ksfdsLzd−1/2 iCfT

kz
sf,id − kz

scd + iL f/2
dc,f ,

dkssd,ksfd
s,ff,kz

sfdg = dkssd,ksfd
iLs

1/2CfT

kz
sf id + isLs + L fd/2

ds,f . sB1d

The corresponding electron-phonon coupling elements

Dk,k8,q3d
a,a8,LO =Î e2"vLO

2SL«0ePhon
dsk8 − k + qi

3ddDqz
3d

a,a8

for the four band model system read

Dqz

sc,kzd,sc,kz8d = dskz8 − kz + qzd,

Dqz

sv,kzd,sv,kz8d = dskz8 − kz + qzd,

Dqz

s,s =
iLs

qz + iLs
, Dqz

sc,kzd,s =
iLz

−1/2Ls
1/2

qz − kz + iLs/2
Dc,s. sB2d

The remaining term

Dc,s = VEC
−1 E d3r ūcsr dussr d

is used as a fitting parameter which controls the strength of
the coupling between the bulk conduction band and the sur-
face band.

APPENDIX C: RWA EQUATIONS

The contribution from the free motion and the electric
field

U d

dt
kak8

a8†ak
alU

field

for the subsystem containing bulk conduction bandscd, sur-
face bandssd, and vacuum electronssfd is given in rotating
wave approximation with respect to the laser frequencyvL.
For simplicity the occupations and transitions are abbrevi-
ated as

Pk8,k
a8,a = kak8

a8†ak
al.

The laser field is written as

Estd = RefEestdexpsivLtdg,

whereEe is a slowly varying envelope, including the phase
shift. For abbreviation, the complex conjugate field ampli-
tudes

E− =
Eestd

2
, E+ =

Eestd
2

are introduced. For the subsystem containing bulk conduc-
tion bandscd, surface bandssd, and vacuum statessfd, the
corresponding equations of motion read
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APPENDIX D: PHONON INTERACTION

As an example, the diagonal scattering rate from the sur-
face band into the bulk conduction band is given. It reads

sGk
sd→c =

p

"2 o
qz,kz,±

e2meff
c vLO

4pLe0«phon
uDqz

sc,kzd,su2UsK7
2 d

3 hfsk − K7d2 + qz
2gfsk + K7d + qz

2gj−1/2, sD1d

where

K7 = H2meff
s

"2 FE0
c − E0

s +
"2

2meff
c skz

2 + k2d 7 "vLOGJ−1/2

andU is the step function.
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