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We generalize Dykhne’s calculation of the effective resistance of a two-dimensionals2Dd two-component
medium to the case of frictional drag between the two parallel two-component layers. The resulting exact
expression for the effective transresistance,reff

D , is analyzed in the limits when the resistances and transresis-
tances of the constituting components are strongly different—situation generic for the vicinity of theclassical
spercolatived metal-insulator transitionsMIT d. We demonstrate that the evolution ofreff

D across the MIT is
determined by the type of correlation between the components, constituting the 2D layers. In the case of two
electron layers,reff

D changes either monotonically or exhibits a sharp maximum. For electron-hole layersreff
D is

negative andureff
D u exhibits a sharp minimum at the MIT.
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I. INTRODUCTION

Frictional drag between two layers was first predicted
theoretically1,2 and later observed experimentally.3,4 The
characteristic measured in the experiment is the drag resis-
tance,rD=Vp/ Ia, where Vp is the voltage built up in the
passive layer upon passing the current,Ia, through the active
layer. Experimental observations3,4 have inspired a great
number of theoretical studies of the frictional drag for differ-
ent realizations of the two-dimensionals2Dd electronsholed
systems, constituting active and passive layers.5–20 In paral-
lel, a general formalism for calculating drag was
advanced.21–27

In all theoretical papers, the parallel layers were assumed
perfectly homogeneous on the macroscopic scalessusually,
the scales exceeding the carrier mean-free path,ld. Incorpo-
rating tunneling bridges13 or assuming correlations between
the wave functions of the two layers14 did not violate their
macroscopichomogeneity. Also, except for Refs. 17 and 18,
the temperature was assumed to be high enough, thus allow-
ing one to neglect the mesoscopic fluctuations due to coher-
ence of different regions of the layers. The question about the
magnitude of drag between the 2D layers, which are strongly
inhomogeneousmacroscopically, was not addressed in the
theories.5–27 This question is studied in the present paper.

To be specific, consider first the following situation. As-
sume that the passive layer is a good metal,kFlp@1, which is
perfectly homogeneous with a fixed concentration of elec-
trons, np=kF

2 /2p. The concentration,nasr d, of electrons in
the active layer is determined by the concentration of donors,
NDsr d. Due to, say, imperfections in the doping process,
NDsr d fluctuates on a macroscopic scale with very large cor-
relation length,Rc@ l ssuch an assumption was previously
adopted in Refs. 28 and 29d. Assume now, that the active
layer can be depleted by applying the gate voltage,Vg. With-
out the gate voltage,Vg=0, we havenasr d=NDsr d. Upon
increasingVg, the electron concentration changes asnasr d
=NDsr d−kVg, where the dimensionless coefficientk de-
scribes the depletion rate. Assume also, that atVg=0 the
concentration,na, is high enough, so that even with fluctua-
tions, every region of the active layer is metallic. AsVg in-

creases, the local resistivitiesrasr d=rahNDsr d−kVgj will
also increase, but at a different rate, so that within a certain
domain of Vg, the inhomogeneities inNDsr d will become
important. Namely, while some regions of the active layer
will remain metallic withra=r1

a weakly dependent on tem-
perature, the remaining area of the active layer will turn into
an insulator withra=r2

a~expsU /Td, whereU is the activa-
tion energy. Then, it is clear that at certain criticalVg=Vg

c, the
metallic regions will occupy exactly 50% of the area of the
active layer. In other words, theclassical metal-insulator
transition sMIT d will take place within the narrow interval
uVg−Vg

cu!Vg
c. The width,dVg, of this interval can be related

to the critical exponent,t<1.3, of conductivity in the classi-
cal percolation.30 Indeed, in the limitr2

a→`, the resistivity
nearVg

c diverges asrasVgd,r1
afsVg

c−Vgd /Vg
cg−t. Conversely,

in the limit r1
a→0, we haverasVgd,r2

afsVg−Vg
cd /Vg

cgt. Then,
dVg is determined by matching the two behaviors, i.e.,
dVg/Vg

c=sr1
a/r2

ad1/2t. For the activated character of transport
in an insulator, assumed above,dVg shrinks with temperature
as exps−U /2tTd.

It is important to note that, in addition to the above quali-
tative picture, there exists a soundquantitativeresult con-
cerning resistivity at 2D classical MIT. Namely, as was dem-
onstrated by Dykhne,31 the exact value of ra at Vg=Vg

c is
equal to rasVg

cd=sr1
ar2

ad1/2. Moreover, the productrasVg
c

+vdrasVg
c−vd is equal tosr1

ar2
ad1/2 for any v. The question

arises about the behavior of the drag resistance,reff
D , in the

vicinity of the classical MIT.
It is obvious that, outside the intervaluVg−Vg

cu
&Vg

csr1
a/r2

ad1/2t, the effective transresistance is equal tor1
D on

the “metallic” side of MIT and tor2
D on the “insulating” side,

where r1
D,r2

D are the transresistivities between the regions
with resistancer1

a andr2
a of the active layer and the metal of

the passive layer, respectively. This is because, outside of the
transition region, the transport is dominated by the current
paths going exclusively through the regions of either low
smetallic sided or high sinsulating sided resistance. The main
message of the present paper is that, similar to the value of
rasVg

cd, theexactvalue ofrDsVg
cd=reff

D can be found. In par-
ticular, in the limit reff

D !reff
a this value is given by
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reff
D =

r1
DÎr2

a + r2
DÎr1

a

Îr1
a + Îr2

a
. s1d

To analyze the temperature dependence ofreff
D , one can use

for r1
D a conventional expression for drag between two met-

als. Concerning the drag resistivity,r2
D, we have assumed

that the transport in the insulating regions of the active layer
is due to activated electrons. For these electrons, collisions
with electrons in the passive layer, can be viewed as an ad-
ditional source of scattering. From here, we conclude that
both theconductanceand transconductancefor the insulat-
ing regions are~exps−U /Td. In transresistance, however,
this exponent cancels out, so that theT dependence ofr2

D is
weak. It is obvious from Eq.s1d that the magnitude ofreff

D

lies betweenr1
D and r2

D@r1
D. Sincer1

a!r2
a, Eq. s1d can be

simplified toreff
D =r1

D+r2
Dfr1

a/r2
ag1/2, so that at lowT we have

reff
D ~T2. With increasingT, this dependence crosses over to

reff
D ~exps−U /2Td, i.e., becomes activational. From Eq.s1d,

we also conclude that the effective drag does not follow the
evolution of resistivity,reff

a , as the classical MIT is continu-
ously swept due to the variation of the gate voltage. Indeed,
the reff

a changes sharply fromr1
a on the metallic side to

sr1
ar2

ad1/2 at the percolation threshold, and further tor2
a on the

insulating side. On the other hand, the crossover ofreff
D from

r1
D to r2

D is “delayed,” as illustrated in Fig. 1.
The reason why the exact expression forreff

D can be ob-
tained is that the duality transformation31 can be generalized
to the case of two layers. This is because, as depicted in Fig.
1, the double-layer system can be viewed as a two-
component system, in which each component consists oftwo
vertically separated islands, coupled by the mutual drag.

II. DERIVATION

In the presence of drag, each component of the double-
layer system is characterized by its resistivity matrix

R1 = Sr1
a r1

D

r1
D r1

p D, R2 = Sr2
a r2

D

r2
D r2

p D . s2d

If the two components are equally distributed over the plane,
then the effective resistivity matrix,Reff, can be found ex-
actly. As we demonstrate below, the corresponding expres-
sion forReff has the form

Reff = sD1D2d1/4
D2

1/2R1 + D1
1/2R2

ÎdetfD2
1/2R1 + D1

1/2R2g
, s3d

whereD1=detsR1d and D2=detsR2d are the determinants
of the matricesR1 andR2, respectively.

In general, the calculation of the effective resistivity re-
quires the solution of the local Ohm equations

Ea = raJa + rDJp, Ep = rpJp + rDJa, s4d

within each double-layer island constituting one of the two
components, see Fig. 1. Naturally, Eq.s4d implies the in-
plane isotropy of each component. Then, it is convenient to
view the pairssJa,Jpd and sEa,Epd as two-component vec-
tors

Ĵ = SJa

Jp
D, Ê = SEa

Ep
D , s5d

and rewrite local Eq.s4d in the form Ê=RĴ, where the
matrix,R, assumes one of the formss2d within each com-
ponent.

Local Ohm equations should be solved together with
Maxwell’s and continuity equations

f= 3 Êg = Uf= 3 Eag
f= 3 Epg

U = 0, s= Ĵd = U=Ja

=Jp
U = 0.

In order to derive Eq.s3d we demonstrate that, for glo-
bally equivalent distributions of the two components, the ma-
trix Reff satisfies the following equation

Reff =R1Reff
−1R2. s6d

This equation generalizes the Dykhne result31 to the case of
two layers coupled by drag. It is easy to see that in the
absence of drag, when the matricesR1 andR2 are diago-
nal, Eq.s6d immediately yields the conventional expressions
reff

a =Îr1
ar2

a andreff
p =Îr1

pr2
p. In deriving the closed Eq.s6d for

Reff, we follow the line of reasoning put forward by

Dykhne.31 Namely, along withĴ and Ê, we introduce the

auxiliary variablesĴd and Êd, defined as

Ĵd = AJfn 3 Êg, Êd = AEfn 3 Ĵg, s7d

whereAJ and AE are someconstantmatrices, andn is the
unit vector normal to the layers. It is easy to check that,

similarly to Ê andĴ, the variables,Êd andĴd also satisfy the
Maxwell and the continuity equations

f= 3 Êdg = 0, s= Ĵdd = 0. s8d

On the other hand, the Ohm’s law dictates the following

relation betweenÊd and Ĵd

FIG. 1. sad Schematic illustration of thematrix duality transfor-
mation. Mutually dual two-layer islands are connected by horizon-
tal lines.sbd The resistivity of the active layersdashed lined and the
effective dragssolid lined are depicted as a function of the gate
voltage for the case when the passive layer is a homogeneous metal.
The value reff

D at MIT is given by Eq. s1d, so that reff
D /r2

D

<sr1
a/r2

ad1/2!1.
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Êd = AEfn 3 Ĵg = AEfn 3 sR−1Êdg = sAER−1AJ
−1dĴd

=RdĴd. s9d

At this point, we impose the duality conditions. Namely, we

require that within thefirst componentĴd andÊd are related
via the matrixR2, and, conversely, within thesecondcom-

ponent the relationĴd=R1Êd holds. If these conditions are
met, then the equivalent distribution of the first and second

components guarantees thaton averageĴd andÊd are related
by the same effective resistivity matrixReff as theaverage

vectors Ĵ and Ê. Quantitatively, the duality conditions are
expressed as

R1 = AER2
−1AJ

−1, R2 = AER1
−1AJ

−1. s10d

It is easy to see that these conditions are satisfied by choos-
ing AE=R1 andAJ=R2

−1. As a final step, Eq.s6d emerges
from the following chain of identities for average fields and
currents

kÊdl = AEfn 3 kĴlg = AEfn 3 sReff
−1kÊldg = sAEReff

−1AJ
−1dkĴdl

=ReffkĴdl. s11d

With AE=R1 and AJ
−1=R2, the last identity in Eq.s11d

yields Eq.s6d. In general, the effective resistivity matrix is
symmetric, and, thus, is characterized by three unknown el-
ements. As a result, Eq.s6d can be reduced to three second-
order algebraic equations. It turns out that only two of them
are independent. More precisely, the general solution of Eq.
s6d can be presented in the formReff=aR1+bR2, wherea
andb are thenumbers. In order to find these numbers, it is
sufficient to derive two relations between them. The first
relation expresses the fact that the determinants of the left-
hand sideslhsd and right-hand side of Eq.s6d are equal. This
yields detsaR1+bR2d=sD1D2d1/2. The second relation
emerges upon direct substitution ofReff=aR1+bR2 into
Eq. s6d leading to

a2R1R2
−1 + b2R2R1

−1 = s1 − 2abdI, s12d

whereI is the unity matrix. It follows from the above rela-
tion that nondiagonal elements of the lhs are zero, so that
sa /bd2=D2/D1. From the two above relations, we find the
following expressions fora andb

a =
D1

1/4D2
3/4

ÎdetfD2
1/2R1 + D1

1/2R2g
, b = aÎD2

D1
. s13d

Using these expressions, we arrive at the explicit form Eq.
s3d of the effective resistivity matrix.

III. APPLICATIONS

In all realistic situations, the drag-related nondiagonal
components of the matricess2d are much smaller than the
diagonal components, which describe the in-plane transport.
Under this condition, the effective drag between the 2D lay-
ers can be simplified to

reff
D =

r1
DÎr2

ar2
p + r2

DÎr1
ar1

p

Îr1
ar2

p + Îr2
ar1

p
. s14d

The case of drag between a homogeneous layer and a two-
component system, considered in the Introduction, corre-
sponds tor2

p=r1
p. Then, Eq.s14d immediately reduces to Eq.

s1d. Below, we consider two more realizations of the double-
layer system, in which both layers are strongly inhomoge-
neous.

A. Symmetric layers

This situationssee Fig. 2d emerges when both layers are
identical se.g., positioned symmetrically with respect to the
donorsd. Moreover, we will assume for simplicity that the
gate voltages applied to both layers are the same. Then, in
the vicinity of the classical MIT, the islandsssee Fig. 1d will
be composed of either two metallic or two insulating com-
ponents. Substitutingr1

p=r1
a andr2

p=r2
a into Eq. s14d we ob-

tain

reff
D =

1

2
Fr2

DSr1
a

r2
aD1/2

+ r1
DSr1

a

r2
aD−1/2G . s15d

In contrast to Eq.s1d, r1
D and r2

D now stand for transresis-
tances between two metals and two insulators. Similar to the
case of a homogeneous passive layer,outsideof the MIT
region, we havereff

D =r1
D andreff

D =r2
D, respectively. However,

the behavior ofreff
D within the transition region is drastically

different from that in Fig. 1. Indeed, the first term in Eq.s15d
contains a small factorfr1

a/r2
ag1/2~exps−U /2Td, while the

second term contains a large factor~expsU /2Td. Thus, de-
spite r2

D@r1
D at low temperatures, the second term will not

only dominate but can exceedr2
D. As a result,reff

D will exhibit
a maximum as a function ofVg in the vicinity of MIT, as
illustrated in Fig. 2.

B. Electron-hole layers

The sign of transresistance in this case is negative.4 The
phenomenon of drag in the system ofhomogeneouselectron-
hole layers was previously considered in Refs. 5, 7, and 8
with an emphasis on the role of interaction-induced correla-
tions between electrons and holes beyond the random-phase
approximation. We will consider the spatially inhomoge-
neous situation assuming that, without disorder, the concen-

FIG. 2. The transresistance across the MIT is depicted schemati-
cally for two correlated electron layers at lowT. The valuereff

D at
MIT is given by Eq.s15d. The dependencereff

a sVgd is the same as in
Fig. 1.
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trations of electrons and holes are strictly equal. We will also
assume that the disorder potential, acting on electrons and
holes, is the same. The crucial observation is that, due to
their opposite charges, electrons and holes “react” differently
to the disorder potential. The same potential that creates a
“metallic lake” of electrons would deplete the corresponding
passive region of holes, turning them into insulator. As a
result, as the MIT is approached, we arrive at the situation
depicted in Fig. 3, when the islands consist of pairs of me-
tallic electrons and insulating holes and vice versa. Then,
substitutingr2

D=r1
D, r1

p=r2
a, andr2

p=r1
a into Eq. s14d, we get

reff
D = − 2ur1

Du
Îr1

ar2
a

r1
a + r2

a . s16d

It is obvious from Eq. s16d that, since ureff
D u

,ur1
Duexps−U /2Td, the absolute value of the effective drag

exhibits aminimumnearVg
c, as illustrated in Fig. 3.

IV. DISCUSSION

Physical explanation of the fact thatureff
D u between the

electron-hole layers has a minimum at MIT is straightfor-
ward. Indeed, when metallic lakes of electrons are located
opposite to the insulating regions of holesssee Fig. 3d, then,
at MIT, the current paths in the active layer are perpendicular
to those in the passive layer, so that the conditions for drag
are unfavorable. The origin of maximum ofreff

D at MIT for
two correlated electron layers, as depicted in Fig. 2, is less
transparent. One can speculate that the maximum is due to
the fact that, at MIT, the current paths in two layers are long,
and that due to perfect correlation each long path in the ac-
tive layer has its “counterpart” in the passive layer. Note
finally, that Eq.s3d is exact and takes into accountall of the
orders inrD. Although modeling of the classical MIT with
two-component mixture is crude, we believe that due to
strong difference in resistances of the components our pre-
dictionss1d, s15d, ands16d for different types of behavior of
reff

D across the MIT remain valid for realistic situations.
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