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Effective drag between strongly inhomogeneous layers: Exact results and applications
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We generalize Dykhne’s calculation of the effective resistance of a two-dimeng@ibatwo-component
medium to the case of frictional drag between the two parallel two-component layers. The resulting exact
expression for the effective transresistang®, is analyzed in the limits when the resistances and transresis-
tances of the constituting components are strongly different—situation generic for the vicinity aasisecal
(percolative metal-insulator transitioMIT). We demonstrate that the evolution pﬁﬁ across the MIT is
determined by the type of correlation between the components, constituting the 2D layers. In the case of two
electron Iayers/,)eDff changes either monotonically or exhibits a sharp maximum. For electron-hole )@f%s
negative andpZy| exhibits a sharp minimum at the MIT.
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I. INTRODUCTION creases, the local resistivitigg®(r)=p*{Np(r) - «Vg} will
also increase, but at a different rate, so that within a certain

Frictional drag between two layers was first predictedOIOmain of Vi, the inhomogeneities ito(r) will become

theoretically-* and later observed experimentaity. The important. Namely, while some regions of the active layer
characteristic measured in the experiment is the drag resien P N Y, W a a 9 Y
tance, pP=VP/12, where \? is the voltage built up in the will remain metallic withp*=p, weakly dependent on tem-
passive layer upon passing the curréfitthrough the active pergture, the rgma|n|nag area of the active Ie}yer will tqrn Into
layer. Experimental observatiotfs have inspired a great an insulator Wlthpa':.pZOCGXFﬂ/{/T), Whergu IS the acctlva-
number of theoretical studies of the frictional drag for differ- ion energy. Then, itis clear that at certain critivgFVj, the

ent realizations of the two-dimension@D) electron(hole) metallic regions will occupy exactly 50% of the area of the

systems, constituting active and passive lajetin paral- active layer. In other words, thelassical metal-insulator
el a ,general formalism for calculating drag was transition (MIT) will take place within the narrow interval

advancedi-27 [Vg— Vgl <Vg. The width, 6V, of this interval can be related

In all theoretical papers, the parallel layers were assumelf the critical eﬁponentwll.& of conductivity in the classi-
perfectly homogeneous on the macroscopic scalssally, cal perco_latlor?. Indeed, in the limitp5— o°, the resistivity
the scales exceeding the carrier mean-free pattincorpo- ~ nearVy diverges ap®(Vg) ~ pil (Vg=Vg)/VGI™. Conversely,
rating tunneling bridgéd or assuming correlations between in the limit p7— 0, we havep™(Vy) ~ 5 (V= Vg)/Vgl'. Then,
the wave functions of the two layéfsdid not violate their ~6Vy is determined by matching the two behaviors, i.e.,
macroscopichomogeneity. Also, except for Refs. 17 and 18, Vg/Vg=(p3/p3)*?. For the activated character of transport
the temperature was assumed to be high enough, thus allow? an insulator, assumed abo®/, shrinks with temperature
ing one to neglect the mesoscopic fluctuations due to coheRs exg—-i//2tT).
ence of different regions of the layers. The question about the It is important to note that, in addition to the above quali-
magnitude of drag between the 2D layers, which are stronglyative picture, there exists a souwgantitativeresult con-
inhomogeneousnacroscopically was not addressed in the cerning resistivity at 2D classical MIT. Namely, as was dem-
theoriess=2” This question is studied in the present paper. onstrated by Dykhn&, the exactvalue of p? at vg:vg is

To be specific, consider first the following situation. As- equal to pa(Vg):(pipg)”z. Moreover, the producip?(Vg
sume that the passive layer is a good mé¢d},>1, whichis  +v)p*(Vg-v) is equal to(p3p3)Y2 for any v. The question
perfectly homogeneous with a fixed concentration of elecarises about the behavior of the drag resistap&@,in the
trons, np:k§/27-r. The concentrationn,(r), of electrons in  vicinity of the classical MIT.
the active layer is determined by the concentration of donors, It is obvious that, outside the intervalVy—Vy|
Np(r). Due to, say, imperfections in the doping process,svg(pi‘/pg)m, the effective transresistance is equapfoon
Np(r) fluctuates on a macroscopic scale with very large corthe “metallic” side of MIT and tq,g’ on the “insulating” side,
relation length,R.>1 (such an assumption was previously where plD,pg are the transresistivities between the regions
adopted in Refs. 28 and R9Assume now, that the active with resistance? andpj of the active layer and the metal of
layer can be depleted by applying the gate voltageWith-  the passive layer, respectively. This is because, outside of the
out the gate voltageY,=0, we haven,(r)=Np(r). Upon transition region, the transport is dominated by the current
increasingV,, the electron concentration changesm§) paths going exclusively through the regions of either low
=Np(r)-«Vy, where the dimensionless coefficiert de- (metallic side or high (insulating sidé¢ resistance. The main
scribes the depletion rate. Assume also, thav@0 the message of the present paper is that, similar to the value of
concentrationn,, is high enough, so that even with fluctua- p*(Vg), the exactvalue opr(\/g)=pEff can be found. In par-
tions, every region of the active layer is metallic. Xgin- ticular, in the Iimitp('gﬁ<pf;ff this value is given by
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! | If the two components are equally distributed over the plane,
‘wﬂlfmﬂﬂw @%\ Q@ @ﬂm]ﬂ]m then the effective resistivity matriXR ¢, can be found ex-

actly. As we demonstrate below, the corresponding expres-

O L —— sion for R has the form
AP
.: 2 R (D D )1/4 D%/Z’R1+ Dilsz (3)
a (yal/2 e eff: 1“2 1
(PP5)" P VdefD*R, + DI*R ]
" ;
L < where D;=de{R ;) and D,=de{R,) are the determinants
Py 1 of the matricesR; andR.,, respectively.
Y \4 In general, the calculation of the effective resistivity re-
¥ quires the solution of the local Ohm equations
FIG. 1. (a) Schematic illustration of thenatrix duality transfor- E,=p%J,+ pDJp, Ep= pF’Jp +pPJ,, (4)

mation. Mutually dual two-layer islands are connected by horizon- . . o
tal lines. (b) The resistivity of the active laygdashed lingand the ~ Within each double-layer island constituting one of the two

effective drag(solid line) are depicted as a function of the gate COmponents, see Fig. 1. Naturally, E@) implies the in-
voltage for the case when the passive layer is a homogeneous metRlane isotropy of each component. Then, it is convenient to
The value pl; at MIT is given by Eq.(1), so that p5/pS  View the pairs(J,,Jp) and(E,, Ep) as two-component vec-

~ (p51p3)12<1. tors

— ~_(Ja} =2_(Ea
o _ P2V +p2Npl J_<J ) E_(E ) ©
Peti = Ty \,’/_"" . (1) p p ) )
VLT VP and rewrite local Eq(4) in the form E=RJ, where the
To analyze the temperature dependencegbf one can use matrix, R, assumes one of the forng®) within each com-
for p? a conventional expression for drag between two metponent.
als. Concerning the drag resistivityg, we have assumed Local Ohm equations should be solved together with
that the transport in the insulating regions of the active layeMaxwell's and continuity equations
is due to activated electrons. For these electrons, collisions
with electrons in the passive layer, can be viewed as an ad- [V x é] - [V X Edl Ja
ditional source of scattering. From here, we conclude that [V X Ep] v,
both theconductanceand transconductancéor the insulat- In order to derive Eq(3) we demonstrate that, for glo-
ing regions arexexp(—U/T). In transresistance, however, ball ) Ve =g ' 9

y equivalent distributions of the two components, the ma-
trix R satisfies the following equation

=0, (VJ)=

0.

this exponent cancels out, so that thelependence 0,152D is
weak. It is obvious from Eq(l) that the magnitude 0p
lies betweerp? and p5> pP. Sincepl<ps, Eq. (1) can be Rei= RIRAR,. (6)
simplified to pS¢=pP + pS[p3/ p3]*/2, so that at lowTl we have

pDﬁocTz. With increasingT, this dependence crosses over to

exp(-U/2T), i.e., becomes activational. From , . X
Perr * EXN ) Ed) éslbsence of drag, when the matricBs; and R, are diago-

we also conclude that the effective drag does not follow th | Eq.(6)i diately vields th tional .
evolution of resistivity,o3, as the classical MIT is continu- ng, | ;l(a) 'mmediately YIelds the conventional expressions
=vp3p5 andpBy=plpY. In deriving the closed Ed6) for

ously swept due to the variation of the gate voltage. Indeed?eff~ ' .
the p&; changes sharply from? on the metallic side to /<efr We follow the line of reasoning put forward by
(p3p) 2 at the percolation threshold, and furtherpfoon the ~ Dykhne®* Namely, along with] and E, we introduce the
insulating side. On the other hand, the crossoveigefrom  auxiliary variablesly andEg, defined as
p? to pY is “delayed,” as illustrated in Fig. 1. . . .

The reason why the exact expression 3 can be ob- Ja=A[n X E], Eg=Agn xJ], (7)
tained is that the duality transformatfdrean be generalized whereA, and Ag are someconstantmatrices, anch is the

to the case of two layers. This is because,_ as depicted in I:i‘@mit vector normal to the layers. It is easy to check that,
1, the double-layer system can be viewed as a two-, il 2 andJ. th iablesk 43, al . h
component system, in which each component consistsaf Similarly to E andJ, the variablesEq andJ, also satisfy the

vertically separated islands, coupled by the mutual drag. Maxwell and the continuity equations

This equation generalizes the Dykhne resuib the case of
two layers coupled by drag. It is easy to see that in the

Il. DERIVATION [V X Eq]=0, (VIg=0. (8)
In the presence of drag, each component of the doubl®n the other hand, the Ohm’s law dictates the following
layer system is characterized by its resistivity matrix relation betweerk, andJgq
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Eq=Agn x J]=Adn x (RIE)]= (AgR1AHI, P

a - - a = =ie=-=

=R Jqg. 9 S —
. . . . " P
At this point, we impose the duality conditions. Namely, we p? :

A

require that within thdirst Componenﬁd and Ed are related Ve V.

. . S 8 g
via the matrixR ,, and, conversely, within theecondcom- v
A ~ . (4

ponent the relatiody=R,E4 holds. If these conditions are

met, then the equivalent distribution of the first and second FIG. 2. The transresistance across the MIT is depicted schemati-

components guarantees that averagead and éd are related caIIy_ for_ two correlated electron layers at [0 The valuepD at
by the same effective resistivity matriR . as theaverage  MIT is given by Eq.(15). The dependencely(Vy) is the same as in

~ S o X . Fig. 1
vectorsJ and E. Quantitatively, the duality conditions are 9
Xpr
expressed as pDV’@ZM pg\*"ﬁ
Ri=AR;'AT, Ro=ARA (10 o= = (14)

[ap, [ ap
. n o VP12t N p2py
It is easy to see that these conditions are satisfied by choos—h fd b h | q
ing Ae=R, andA,=R;". As a final step, Eq(6) emerges The case of drag between a homogeneous layer and a two-

from the following chain of identities for average fields and componen;[) sypstem, considered in the Introduction, corre-
currents sponds tgb=pf. Then, Eq.(14) immediately reduces to Eq.

(1). Below, we consider two more realizations of the double-
(E9) =Aeln X (1] =Adn X (RIKE)] = (AcRAATHIg) Ir?é/;zssystem, in which both layers are strongly inhomoge-

= Reff<jd> . (11)

With Ae=R, and A7'=R,, the last identity in Eq(11) A. Symmetric layers

yields Eq.(6). In general, the effective resistivity matrix is This situation(see Fig. 2 emerges when both layers are
symmetric, and, thus, is characterized by three unknown ekdentical (e.g., positioned symmetrically with respect to the
ements. As a result, E¢6) can be reduced to three second- donorg. Moreover, we will assume for simplicity that the
order algebraic equations. It turns out that only two of themgate voltages applied to both layers are the same. Then, in
are independent. More precisely, the general solution of Eghe vicinity of the classical MIT, the islandsee Fig. 1 will

(6) can be presented in the forR.z=aR 1+ BR,, Wwherea  be composed of either two metallic or two insulating com-
and g are thenumbers In order to find these numbers, it is ponents. Substituting?=p$ and p5=p5 into Eq.(14) we ob-
sufficient to derive two relations between them. The firsttain

relation expresses the fact that the determinants of the left- a\ 12 A\ 12
hand sidglhs) and right-hand side of Eq6) are equal. This D _ 1| pfri + 0 PL (15)
yields detaR,+BR,)=(D;D,)*2 The second relation Pett™ 2| P2\ pa P\ 2 '

emerges upon direct substitution ®.s=aR 1+ LR, into

Eq. (6) leading to In contrast to Eq(1), plD and p2D now stand for transresis-

tances between two metals and two insulators. Similar to the
aleRgl+ﬁ2’R2Rzlz (1-2ap)T, (12 case of a homogeneous passive layeitside of the MIT
region, we have;:;tgl,Dﬁ:p'lD andp2=p5, respectively. However,

whereZ is the unity matrix. It follows from the above rela- o pehavior opZ; within the transition region is drastically

tion tgat nondiagonal elements of the Ihs are zero, so thajiterent from that in Fig. 1. Indeed, the first term in Eg5)
(al B)*=D,/D;. From the two above relations, we find the contains a small factofp?/ ]2 exp(-14/2T), while the

following expressions for and 3 second term contains a large factoexp(l//2T). Thus, de-

Dl4p3/4 D spite p5 > p? at low temperatures, the second term will not
= L2 B=a\/=2. (13  only dominate but can excegd. As a result B, will exhibit
[de{DY?R , + DI?R,,|’ D, y domi u X " UTLpers WITL €XTIDI
i 2 et DR a maximum as a function d¥y in the vicinity of MIT, as

Using these expressions, we arrive at the explicit form Eglllustrated in Fig. 2.

(3) of the effective resistivity matrix.
B. Electron-hole layers

The sign of transresistance in this case is negétiVee
phenomenon of drag in the systemhafmogeneouslectron-

In all realistic situations, the drag-related nondiagonalhole layers was previously considered in Refs. 5, 7, and 8
components of the matricd®) are much smaller than the with an emphasis on the role of interaction-induced correla-
diagonal components, which describe the in-plane transportions between electrons and holes beyond the random-phase
Under this condition, the effective drag between the 2D lay-approximation. We will consider the spatially inhomoge-
ers can be simplified to neous situation assuming that, without disorder, the concen-

IIl. APPLICATIONS
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+ +§+++++§+ + + IV. DISCUSSION

el ?

E

Physical explanation of the fact th#i2| between the
Pl P4l electron-hole layers has a minimum at MIT is straightfor-
ward. Indeed, when metallic lakes of electrons are located
opposite to the insulating regions of holeee Fig. 3, then,
at MIT, the current paths in the active layer are perpendicular
to those in the passive layer, so that the conditions for drag

FIG. 3. The transresistance across the MIT is depicted schematf'® unfavorable. The origin of maximum pfff at MIT for

cally for electron-hole system. The valpB; at MIT is given by Eq. WO correlated electron layers, as depicted in Fig. 2, is less
(16). The dependencgly(V,) is the same as in Fig. 1. transparent. One can speculate that the maximum is due to

the fact that, at MIT, the current paths in two layers are long,
trations of electrons and holes are strictly equal. We will alsaand that due to perfect correlation each long path in the ac-
assume that the disorder potential, acting on electrons anfle layer has its “counterpart” in the passive layer. Note
holes, is the same. The crucial observation is that, due t@nally, that Eq.(3) is exact and takes into accouat of the
their opposite charges, electrons and holes “react” differentlyders inpP. Although modeling of the classical MIT with
to the disorder potential. The same potential that creates go-component mixture is crude, we believe that due to
“metallic lake” of electrons would deplete the correspondingstrong difference in resistances of the components our pre-
passive region of holes, turning them into insulator. As agjctions (1), (15), and(16) for different types of behavior of

result, as the MIT is approached, we arrive at the situation,> across the MIT remain valid for realistic situations.
depicted in Fig. 3, when the islands consist of pairs of me-

tallic electrons and insulating holes and vice versa. Then,
substitutingp? =p?, p?=p3, andph=p? into Eq.(14), we get

v v
T
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