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A rigorous theory is developed for light refraction by a photonic crystal �PC� with arbitrary lattice-type and
surface orientation. First, the refraction of a planar wave incident upon a photonic crystal surface is analyzed.
We rigorously prove the equal partition of propagating PC modes by a surface under a general condition. The
concept of surface-orientation-dependent mode degeneracy has been proposed and its relationship to quasi-
periodic surfaces unfolded. With modes partitioned and the degeneracy properly recognized, a subset of the
solved PC modes is identified to uniquely represent all PC modes that can be excited by an incident wave. The
refraction problem can thus be rigorously solved in the plane-wave formulation. Essentially, we need to solve
the field in only a single cell on the surface to solve the refraction problem. We further discuss the case where
a Bloch wave illuminates the surface from inside a photonic crystal, which enables us to compute the trans-
missions along a complete light path through a series of interfaces. In addition, the transmission of a Gaussian
beam is discussed, and the insertion loss formulas are presented. Other realistic beam profiles are discussed for
designing photonic crystal devices. With all these issues solved, a complete theoretical framework of the
photonic crystal refraction and transmission has thus been established. The theory has been applied to design
a wavelength-division multiplexing demultiplexer that exhibits lower than 3 dB loss over a 25-nm spectrum. In
examining the refraction by a quasiperiodic surface, a slight change of surface orientation is predicted to split
one beam into an infinite number of beams.
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I. INTRODUCTION

Anomalous refraction of light at an interface between a
photonic crystal1,2 and a homogeneous medium was experi-
mentally studied recently.3,4 The refraction angle was found
to be sensitive to the incident angle and wavelength in cer-
tain cases. These phenomena were called the “superprism”
effect accordingly and were proposed to be utilized for
wavelength-division multiplexing �WDM� and other
applications.3–11

The physics behind the anomalous refraction is related to
the coupling of the incident light with the propagating modes
of a photonic crystal �PC�. Although the light beam direction
inside the PC can be easily determined from the dispersion
surface, other characteristics of photonic crystal refraction
deserve further study. Particularly important is the amplitude
of each excited mode, which is commonly calculated using
finite-difference time-domain �FDTD� techniques.7–9 How-
ever, FDTD simulations are often time consuming and, in
many cases, prohibitive for studying anomalous refraction.
To study such an effect characterized by high wavelength
and angular sensitivity, fine spatial and temporal grids and a
large simulation region are inevitable and are frequently be-
yond the capacity of commonly available computing facili-
ties. In addition, FDTD simulations give the insertion loss
values case by case; they cannot accurately reveal some gen-
eral features or trends when certain parameters vary continu-
ously. Particularly, the effect of varying surface orientation is
rarely addressed,12 and refraction at a surface of a PC with a

general lattice type is rarely seen in the literature. A general
PC refraction theory that can handle any type of lattice and
any surface orientation is of fundamental importance from a
basic research point of view. Such a theory also provides
great flexibility in exploring novel device geometries pro-
posed for valuable applications.7

A variety of numerical and theoretical methods13–22 other
than FDTD have been employed to study the transmitted
optical-field amplitude through photonic crystals including
the transfer matrix method,14–16 the scattering theory of
lattices of dielectric cylinders or spheres17–20 or multiple-
scattering method,10 and the internal-field expansion
method.21,22

Using these methods, plane-parallel slabs have been ex-
tensively studied for their transmission spectra,14,17–19,21,22

which exhibit interference features due to multiple reflec-
tions between two surfaces.21,22 Stefanou et al. discussed
complex band structures and evanescent modes in a slab.18,19

For frequencies inside a photonic band, Sakoda also demon-
strated the possible existence of uncoupled modes owing to
mirror symmetry.21,22 Planar incident waves have been as-
sumed in these calculations. In realistic situations, due to the
finite width of the incident beam, the interference may not be
in effect or may not occur in a way that resembles the planar-
incident-wave case. For instance, the secondary beams gen-
erated in the slab by successive internal reflections may not
overlap in space and, therefore, do not interfere with each
other. In addition, there are many practically valuable cases
where the entry and exit surfaces are not parallel to each
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other.7 Study of the single-surface transmission problem is
necessary to understand these diverse situations, which could
frequently arise in design of valuable devices.7 Note that the
single-surface transmission problem for a photonic crystal is
nothing but refraction. Moreover, a PC slab transmission
theory can be obtained from a refraction theory �as done in
conventional thin-film interference theory�, but not reversely.
As Li and Ho pointed out, for a planar incident wave �of
infinite beam width�, the mathematical solution for the inter-
nal field deep in an extremely thick slab does not converge to
the true solution of the field in a semi-infinite photonic crys-
tal because multiple reflections always exist in the slab re-
gardless of the separation between its surfaces.16

The refraction problem has been discussed for cubic lat-
tices, with the surface orientations limited to simple cases
such as �100� or �111�.15,20 The latest work by Li and Ho
showed convincing results that the transfer matrix method
calculated the transmission through �10� surfaces of two-
dimensional �2D� rectangular lattices with success.16 In their
work, wave propagation in a semi-infinite “photonic crystal”
was also studied for other important purposes such as ana-
lyzing endface coupling into a photonic crystal waveguide
and waveguide-cavity resonant coupling. Based on a super-
cell approach, the waveguide endface coupling problem was
formulated as transmission through the surface of a “photo-
nic crystal” that has a rectangular lattice �i.e., the supercell is
rectangular�. We also note that Botten et al. earlier calculated
reflection coefficients for semi-infinite photonic crystals of
these special surface orientations.23 Moreover, in prior stud-
ies, the surface is often parallel to a mirror symmetry plane
of the lattice.

We shall emphasize that behind these apparent lattice,
symmetry, and orientation limitations of these prior theories
are more fundamental limitations related to the understand-
ing of the photonic crystal refraction phenomena. Some fun-
damental issues of the photonic crystal refraction do not
emerge if we consider only these simple lattice types and
surface orientations. First, in order to satisfy the boundary
conditions, the number of eigenmodes propagating in the for-
ward direction �determined with respect to the incident
beam� must be the same as the number of modes propagating
backwards. In many prior works, this was usually tacitly as-
sumed, but not proved. Such an assumption is usually valid
for the �10�, �01�, or �100� type of surfaces of a rectangular
or cubic lattice or other cases where the surface is parallel to
a mirror symmetry plane of the crystal.24 But it is not neces-
sarily true for an arbitrary lattice that has an arbitrary surface
orientation. In the study of photonic crystals, this problem
has been recognized,23 though not solved for cases where the
mirror symmetry is absent. Second, as we shall see, when the
surface orientation is not as simple as �10� or �100�, the
degeneracy of the photonic crystal eigenmodes will often be
modified. To understand the degeneracy, we need to consider
the eigenmodes not only in the first Brillouin zone �BZ�, but
in the whole reciprocal space. Adding to the complexity are
the cases where the surface cannot be described by regular
Miller indices. In such cases, the surface is quasiperiodic and
the degeneracy may completely disappear. This aspect of the
refraction problem has not been discussed in the literature.
As we shall see, only when analytically studying the refrac-

tion problem for an arbitrary lattice and an arbitrary surface
orientation do some fundamental physics issues of PC re-
fraction begin to unfold.

This paper will introduce a general, rigorous PC refrac-
tion theory that can deal with any lattice type and surface
orientation.25 Two key issues—the partition of the forward
and backward modes and the surface-dependent mode
degeneracy—will be discussed in detail in Sec. II. The natu-
ral emergence of a quasiperiodic surface26,27 will be dis-
cussed as well as its relation to the surface-dependent mode
degeneracy. Refraction of realistic beams with finite beam
widths will be discussed in Sec. III. A schematic design of a
WDM demultiplexer will be presented with low-loss and
high-wavelength resolution in Sec. IV, where the physical
interpretation and the numerical aspect of the current theory
will be discussed. This paper is primarily focused on 2D
PC’s, but most conclusions can be generalized to 3D easily.
Though the theory itself is rigorous for a single-surface �or
semi-infinite� problem, to apply this theory to realistic de-
vices often requires us to make certain assumptions to sim-
plify the problem, as in any physics modeling. These simpli-
fications or approximations and the accompanied limitations
will be discussed in Sec. IV B.

Part of the theory utilizes some knowledge of topology.
We have made a thorough effort to present it in a way acces-
sible to most physics researchers in the main text, leaving
more complicated discussions to one of the Appendixes.

II. REFRACTION THEORY FOR A PLANAR INCIDENT
WAVE

Consider a TM wave �electric field E normal to the plane�
incident upon a 2D PC as illustrated in Fig. 1�a�. The inci-
dent light is a planar wave eiq0·x with frequency �. By Fou-
rier expansion, the field equation in PC is �let the speed of
light c=1�

− ��kx + Gx�2 + �ky + Gy�2�E�G� + �2�
G�

��G − G��E�G�� = 0,

�1�

where kx�q0x and E�G� and ��G� are the Fourier coeffi-
cients of E�x� and PC dielectric function ��x�, respectively;
G is a reciprocal lattice vector, explicitly

FIG. 1. Schematic drawings: �a� A planar wave illuminates a
photonic crystal surface. The dielectric constant of the incident me-
dium is �I. For the photonic crystal, the background medium has a
dielectric constant �b, whereas the materials inside the columns
have a dielectric constant �a. Each surface has its own local coor-
dinate system for refractions through a series of surfaces. �b� Con-
ceptual dispersion surfaces in 2D. The vertical lines are constant-kx

lines. Note that the contours in the right graph may not be realistic.
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Glm = lb1 + mb2,

where b1 and b2 are the basis vectors of the reciprocal lattice.
Here we assume that the constituents of the photonic crystal
are lossless as desired in many important applications. For
convenience, we sometimes refer to the y�0 region as re-
gion I.

This set of linear equations for E�G� can be converted
into a matrix equation

�W��E� = �ky
2�A� + ky�B� + �C���E� = 0,

where �A�, �B�, and �C� are matrices whose elements are
functions of � and kx. The eigenvalues ky of Eq. �1� must
satisfy det�W�=0. The elements of the column vector �E� are

E�Glm�, − L � l � L, − M � m � M .

Let

N = �2L + 1��2M + 1� .

Clearly, �W� is an N�N matrix and �E� is an N�1 matrix.
There is a general numerical scheme for such an eigenvalue
problem.28,29 However, for this particular problem, �B� and
�C� depend on kx and � in a specific way; note that �A� is the
identity matrix.

One readily finds that the determinant can be written as a
real-coefficient polynomial

det�W� = F�kx,ky,�� = �
lmn

clmnkx
l ky

m�n,

where the degree of each variable is 2N or less. Actually,
each element of �W� is a polynomial of kx, ky, and �. By the
definition of matrix determinant, det�W� must be a polyno-
mial as well. The fact that all clmn’s must be real follows
from the fact that ��G� is Hermitian. Note that kx

2 and ky
2

appear on every diagonal element of �W� and �2 appears in
every element; one finds that in general their highest powers
in F are all 2N. The natural continuity of polynomial F is
important for the ensuing proof of equal partition of modes.

In principle, the eigenvalue problem amounts to solving
det�W�=0 for 2N roots ky�s�, s=1,2 , . . . ,2N, for given � and
kx. Then each ky�s� is substituted back into �W� to find the
corresponding eigenvector �Es�, which gives the Fourier
transform of the eigenmodes Es�x�. We note that each solved
eigenmode Es�x� satisfies the real-space wave equation ev-
erywhere inside the PC in Fig. 1�a� despite the presence of a
surface.

A. Separation of up and down modes

Only a subset of the solved eigenmodes from Eq. �1� is
allowed in the region y�0. Complex ky�s� roots always ap-
pear in conjugate pairs �because F has real coefficients�,
which was known through other approaches, in Ref. 23, for
example. They are allowed only if Im ky �0; otherwise, di-
vergence results. As we will see later, the real ky�s� must be
partitioned into an equal number of up-propagating modes
�“up mode�� and down-propagating modes �“down mode��;
otherwise, the boundary equations cannot be satisfied. A

similar partition problem arose in the transfer matrix method
and was solved only if a lattice has mirror symmetry My.

23,30

The problem is not solved for an arbitrary type of lattice and
an arbitrary surface orientation. Also we note that in many
transfer-matrix-based approaches, the eigenvalues are not
ky’s, but eikyd’s, where d is a certain distance. Because of this,
the pairing of complex eigenmodes and the partition problem
may be formulated differently in form.

To study this problem, first we derive the expressions of
the Poynting vector S and �k�, which will be given in Ap-
pendix A. It is interesting to notice that both the Poynting
vector and the group velocity are proportional to a weighted
sum of wave vectors of the Fourier components

S, vg � �
G

�k + G�	E�G�	2.

However, for the TE wave, such a simple form is absent.
The Poynting vector is

S = �4��0�−1 �
G,G�

Hs
*�G�
1

�
�

GG�
�2ks + G + G��Hs�G�� ,

where �1/��GG� is a Fourier component of 1 /��x� and H�G�
corresponds to the out-of-plane component of the magnetic
field.

Define the sets of up modes and down modes as

M+ = �PC mode	Sy � 0 or Im ky � 0� ,

M− = �PC mode	Sy � 0 or Im ky � 0� .

Note that the sign of Sy is meaningful for real ky modes only,
whereas the sign of Im ky is meaningful for complex-ky
modes only. Now we prove that half of the real-ky modes
have Sy �0. Due to the relation between S and �k�=vgn �n
is a dispersion surface normal�, it amounts to proving that a
constant-kx line always intersects the dispersion surface of a
given � at an equal number of positive ny and negative ny
points.

Consider the equation F�kx ,ky ,��=0 for a given �. As
L ,M→	, it describes an infinite set of contours, i.e., the
dispersion surface repeated in all BZ’s, on the �kx ,ky� plane.
Here we temporarily assume that the dispersion surface con-
sists of closed curves, which appear to be typical for 2D
photonic crystals. According to topology31 �and intuitively�,
a straight line must intersect a closed contour an even num-
ber of times except for the tangent case.

For an arbitrary contour shown in the left graph of Fig.
1�b�, assume the dispersion contour expands as the frequency
increases. Establish a local polar coordinate system �
 ,��
for the shorter contour segment between a and a� such that
the components of k are

kx = 
 cos � + kOx,

ky = 
 sin � + kOy ,

where kOx and kOy are the coordinates of point O. The out-
ward normal is given by
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n =
dky

d�
ex −

dkx

d�
ey . �2�

Note that n need not be a unit vector here. One easily com-
putes

ny = −
d


d�
cos � + 
 sin � .

In a regular polar coordinate system �a=� /2 and �a�
=3� /2; therefore,

nya = 
a � 0, nya� = − 
a� � 0.

If the dispersion contour shrinks as the frequency increases,
one may use the inward normal. The signs of nya and nya�
will both be reversed; hence, they are still opposite. It is not
difficult to prove that nya and nya� always have opposite signs
regardless of the choice of azimuthal direction �=0.

For contours that have complicated connectivity �although
perhaps unrealistic� as in the right graph of Fig. 1�b�, the
above argument always applies if one associates the neigh-
boring crossings into pairs—for example, �cc�� and �dd��.
Note that an equally valid pairing is �cd�� and �c�d�. An
accurate account of the pairing scheme can be found in Ap-
pendix A. Therefore, ny �0 and ny �0 always appear in pairs
no matter how twisted a contour is. This implies a topologi-
cal nature. There are some undesirable features of the above
proof. One issue is that a key step requires �a=� /2 and
�a�=3� /2, which seems to depend on the choice of direc-
tion �=0. Furthermore, the preceding proof seems not appli-
cable to 3D cases. In 3D cases, a section of the dispersion
surface could consist of closed contours, but the surface nor-
mal vector is likely out of the sectioning plane. Also, the
preceding proof is not applicable to open contours. A com-
plete, yet more complicated, proof that addresses all these
issues is presented in Appendix B.

The case where a constant-kx line is tangent to a contour
can be understood “dynamically.� Consider that the constant-
kx line in the left graph of Fig. 1�b� sweeps to the right from
its current position. When this line is tangent to the contour,
two intersections with the contour will merge into one. Math-
ematically, this means that two ky roots of F�kx ,ky ,��=0
become one doubly degenerate root. These two roots were in
M+ and M−, respectively, before the constant-kx line sweeps
to the tangent position; they should remain in their own sets
at the tangent position. In other words, the doubly degenerate
roots should be treated as two roots, one in M+ and one in
M−. A rigorous treatment of this issue shows that more com-
plicated situations must be considered. Around the tangent
point kt= �kxt ,kyt�, the equation F�kx ,ky ,��=0 describing the
contour for a given frequency � can be rewritten as kx
=
�ky�, where 
�ky� is a single-valued function. The local
expansion gives

kx = kxt +
d


dky
�ky − kyt� +

1

2

d2


dky
2 �ky − kyt�2 + ¯ .

For a given kx, this equation can be solved for ky. As the
constant-kx line is tangent to the contour at kt, we have
d
 /dky =0. A doubly degenerate root results if d2
 /dky

2�0.

Generally, it can be shown that if the order of the first non-
vanishing derivative is even at kt, the degree of degeneracy
will be even. On the other hand, if the order is odd �an
inflection point�, then it can be shown that a single real root
persists when the constant-kx line sweeps across the tangent
point and the sign of ny is the same on both sides. Such
inflection points exist in realistic dispersion contours which
are nonconvex. An example is the starlike contours in trian-
gular lattices.3,7

If there happens to be multiple contours tangent to the
constant kx line at one point in reciprocal space, one can
apply the preceding argument to each contour separately and
the equal partition still holds.

We shall emphasize that there could be a number of other
interesting ways of pairing the eigenvalues,23 for example,
based on their values. But fundamentally, only pairing the
eigenvalues based on their derivatives as rigorously proved
here leads to the proper separation of up and down modes,
because the propagation direction of each mode is deter-
mined by the group velocity, not the wave vector ks.

B. Surface-orientation-dependent degeneracy

Now we find the coupling amplitude ts for each “up
mode.” The field in the PC is

E�x� = �
s�M+

�
G

tsEs�G�ei�kx+Gx�x+i�ky�s�+Gy�y .

On the surface, such a PC field excites reflected waves
eip�G�x, where

px�G� = q0x + Gx,

py�G� = − ��I�
2 − qx�G�

Throughout this section, square roots are taken on the Rie-
mann surface with argument 0���2�. Note that if Gx
=Gx�, then p�G�=p�G�� even if Gy �Gy�. Denoting the num-
ber of reflected waves—i.e., the number of distinct p�G� by
Np—one immediately sees that, in general, Np�N. The field
in the region y�0 �region I� is then

EI�x� = eiq0·x + �
G

rp�G�e
ip�G�x. �3�

By matching E�x ,0� and Hx��E�x ,0� /�y for each eipx�G�x

wave, the boundary conditions are given as

�G,0 + rp�G� = �
s�M+

tsEs�G� , �4a�

py�G��− �G,0 + rp�G�� = �
s�M+

ts�ky�s� + Gy�Es�G� . �4b�

Evidently, the number of rp�G� is Np and the number of equa-
tions in Eqs. �4� is 2Np.

Consider a simple example, the �01� surface of a rectan-
gular lattice—i.e., a1=aex and a2=a�ey. The distinct
px�Glm�= p0x+ lb1 depends on l only; hence, Np=2L+1�N.
Apparently, the number of up modes equals N. However, due
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to the periodicity of the BZs, all ky
�m�=ky +mb2, m=−M ,

−M +1, . . . ,M are just one “degenerate” solution. Therefore,
the number of distinct up modes �and ts� is

N+ =
N

2M + 1
= 2L + 1.

The number of unknowns �rp�G� , ts� in Eqs. �4� matches the
number of equations. In general, because kx is given �or
fixed� in a refraction problem, one easily sees that the degen-
eracy exists only if the constant-kx line passes multiple points
of the periodic set

U�ks� = �ks + lb1 + mb2� .

We call such a degeneracy “surface-orientation-dependent
degeneracy.” The presence of degeneracy and the degree of it
need more analysis if b1, b2 are not along the x, y axes. We
shall show that the degeneracies of the solved eigenmodes
are always correlated with the reduction of surface harmonic
waves. In general, two cases must be considered.

First, consider the case where the surface of an arbitrary
lattice has Miller indices �h1h2�. It turns out the degeneracy
also leads to the coincidence p�G�=p�G�� for certain G, G�.
Without loss of generality, assume 0�h1� 	h2	, and h1 and
h2 are coprime; the basis vectors a1, a2 may have arbitrary
lengths and angles. Define new basis vectors as

A1 = h2a1 − h1a2, A2 = a1,

B1 = − �1/h1�b2, B2 = b1 + �h2/h1�b2. �5�

One can verify that A1 is the surface basis vector �along x�
and B2 is along the y axis.

Now start over, expand the E field in the cell spanned by
A1 and A2, and obtain the new Eq. �1� with Glm= lB1+mB2;
then, solve for ky�s�, Es. For the new Glm, one finds p�Glm�
�p�Gl0�. Let pl=p�Gl0�, and the distinct reflected waves are
eiplx; hence, Np=2L+1. Now Eqs. �4� become

��l,0 + rl� = �
s�M+

�
m

tsEs�Glm� , �6a�

ply�− �l,0 + rl� = �
s�M+

�
m

ts�ky�s� + lB1y + mB2�Es. �6b�

One readily shows that ky�s� �real or complex� and ky
�m�

=ky�s�+mB2 lead to identical eigenfunctions in real space:
Es�x��E�m��x�. Therefore, all of the nondegenerate ky are in
the new one-dimensional Brillouin zone,

− B2/2 � Re ky � B2/2,

and the number of independent �Es� �or ts� is N+=N / �2M
+1�=2L+1. Hence, the numbers of equations and unknowns
always match for any �h1h2� surface by choosing B1 and B2

given in Eqs. �5�.
Second, if no lattice vector is parallel to the surface, then

no reciprocal lattice vector can be orthogonal to the surface,
which means the constant-kx line cannot pass more than one
point of the periodic set U�ks�. Furthermore, the x compo-
nents of reciprocal lattice vectors must be different from

each other, which means that no two p�G� �or Gx� coincide.
One easily recognizes that the crystal surface is
quasiperiodic,26 or one may say that h1 /h2 is an irrational
number. In such a case, one needs to solve 2N equations in
Eqs. �4� for 2N unknowns.

From a higher point of view, the presence of the surface
breaks the discrete translational symmetry. This causes the
2D periodicities in the real and reciprocal spaces to be sec-
tioned along the x and ky directions, respectively, which may
lead to periodic or quasiperiodic 1D sections.26,27 Further-
more, to calculate the photonic bands of 2D and 3D photonic
crystals, one has an infinite number of choices of primitive
translation vectors �or basis vectors of unit cell� giving
equivalent results. However, in the refraction problem, the
presence of the surface and the lowered translational symme-
try limit the choices of primitive translation vectors to a sub-
set of the choices for an infinite crystal, as shown in Eq. �5�.

As we have seen, the degeneracy of eigenmodes and co-
incidence of reflected wave vectors p�G�=p�G�� are always
correlated. This will be further discussed in Sec. IV.

For a quasiperiodic surface, the down modes will not have
any surface-dependent degeneracy, either. One may easily
extend the above discussions to prove this.

C. Numerical examples

In Figs. 2�a� and 2�b�, we present the result of our theory
for an incident-angle-sensitive case, compared with the
FDTD simulation results. Hexagonal lattices with air holes
��a=1� are used in this work, with ��G� calculated
analytically.21 In most cases, about N=120 planar waves are
sufficient to yield an Sy accuracy of 0.3%. The FDTD Sy data
are obtained through Eq. �A3� based on the simulated E�x , t�.
The two sets of data agree well. The slight difference comes

FIG. 2. �a� Refraction angles of two PC modes for a structure
�b=�I=2.25, r /a=0.3, and a /�=0.677. The inset shows the disper-
sion surface with the BZ drawn by dashed lines. �b� Same structure
as in �a�, Sy for PC modes �Sy �0� and reflected waves �Sy �0�.
FDTD: markers. Theory: lines. �c� Refraction angle of a PC mode
for a structure �b=�I=12, r /a=0.3, and a=0.29 �m, �=40°. The
inset sketches a demultiplexer design. �d� Insertion losses for the
structure in �c�. Thick curve: insertion loss after entering PC. Other
curves: losses after exiting PC through tilted surfaces.
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from the FDTD discretization error. A wavelength-sensitive
case is presented in Figs. 2�c� and 2�d�. Only one PC mode is
excited here. The FDTD simulations are almost impossible
for this case because all phenomena are due to a 2% change
of the wavelength �, whereas a typical simulation grid spac-
ing is around 2%–3% of � �or the simulation region will be
too small�. Our theory does not assume a special shape of
scatterers and need not approximate a PC cell by many thin
layers. For each incident beam, one essentially solves the
field in only one cell per surface. Hence, this theory gives a
general, efficient, and accurate calculation method.

D. Light refraction for a Bloch mode exiting a PC

This theory can also calculate the case where a propagat-
ing PC mode E0 with a Bloch vector k0 is incident upon a
boundary from inside a PC �when a beam exits the PC�. One
readily shows that the boundary conditions must be

tl = �
s�M+

�
m

rsEs�Glm� + �
m

E0�Glm� ,

plytl = �
s�M+

�
m

rs�ky�s� + lB1y + mB2�Es�Glm�

+ �
m

�k0y + lB1y + mB2�E0�Glm� .

Furthermore, this theory allows us to explore device geom-
etries other than slabs,7,10 provided we define local y axes
normal to each surface along a light path �as y� in Fig. 1�a��
and solve the refraction problems surface by surface. In this
way, one essentially solves the field in only a few surface
cells to obtain the field in the whole space. Figure 3 demon-
strates the power of this theory by an extreme case: a vertical
exit surface.

III. REFRACTION OF A REALISTIC BEAM: GAUSSIAN
OR OTHER PROFILES

To fully understand Fig. 3, one needs to analyze the re-
fraction of a Gaussian beam. The standard technique first

decomposes the Gaussian beam into planar-wave compo-
nents, finds the refracted wave for each planar wave, and
then adds them together to find the total refracted beam.32

Here we use the coordinate systems naturally defined by the
directions of incident and refracted beams. Each beam will
be described by its own coordinate system, which has one
axis along the beam and the other axis perpendicular to the
beam. Consider an incident beam with a distribution in q
space,

a�q� = a�q0 + �q� =
�2�

�q�

exp
−
�q�

2

2�q�
2 �2����q
� , �7�

where �q is decomposed into components �q
 and �q�, par-
allel to q0 and perpendicular to q0, respectively. Note that
�q� is a constant indicating lateral spread of q. The incident
field is

Ein�x� = �2��−2� a�q�eiq·xd2q . �8�

Using the identity

��2�a�−1�
−	

	

e−x2/2a2+ibxdx = e−a2b2/2, �9�

the incident field is evaluated:

Ein�x� = eiq0·xe−�q�
2 x�

2 /2. �10�

The field in PC is EPC�x�=�sẼs�x�, where

Ẽs�x� = �2��−2� a�q�tsEs�x�d2q . �11�

Note that ts and Es�x� both depend on the incident wave
vector q. If the beam is sufficiently wide, one can use Eq. �9�
to evaluate the integral and find

FIG. 3. �Color� Transmission
of a Gaussian beam through a PC
��b=�I=12,r /a=0.3�. The beam
widths wI, wPC, and w0 are de-
fined in Eq. �16�. The observation
plane for the exiting beam is indi-
cated by a line. The top inset
shows the exiting beam profile
�FDTD, dense dots; theory, line�.
The bottom inset shows the dis-
persion surface.
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Ẽs�x� � ts
�0�Es

�0��x�e−�1/2��k�
2 x�

2
, �12�

where the term ts
�0�Es

�0� is evaluated at q0, �k�

���k� /�q����q� gives the lateral spread of ks, and x� is
the component of x along k�. For simplicity, the mode index
s for k� is omitted. Each beam inside a photonic crystal
retains a Gaussian form as generally expected.6 An expres-
sion equivalent to Eq. �12� was obtained earlier.32

The derivative ��k� /�q��� can be handily calculated from


 �k�

�q�

�
�

= 
 �k�

�kx
�

�

 �kx

�qx
�

�

 �qx

�q�

�
�

. �13�

Note that kx�qx. It is straightforward to find


 �k�

�q�

�
�

=
cos �

cos �
. �14�

Define the beamwidths

wI =
�8

�q�

, wPC =
�8

�k�

. �15�

Then it follows that

wI

cos �
=

wPC

cos �
= w0. �16�

This means that the cross sections of the two beams along
the boundary have the same width as shown in Fig. 3. Note
that the reflection smears the true wI in Fig. 3.

The peak of Ẽs�x� remains at the value of the planar-
incident-wave case if the peak of the incident Gaussian beam
is unity. With the cell-averaged Poynting vector, the power
for a Gaussian beam in the PC can be calculated:

P =� Sdx� � ���/8�S̄wPC = ��/8w0�S̄ cos �� , �17�

where S̄ is the peak value of the Poynting vector. One thus
finds that the conservation of Sy =S cos � relates to the con-
servation of total power P as

�
l

Rl + �
s

Ts = �
l

	Sly	
S0y

+ �
s

Ssy

S0y
= 1, �18�

where Rl and Ts are the normalized powers of a reflected

beam and a PC mode Ẽs, respectively; Sl and Ss are the
corresponding Poynting vectors, and S0 is the incident Poyn-
ting vector. The summations should be limited to the propa-
gating modes. The insertion loss is given by 10 log10�Ts� for
a PC mode. A beam coming from inside a PC can be treated
similarly. Figure 3 shows that the beam peak and width given
by the planar-wave theory is in good agreement with the
FDTD simulations. Note that a Gaussian function is fully
specified by the peak and width. Actually, our theory best fits
the FDTD data shown if r /a=0.32 is used in our theory.
Therefore, it is obvious that the difference is owing to the
fact that the FDTD simulation cannot resolve a hole-radius
difference of 0.02a with a grid spacing of about the same
magnitude.

For a general beam profile, our theory also provides a
convenient way of calculating the refracted and reflected
beams. Given a photonic crystal with certain surface orien-
tation, one can easily compute and record the quantities

rl, ts, Es�Glm� , �19�

for, say, 500 incident planar waves whose incident angles are
equally spaced.33 Using these quantities, one can finally in-
tegrate to obtain the refracted beam according to Eq. �11� for
an arbitrary incident beam. This option offered by our theory
is extremely advantageous for real-world design and optimi-
zation of photonic crystal devices. For example, to design a
photonic-crystal-based demultiplexer, one often needs to
vary the incident beamwidth to find the optimized device
design in terms of device size, diffraction and beam shape
distortion, optical loss, and other issues. And the incident
beam may not be Gaussian. With the technique presented
above, whenever the ending width of the tapered waveguide
or the incident angle changes, one only needs to compute the
integral in Eq. �11� with a different set of a�q�. In contrast,
the FDTD methods would have to perform a time-consuming
simulation each time the incident angle or beamwidth
changes.

IV. DISCUSSIONS AND APPLICATIONS

A. Physical interpretations

The importance of our analysis of the PC surface refrac-
tion goes far beyond merely giving amplitudes �ts ,rl�. First,
incident light recognizes a lattice by its “face.” For a square
lattice, if the incident surface has Miller indices other than
�10� or �01�, the light may nevertheless “see” an oblique
lattice, according to Eqs. �5�. This “misinterpretation” com-
pletely shuffles the intrinsic mode degeneracy of the original
lattice.

Second, for an ideal periodic surface, the coincidence of
the wave vectors of different reflection orders, p�Glm�
�p�Gl0�, means the reflected waves carry only the informa-
tion of the surface periodicity. The surface BZ �Ref. 34� re-
mains a useful concept. Although the new surface basis-
vector B1 is generally not parallel to the surface, its x
component still plays some role because

px�Gl,m� − px�Gl−1,m� = B1x =
2�

A1
.

Note that due to lowered translational symmetry, a semi-
infinite 2D photonic crystal has two one-dimensional BZs
�associated with B1 and B2, respectively�, instead of one 2D
BZ. It is interesting to notice that the degeneracy of the PC
modes is governed by the surface-normal one-dimensional
BZ associated with B2, whereas the wave vector difference
of the reflected waves is dictated by the surface BZ through
B1. From another point of view, because the reflected waves
carry only the information of the surface periodicity A1 for a
periodic surface, one may say other Bragg planes inside the
PC are hidden. Simply from the reflected waves, one could
not tell whether the crystal is a 1D grating or a 2D photonic
crystal. This confirms that the light may not recognize the
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original lattice structure of a semi-infinite lattice, but has a
“biased” view, based on what it sees on the surface. Actually,
it has been known in all previous studies of �10�, �100�, or
�111� types of surfaces that the reflected modes carry only
the information of the surface periodicity in their wave
vectors.16,18–20 However, such a phenomenon has not been
correlated with the mode degeneracy of the photonic crystal
as we reveal here. Furthermore, it is interesting to see from
our analysis that if a surface is quasiperiodic, the reflected
waves carry the information of all Bragg planes, not just the
surface BZ. This is obvious because no two p�G� coincide,
and for a quasiperiodic surface, there is actually no surface
BZ owing to the lack of surface periodicity.

Third, it can be shown that a slight change of surface
orientation may split one PC beam into many beams. Con-
sider the rectangular lattice example we discussed in Sec. II.
For the �10� surface, suppose there is only one propagating
mode among 2L+1 distinct up modes. One can easily show
that when L increases, the new modes introduced will all be
evanescent modes with complex ky�s�; the change of M does
not affect the number of distinct up modes. On the other
hand, it is a drastically different case for a quasiperiodic
surface that could be merely 0.0001° from the �10� direction.
Owing to the lack of degeneracy, the number of distinct up
modes will increase when M increases. Particularly, the
number of distinct propagating modes will increase as M,
which means more beams will be present in the crystal. How
to observe such a sensitive phenomenon is an interesting
question. Note that a quasiperiodic section of acceptable
quality cannot be achieved in an atomic crystal because an
atom cannot be divided or “cut” into fractions. Whereas ar-
tificial structures such as photonic crystals can form an ideal
“flat” surface, an atomic crystal surface intended to be a
quasiperiodic section will in general appear ragged or have
lattice voids.

B. WDM demultiplexer

WDM demultiplexers are among the most important ap-
plications of photonic crystals.3 Following the example in
Figs. 2�c� and 2�d�, we calculate the insertion losses for a
demultiplexer assuming the exit surface has an angle of 0°,
30°, or 60° with the entering surface. Generally, we find the
total transmission will be enhanced if the exit surface is per-
pendicular to the beam in PC. The 30° case seems to be an
exception because there is another exiting beam �not plotted�
of comparable strength. The loss spectra in Fig. 2�d� suggest
that for ��−34°, one should use a 60° exit surface. Note that
if the 0° exit surface is used for PC beams with � up to −84°,
the device lateral size will increase 7 times. The correspond-
ing demultiplexer design is sketched in Fig. 2�c�, inset. This
design demonstrates lower than 3 dB loss over a 25-nm
wavelength span �covering �60 WDM channels if 0.4 nm
resolution is possible6�.

To apply our rigorous refraction theory to a realistic pho-
tonic crystal device, such as one shown in Fig. 2�c�, always
requires certain simplifications—as in any physics modeling.
First, we usually need to assume that the device is suffi-
ciently large ��10 lattice constants, for example� such that

the evanescent modes originating from one facet �or surface�
would be negligible on the other facets. Second, the concept
of beam must be valid. These assumptions were commonly
employed in many prior studies5–7,9–11 and were met in many
real superprism devices.3,4 These assumptions can be waived
under certain circumstances, possibly accompanied by some
adaptation of our theory. For example, the depth requirement
can be waived for a plane-parallel slab, a candidate for su-
perlenses. In fact, one can extend the current theory to rig-
orously calculate the transmission of a planar incident wave
through an �arbitrarily thin� PC slab. This can be done by
solving the boundary conditions on the front and back sur-
faces of the slab altogether, the results of which, we found,
agree perfectly with existing rigorous theories for slabs. Such
a rigorous theory for PC slabs falls out of the scope of this
paper and will be presented elsewhere. Besides such thin PC
slabs, we are not aware that any other superprism device of
wide interest requires us to abandon these two assumptions.
Therefore we have not been motivated to study other cases
where these assumptions are not appropriate. Nonetheless,
such devices could emerge, and our theory may not be ap-
plicable to them. Finally, note that when the size of a photo-
nic crystal is, for example, below five lattice constants in any
dimension, the nonpropagating modes localized near the sur-
faces could dominate over the propagating modes in the
whole crystal. Under such circumstances, the Bloch modes
of a bulk photonic crystal gradually become less helpful in
studying such a photonic crystal fragment. Similar phenom-
ena are commonly known as the size effect or quantum con-
finement effect in other fields. It could be more advantageous
to treat such a small structure as a collection of single scat-
terers rather than a fragment of a periodic lattice, and scat-
tering theories17,19,20,23 could be the preferred tool. Such
small structures are at the brim of photonic crystal research,
although they could be interesting in the general area of
nanophotonics.

Also, the effect of the secondary beams generated by mul-
tiple internal reflections inside the photonic crystal is negli-
gible in this example. Generally, in designing useful devices,
one should suppress such secondary beams through choosing
proper device structures and optimizing design
parameters.8,16 Detailed discussions of design optimization
issues are beyond the scope of this paper.

C. Numerical advantages

The numerical methods for studying beam refraction and
propagating in photonic crystals can be roughly divided into
three categories.

The first category is what we called the whole-space
method, which calculates the field in every cell of the pho-
tonic crystals. The computational workload of these methods
grows with the volume �or area for 2D PC� of a photonic
crystal. This category includes the FDTD method and the
multiple-scattering method.10 These methods are most versa-
tile and can deal with photonic crystals of arbitrary shapes.
Unfortunately, in reality, these methods are usually very
costly in terms of computational time and data storage such
that they are often found incapable of simulating a practical

JIANG, CHEN, AND LU PHYSICAL REVIEW B 71, 245115 �2005�

245115-8



device of reasonably large size with acceptable accuracy.
This situation has been illustrated in the design of a demul-
tiplexer.

The second category includes a variety of supercell meth-
ods where the number of cells in a supercell grows with the
linear dimension of the crystal under study. For example, the
internal-field method21 computes the field in a supercell ex-
tending perpendicularly to the surface of a PC slab. These
methods are numerically more efficient than those belonging
to the first category, although less versatile in dealing with
various geometry; for example, the internal-field method is
restricted to slabs.

The last category is what we call the single-cell method—
for example, the transfer matrix method developed by Li and
Ho.16 In these methods, refraction and propagation are
treated separately. Each time a beam hits a surface �from
inside or outside a PC�, the refraction algorithm is invoked to
compute the field, essentially in one cell on the surface. In-
side the body of the PC, the beam amplitudes are given by
the Bloch theorem from their values on the surfaces, and
they can be calculated handily whenever needed. As these
methods solve the field in a few surface cells only, they are
capable of accurately computing for a large device with
small amounts of computational time and data storage. De-
spite the efficiency, the prior single-cell methods15,16,20 were
restricted to certain special lattice types and surface orienta-
tions, owing to the lack of physical insight of the PC refrac-
tion problem �as we discussed in the Introduction�. The
single-cell method presented here clarifies the physics, over-
comes the lattice and surface-orientation limitations, and fur-
ther improves the efficiency and accuracy of the prior single-
cell methods.

A detailed comparison of the numerical implementation
of our theory and the layer transfer matrix method �TMM� is
beyond the scope of this work. We just point out that in the
latter method, a large number LTMM of layers are usually
needed for adequate accuracy. Meanwhile, the number of
matrix inversion operations needed by a stable TMM
algorithm16,30 grows with LTMM. Besides, the eigenvalues
solved in our method are ky�s� themselves, whereas eigen-
values solved by TMM are actually eiky�s�d, where d is a
certain length. Note that the eigenvalues in the transfer ma-
trix method stretch over a much larger scale.

We should point out that the discussions in Sec. II and
Sec. IV A regarding the surface-orientation-dependent de-
generacy are rigorous only as L, M→	. Whenever the prob-
lem is formulated into a numerical form, a Fourier series
with finite L and M will be used in Eq. �1�. In practice, the
calculated ky�s� for those modes far outside the first BZ
would generally have substantial errors. Using larger L and
M will improve the accuracy of these modes but new modes
are introduced even farther from the first BZ. The eigenvalue
ky�s� of these new modes usually have even larger errors.
These numerical errors directly lead to a severe departure
from exact degeneracy for the numerically calculated eigen-
modes. In general, one may find Nm apparently distinct up
modes. The number Nm generally can be any value between
2L+1 and N, depending on the details of the numerical al-
gorithm. Generally, when L and M increase, the ratio of
Nm / �2L+1� will approach, but never reach, unity. Without

analytically recognizing the degeneracy, the amplitudes of
Nm crystal modes, along with the amplitudes of 2L+1 re-
flected modes, can never be solved from 2�2L+1� boundary
equations no matter how large L and M are.

D. Partial spatial interference in the slab

The theory developed here can also be used to study the
problem that a beam of finite width transmits through a rela-
tively thick PC slab. Consider a simple situation where each
internal reflection generates only a single reflected beam in-
side the PC slab. After a round trip of reflections, the beam
will be shifted laterally with respect to the original beam in
the PC slab. If the reflection angles are relatively large and/or
the beamwidths are relatively narrow, the secondary beams
generated due to multiple reflections may have little or no
spatial overlap with respect to the original beam. Outside the
photonic crystal, an observer may see a series of parallel
beams exiting each surface rather than a single beam that
contains the interference effect. The slab transmission theo-
ries for the planar incident waves cannot predict the strength
of each exiting beam in such a case. The single-surface re-
fraction theory developed here must be used. In cases where
multiple beams are generated upon each reflection, the
beams may overlap each other in a complicated manner in-
side the PC slab. If the beamwidths are finite, again the con-
ventional slab theory would usually not be applicable; the
refraction theory presented here shall be used.

V. SUMMARY

A rigorous theory has been developed for light refraction
by a photonic crystal with arbitrary lattice type and surface
orientation. First, the refraction of a planar incident wave at a
photonic crystal surface is rigorously analyzed. To ensure the
generality of the theory, we have rigorously proved the equal
partition of forward and backward propagating modes. The
concept of surface-orientation-dependent mode degeneracy
has been proposed and its relationship to quasiperiodic sur-
faces unfolded. A slight change of surface orientation is pre-
dicted to split one beam into an infinite number of beams in
certain cases. We have further discussed the case where a
Bloch wave illuminates an interface from inside a PC, which
enables us to compute the transmissions along a complete
light path through a series of interface. In addition, the trans-
mission of a Gaussian beam is analytically discussed and the
insertion loss formulas are presented. Other realistic beam
profiles are discussed for designing photonic crystal devices.
With all these issues solved, a complete theoretical frame-
work of the photonic crystal refraction and transmission has
thus been established. The theory has been applied to design
a high-channel-count, low-loss WDM demultiplexer.

This theory offers a new picture of the refraction pro-
cesses and opens the door to a broad range of problems that
previously required prohibitive computation resources based
on prior methods. In addition, there are many new theoretical
problems unveiled by this theory.

The method presented here provides an efficient alterna-
tive to study the waveguide endface coupling problem with
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the supercell approach.16 It can be used to study an interface
between two PC’s of incommensurate lattice constants as
well. In addition, this theory can be extended to study the
transmission through a PC slab as well by considering the
boundary conditions at two surfaces simultaneously. Nega-
tive refraction in photonic crystals has been subject to inten-
sive study recently. The prospect of making superlenses with
resolutions beyond the Rayleigh limit35 has stirred significant
interest in the research community. Plane-parallel photonic
crystal slabs are one of the candidates for superlens
applications.8 The rigorous theory developed here sheds new
light on the problem. With this theory, some ideas can now
be evaluated on a more rigorous basis.

In a similar fashion, one may develop a rigorous mode
theory for 2D photonic crystal waveguides as these
waveguides can be regarded as an air slab sandwiched be-
tween two semi-infinite photonic crystals. One readily sees
that this theory for PC slabs can be used to study grating
diffraction as well.

We hope this work will stimulate further study and possi-
bly be extended to areas such as surface physics and x-ray
and electron diffraction, where surface-related problems
abound in various forms of periodic lattices.
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APPENDIX A: GROUP VELOCITY FOR 2D TM WAVES

For the operator matrix �W� and any of its eigenvector
�Es�, we define

H�Es� = �Es�†�W��Es� .

Note that H�Es��0. Each element of �W� and �Es� is a func-
tion of kx, ky, and �; therefore, H can also be considered a
function of these variables. For real eigenvalues, �W��Es�
=0 yields �Es�†�W�=0; thus, the derivative of H can be sim-
plified,

�

��
H�Es� = �Es�†��W�

��
�Es� ,

where a technique similar to the Hellmann-Feynman theorem
is applied to avoid the differentiation of �Es�. Similarly,

�kH�Es� = �Es�†��k�W���Es� .

Now consider H�kx ,ky ,���0, where �=��kx ,ky� describes
the dispersion contours in reciprocal space. The total deriva-
tive of H with respect to ky gives

�H
�ky

+
�H
��

��

�ky
= 0, �A1�

from which the y component of group velocity can be calcu-
lated from the derivatives of H. A similar procedure yields
the x component. Thus one finds

�k� =
�0

2�Eem�s��G �ks + G�	Es�G�	2, �A2�

where ks=kxex+ky�s�ey and

Eem�s� =
�0

2�2�
G

�ks + G�2	Es�G�	2

is non-negative for real k modes.
For real ks modes, the Poynting vector averaged per cell

per period of time is readily computed:

�S�cell,T = �1/2�0���
G

�ks + G�	Es�G�	2, �A3�

where �0 is the vacuum permeability. Hereafter, we omit the
average brackets of S. Our calculation of �k� differs from
the calculation by the Hellmann-Feynman theorem36 as the
operator we have used depends on the frequency, which al-
lows us to differentiate the operator with respect to �. The
expression we obtain, Eq. �A2�, appears to give a more ob-
vious correlation between the group and Poynting vector.
Actually, one readily finds

S = Eem�k� . �A4�

Note that Botten et al. derived Eq. �A4� with Green’s
functions.23 Even earlier, Yeh derived Eq. �A4� for 1D peri-
odic structures as well.37 The same relation, Eq. �A4�, holds
for TE waves, although

S = �4��0�−1 � Hs
*�G�
1

�
�

GG�
�2ks + G + G��Hs�G�� .

APPENDIX B: GENERAL PROOF OF THE EQUAL
PARTITION OF UP AND DOWN MODES

In Sec. II, we have presented an intuitive proof of the
equal partition of up and down modes for 2D photonic crys-
tals. In this section, we shall progressively develop a more
rigorous and complete proof that can be applied to 3D pho-
tonic crystals and open contours as well.

Consider an arbitrary 2D dispersion contour shown in the
left graph of Fig. 1�b�. With the Jordan curve theorem,31 one
readily shows that any constant-kx line intersects a closed
contour even number of times. Instead of considering the
normal vector, we now consider the tangent vector along the
contour. Any closed contour can be given a direction, along
which a 1D creature can traverse the contour and return to its
starting point. As the creature travels, it counts the points Ci,
i=1, . . . ,2Nc, where it crosses the constant-kx line. It will
pair these points as

�C2i−1,C2i�, i = 1, . . . ,Nc. �B1�

Consider an arbitrary pair of intersecting points, which cor-
respond to two consecutive times that the creature crosses
the constant-kx line. The constant-kx line divides the recipro-
cal space into two disconnected part. Whenever the creature
crosses the line, it switches from one part to the other. There-
fore, if the creature crosses the line from right to the left at
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C2i−1, then it must return to the right from the left at C2i, and
vice versa. Accordingly, the x component of the tangent vec-
tor must have opposite signs at C2i−1 and C2i. For example,
the tangent vector at C2i−1 has an angle between � /2 and
3� /2 with respect to the +x axis, whereas it has an angle
between −� /2 and � /2 at C2i. Assume that the normal vec-
tor has an angle −� /2 with respect to the tangent vector �if
the angle is +� /2, the final conclusion will be same�. Thus,
the normal vector at C2i−1 has a polar angle between 0 and �,
whereas the normal vector has a polar angle between −� and
0 at C2i. This means that the y component of the normal
vector has opposite signs at the pair of points. For a 3D
photonic crystal, its dispersion surface is 2D surface in 3D
reciprocal space. The constant-kx line will become the
constant-�kx ,kz� line, assuming the coordinate system is cho-
sen such that the y axis remains normal to the crystal surface.
It will be difficult to work directly with the surface normal
vector in 3D because it may not be in one plane when the
creature travels along a section of the dispersion surface.
Fortunately, the preceding proof presented in this part prima-
rily relies on the tangent vector. Consider the plane passing
the constant-�kx ,kz� line and incident wave vector. One
readily shows that the intersection of this plane and the dis-
persion surface consists of closed contours provided that the
dispersion surface consists of components topologically
equivalent to a sphere. Note that the tangent vector of each
contour is also a tangent vector of the dispersion surface.
Also note that the constant-�kx ,kz� line is parallel the y axis
so that the projection of the normal vector on this plane
maintains its y component ny. Then one can apply the pre-
ceding proof with each contour obtained by intersection and
show that the y component of the surface normal has oppo-
site sign for each pair of crossings.

As witnessed in some periodic systems that can be re-
garded as 1D photonic crystals embedded in a 2D or 3D
space, the equifrequency surface may not be closed.38–40

Generally, such a situation is fairly complicated to analyze
directly. The preceding discussions on the closed surfaces
provide certain insight for investigating this situation al-
though the adiabatic approach shall be followed if one in-
tends to utilize the preceding discussions.

For a given photonic crystal, we parametrize its dielectric
function ��x� in the following manner:

���,x� = �̄ + ��p�x� , �B2�

where �̄ is certain spatial average of ��x� and �p�x�=��x�
− �̄ represents the periodic perturbation in the original crystal.
Obviously,

��1,x� = ��x� . �B3�

Consider the dispersion surface for a photonic crystal rep-
resented by a dielectric function ��0,x�= �̄. Obviously, this is
a homogeneous medium. The dispersion surface should be a
circle �2D� or a sphere �3D�. Actually, if one solves the ei-
genvalue problem, Eq. �1�, for the TM polarization in 2D,
one finds that the dispersion surface consists of periodic rep-
licas of circle centered at reciprocal lattice vertices. A similar
replication occurs for a 3D photonic crystal. Applying the

preceding discussions to each circle or sphere individually,
one readily shows the equal partition in this case because
each circle or sphere is closed. Note that these circles or
spheres may intersect each other in reciprocal space, often at
the BZ boundaries. The dispersion surface around each inter-
section point will undergo a topological mutation upon an
infinitesimal periodic perturbation. Such a mutation of topol-
ogy may lead to the presence of the open contours or sur-
faces. One approach is to investigate the general characteris-
tics of the topological mutation and prove that the correlated
mutations generate open contours pairwise and maintain the
equal partition. By expanding the polynomial F�kx ,ky ,�� in
the neighborhood of a mutation point, one can show that
such a mutation usually leaves a pair of open surfaces �which
may be far separated in space�, whose corresponding normal
vectors have the relevant component in opposite signs. This
method works fairly well for those 2D problems where the
situation is similar to gratings. It becomes considerably more
complicated in other cases, particularly for 3D problems.
Here we present another proof.

Assume an infinitesimal perturbation ��p�x� is imposed
on the averaged uniform medium. Because �k�=vgn, we
can use �� /�ky in place of ny for equivalent results in the
following discussions. Consider a constant-kx line—or a
constant-�kx ,kz� line in 3D—that does not pass any intersec-
tion point of the unperturbed circles �or spheres in 3D�. If the
perturbation is small enough and the constant kx line is suf-
ficiently far from all of the intersection points, the dispersion
surface should not be mutated where this constant-kx line
crosses the dispersion surface. And the equal partition will be
maintained for this value of kx based on the preceding dis-
cussions on the averaged homogeneous medium. Now let the
constant-kx line sweep. Owing to the continuity of the dis-
persion surface, the values of �� /�ky at the points where the
constant-kx line crosses the dispersion surface cannot
abruptly switch its sign as kx varies continuously, and the
equal partition is maintained. The only possibility that
�� /�ky may change its sign is when �� /�ky =0. This corre-
sponds to the cases where the constant-kx line is tangent to
the dispersion contour. As discussed in Sec. II, when the
constant-kx line sweeps across such a tangent point, either a
pair of real-valued up and down modes will disappear �or
appear� or a single real-valued eigenmode will maintain its
sign of �� /�ky. In either case, the equal partition shall not be
affected. Thus, for any constant-kx line, the equal partition of
the up and down modes is maintained for a photonic crystal
with an infinitesimal periodic perturbation regardless of the
presence of open contours. As the strength of the periodic
perturbation continuously increases �so that � varies from 0
to 1�, if there is any further topological mutation, one can
apply the above argument and show that the partition of up
and down modes remains equal. In conclusion, the equal
partition holds for any value of �, including �=1, which
corresponds to the photonic crystal structure we intend to
solve.

We note that without this adiabatic approach, a direct ana-
lytic proof of the equal partition is difficult. For example, the
fact that the up and down modes appear in pairs immediately
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reminds us of Vieta’s formulas, yet it is surprisingly hard to
construct certain convenient forms of the derivative pairs of
the roots ky�s�. One factor that one must keep in mind is that
these forms must be sufficiently simple so that they can be

easily evaluated from the coefficients for the polynomial
F�kx ,ky ,��, or ultimately from the elements of �W�. This
often complicates the situation severely, especially when the
problem is extended to 3D photonic crystals.
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