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Arponen and Pajanne suspected that the strong internal electric field of a real lattice decreases the contact
density of electrons on the positron in comparison to expectations based on jellium calculations. In this work
we propose an approach to this problem which indeed leads to decreasing annihilation rates of positrons in real
metals. This is due to higher Fourier components of the Bloch function of the positron. With some probability
the positron moves with regard to the electron gas. Owing to that the electron accumulation on this particle
decreases. This improves agreement between theoretical and experimental annihilation rates in metals. How-
ever, because of the smallness of this effect the best agreement is still obtained if the Boroński-Nieminen
formula is accepted for the electron-positron correlations in an electron gas. Consequences of this fact are
discussed.
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I. INTRODUCTION

The problem of positron lifetime in metals has attracted
considerable interest. A review of different approaches to this
problem is given in Ref. 1.

It is known thate+-e− interaction in metals increases the
contact density of electrons on the positron typically by one
order of magnitude, decreasing the positron lifetime accord-
ingly.

For an electron gas the annihilation ratessinverse of life-
timed depend on the electron densityr0 described usually by
the rs parameter defined in Hartree atomic units as

rs = S 3

4pr0
D1/3

. s1d

They are obtainedsin units of 109/sd from the formula

lsrsd =
12

rs
3 gsrs,0d, s2d

wheregsrs,rd is the e+-e− correlation function at distancer
from the positron.

Theoretical investigations of different authors led to sev-
eral forms of the functiongsrs,0d. The resulting annihilation
rates are shown in Fig. 1. They differ by the assumptions
introduced in order to obtain them. In Refs. 2 and 3 it was
shown how important for the annihilation rates, especially
for large values ofrs, is the dependence on the distance from
a positron ofe−-e− correlations. The momentum dependence
of electron scattering on the positron is also an effect which
has been the subject of many investigations both theoretical
and experimental. The calculations of Lantto4 fforming the
base of the Boroński-Nieminen5 sBNd formula, Eq.sA3d in
Ref. 5g assume a trial function which does not allow momen-
tum dependence of electron-positron scattering nor depen-
dence ofe−-e− correlations on the presence of the positron.
This is why Lantto and co-workers4,6,7were unable to predict
the momentum dependence of annihilation probabilities.

This became possible only after introducing appropriate cor-
rections in the wave function.8,9 This does not mean that an
effective dependence ofe−-e− correlations on the distance
from the positron does not occur also in Lantto’s approxima-
tions. However, it is not based on minimizing the mean value
of the Hamiltonian with regard to any function parameter
describing electron-electron correlations which would in-
clude the positron coordinates.

On the other hand, neither the Kohn-Sham-like ideas of
Rubaszeket al.3 or Stachowiak8 nor the generalized Tamm-
Dancoff approximation of Arponen and Pajanne10 can be
treated as absolute truth. Maybe the calculations of Lantto

FIG. 1. Comparison of different formulas for the positron anni-
hilation rate lsrsd in an electron gasfdashed curve: Gondzik-
StachowiaksRef. 2d; dashed-dotted curve: Barbielliniet al. sRef.
14d; solid curve: Stachowiaket al. sRef. 8d; dotted curve: Boroński-
NieminensRef. 5dg.
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include some important contributions which are neglected in
other approaches? It is worth to mention here the recent cal-
culations of Apajaet al.11 The authors assuming the trial
wave function of Lantto improved his calculations by adding
refinements to the Fermi-hypernetted-chain approximation.

The early results of Lantto4 have been parametrized suc-
cessively by Boroński and Nieminen,5 and, as concerns his
final resultsscf. Ref. 6d, by Sterne and Kaiser12 and Puska
et al.13 The approach of Gondzik and Stachowiak2 sbased on
the work of Kallio et al.7d benefits like the approach of
Lantto of the achievements of the theory of liquids. It differs
from the approach of Lantto by expressing electron-electron
correlations and the electron-positron potential along the
lines of the Kohn-Sham theory.

The correlation function parametrized by Barbiellini
et al.14 has been calculated by Arponen and Pajanne10 sAPd
after diagonalizing the Hamiltonian rewritten in terms of
Sawada boson operators. This approach includes both mo-
mentum dependence ofe+-e− scattering and positron influ-
ence one−-e− correlations. Let us mention that the calcula-
tions of Lowy and Jackson15 and of Rubaszek and
Stachowiak,3 though using more traditional formalisms, led
to practically the same annihilation rates as those of Arponen
and Pajanne. The approach of Stachowiak8 fperturbed
hypernetted-chain approachsPHNCd, see also the paper of
Stachowiak and Lach9 sSLd and Ref. 16g includes an addi-
tional effect, namely weak nonorthogonality of scattered
one-electron wave functionssthis problem was pointed out
by Lowy and Jacksond. This effect leads to a slight decrease
of the contact density and contributes to lowering the anni-
hilation rates.

Most calculations of positron lifetimes in metals use the
BN formula for the correlation function. Obviously it gives
the best agreement with experiment, though the lifetimes ob-
tained by using it in computations are still a little shorter than
measured. All calculations use such simplifying approaches
as the local density approximationsLDA d sRef. 17d or the
weighted density approximationsWDAd.18 Barbiellini et al.
used the generalized gradient approachsGGAd sRef. 14d and
the annihilation rates of Arponen and Pajanne.10 However,
Mijnarendset al.19 showed that using LDA and the annihila-
tion rates of Puskaet al.13 would lead to a better agreement
with experiment, at least in Alsin fact, the formula of Puska
et al.13 is equivalent to the BN formulad. From the paper of
Mitroy and Barbiellini20 it also follows that the annihilation
rates of Arponen and Pajannescalled LDA in their paperd are
too high. For more comments, see the Appendix.

The deficiencies of the Jastrow-type trial function used by
Lantto made us skeptical as concerns the formula of Boroń-
ski and Nieminen. Developing a first-principles approach to
e+-e− interaction in inhomogeneous systems21–25 we tried in
vain to find an effect which would decrease the annihilation
rates in comparison to expectations based on calculations
concerning the electron gas. The present work is devoted to
studies of the possible influence of the zero motion of the
positron in a metal lattice on its screening and annihilation
rate. Arponen and Pajanne wrotesin Sec. 6.3 of Ref. 10d:
“One expects the strong internal electric field of a real lattice
to suppress the electron-positron correlations much in the
same way as the Stark effect decreases the electron density at

the positron in a positronium atom. This effect, which de-
creases the experimental annihilation rates in comparison
with the jellium model, has never been described in a realis-
tic way.”

The present paper points at a possible mechanism leading
to such an effect. However, we did not find any analog of the
Stark effect which consists of an external field acting on an
electron bound to a positive charge. In the present work an
external periodic field modulates the ground-state wave func-
tion of the positron. The screening of the nonzero Fourier
components of this wave function is influenced by the finite
velocity of the positron with regard to the electron gas. This
decreases the electron density on the positron and conse-
quently the annihilation rate. In earlier works we considered
an analog of chemical bonding.22,23 Collectivization of core
electrons by the nucleus and the positron gives rise to an
attractive term in the positron potential which increases its
density in the core region where the electron density is high.
This leads to increase the annihilation rate. Perhaps the
gauge field theory formalism proposed by Arponen and
Pajanne26 could throw an additional light on this problem.

The ground-state wave function of the positron is modu-
lated by the lattice in such a way that the positron is expelled
from the atomic cores. Developing this wave function into a
Fourier series needs introducing components of nonzero
wave vectors corresponding to a moving positron. From our
works published a couple of years ago27,28 it follows that in
the case of a proton moving in an electron gas the contact
density decreases with increasing momentum. Treatment of a
moving positron interacting with the electron gas is a diffi-
cult problem. This is why we replace the positron by a heavy
particle of charge 1/2 of the electronic charge showing at the
same time why such an approach is legitimate. We show that
at rest the contact density of electrons on this particle does
not differ much from that for a positron in the whole range of
metallic electron densities.

Such an approach to a positron in an electron gas makes it
possible to extend on the positron the formalism used in the
case of a proton moving in an electron gas and compute the
influence of the modulation of the positron wave function by
the lattice on the annihilation rates.

II. THE POSITRON AS A HEAVY PARTICLE

In this first calculation of the effect of the modulation of
the positron wave function on the screening we will adopt
the simplest and less sophisticated approach. Benefitting of
the achievements of the theory of liquids interpreted accord-
ing to Ref. 7 Gondzik and Stachowiak2 proposed to write the
Euler-Lagrange equation for the density amplitudew around
a positron in jellium in the form

f− ¹2 + V0sr dgwsr d = 0 s3d

or safter dividing the above equation by 2d

S−
1

2
¹2 + Ṽsr dDwsr d = 0, s4d

where the Coulomb part of the effective potentialṼcsr d sat-
isfies the Poisson equation
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¹2Ṽcsr d =
1

2
f− 4pDrsrd + 4pdsr dg. s5d

In the above approximationfcalled after Kallio et al.
hypernetted-chainsHNCd,7 according to the terminology of
the theory of liquidsg the positron can be considered as a
heavy particle of charge 1/2 apart from the fact that the
screening chargeDr also appears with a coefficient 1/2.

Let us try to find to what extent the positron can be de-
scribed as a heavy particle also when applying the Kohn-
Sham formalism instead of HNC.

In Eq. s3d the potential is labeled with a zero in order to
indicate that it is self-consistent only in HNC approximation.
According to Ref. 2 it is expressed as

V0sr d = −
1

r
+E dr 8

w2sr8d − r0

ur − r 8u
+ VHLhw2srdj − VHLhr0j,

s6d

where VHLhrj is the exchange-correlation correction in the
form proposed by Hedin and Lundqvist.29

In Kohn-Sham formalism the wave function of an elec-
tron gas in presence of a heavy positron is described by a
Slater determinant of one-electron functionscksr d consisting
of plane waves scattering on the positron and obeying the
equation

S−
1

2
¹2 +

1

2
Vsr dDcksr d =

k2

2
cksr d, s7d

where

Vsr d = V0sr d + vsr d, s8d

vsr d =E dr 8
rsr8d − w2sr8d

ur − r 8u
+ VHLhrsrdj − VHLhw2srdj.

s9d

rsrd is the Kohn-Sham density distribution of electrons.
Choosing theZ-axis parallel to thek vector we can ex-

press the wave functioncksr d in the form of a series in
Legendre polynomials,

cksr d = o
l=0

`

Rlsk,rdPlscosqd, s10d

whereq is the angle betweenk and r .
Asymptotically si.e., outside the range of interaction of

the positrond Rl takes the form30

Rlsk,rd = Alfcosdlskd j lskrd − sindlskdnlskrdg, s11d

where dl are phase shifts andj l and nl are the spherical
Bessel functions.

Assuming that only the first partial waves are scattered we
can write the wave functioncksr d in the form

cksr d =
1

ÎV
Heikr + o

l=0

lM

s2l + 1di lblsk,rdPlscosqdJ ,

s12d

where

blsk,rd = eidlskdblsk,rd − j lskrd s13d

andbl is defined by the formula

Rlsk,rd = s2l + 1di leidlskdblsk,rd. s14d

V is the volume of the sample.lM is the maximal value ofl
chosen in the calculations.

rsrd is obtained from the expression

rsrd = 2 o
k occ

ck
* sr dcksr d. s15d

which finally leads to the formula

rsrd = r0 +
1

p2o
l=0

lM

s2l + 1dE
0

kF

k2dkfbl
2sk,rd − j l

2skrdg,

s16d

wherekF is the Fermi vector.
Let us apply in Eq.s7d the potentialV0srd obtained from

Eq. s3d. Then, following the routine method of iteration, the
potentialV1srd is obtained from Eqs.s8d and s9d as

V1srd = V0srd + av0srd, s17d

wherea is smaller than 1se.g., equal to 0.2d. In general, in
successive iterations we use the potential

Vn+1srd = Vnsrd + afV0srd + vnsrd − Vnsrdg, s18d

where

vnsr d =E dr 8
rnsr8d − w2sr8d

ur − r 8u
+ VHLhrnsrdj − VHLhw2srdj.

s19d

rnsrd is the electron density following from Eq.s7d with the
potentialVnsrd. The total screening cloud, i.e.,

Sn =E dr frnsrd − r0g, s20d

should be equal to one electronic charge. Some complica-
tions occur becauseSn in successive iterations is not necces-
sarily equal to 1. For this reason we decided to renormalize
rnsrd before using it in Eq.s19d. This is accomplished by
adding tornsrd a term of the form

Drnsrd = Ane
−r s21d

such that the renormalized screening cloudSn8 satisfies the
equation

Sn8 − 1 =bsSn − 1d s22d

whereb is a constant smaller than 1 chosen in such a way as
to facilitate achieving self-consistency. Calculations continue
until self-consistency is reached. The criterion for self-
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consistency is vanishing ofVn+1−Vn and simultaneous small-
ness ofSn+1−1 andSn−1. Note that because of Friedel os-
cillations the value of the total screening cloud oscillates
with the maximal value ofr taken into account in calcula-
tions. Increasing this value improves the results only to a
limited degree because of increasing numerical errors. In
comparison to analogous calculations which we performed
for an Li atom in an electron gas, the requirements concern-
ing lM are rather high. In our calculations it was necessary to
use lM equal at least 3. We were able in this way to get
self-consistent solutions up tors=4.5. Assuming that actual
positron screening in an electron gas is given by perturbed
HNC calculations,8,9 we can see how the screening of a
heavy positron reproduces the screening of a real one. Let us
remark that within the approach of Gondzik and Stachowiak2

a heavy positron is equivalent to a real one. In Figs. 2 and 3
we find the screening cloud around a heavy positron in
Kohn-Sham approximation compared to the HNC result ob-
tained according to the approach of Ref. 2. We show also the
corresponding quantities obtained according to PHNC,8 and
according to the self-consistent solution of the Bethe-
Goldstone equation.3 The corresponding curves are quite
similar except that Friedel oscillations occur in the screening

of a heavy positron which obviously are smeared out in the
case of a light positron because of its recoil. Remark also that
the screening of a heavy positron reproduces better the re-
sults of Ref. 3 than those of PHNC. This is due to assuming
in the approach proposed by Kahana31 exact orthogonality of
one-electron wave functions. This assumption has been criti-
cized by Lowy and Jackson.15 In PHNC this assumption is
avoided. The annihilation rates are for metallic densities a
little higher for a heavy positron in Kohn-Sham approxima-
tion than according to HNC, while in SLsPHNCd they are a
little lower. They are given in Table I. The correlation func-
tions gsrs,rd are shown in Fig. 4 forr =0 and compared to
the predictions of RPA and of the asymptotic formula of
Arponen32 for small rs,

gsrs,0d = 1 + 1.23rs. s23d

III. SCREENING OF A MOVING HEAVY POSITRON

We can now apply the results of Sec. II to the screening of
a moving heavy positron.

The main difference between screening a heavy positron
and a proton lies in the Poisson equations5d which for a
proton would have the form

FIG. 2. sad The screening cloud distribution 4pr2Drsrd around a
heavy positron forrs=2. The dashed curves correspond to HNC
approximation, the full curve has been obtained in this work.sbd
The screening cloud distribution according to HNCsdashed curved,
PHNC sfull curved, and from Ref. 3sdashed-dotted curved.

FIG. 3. The same as in Fig. 2 but forrs=4.
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¹2V = − 4pDr + 4pdsr d. s24d

So for a moving heavy positron in an electron gas the screen-
ing charge distributionDrsrd in random-phase approxima-
tion sRPAd should be

Drsr d =
1

s2pd3 E dq
s1/2dJskF,q,k0tde−iqr

q2 + s1/2dJskF,q,k0td
, s25d

wherek0 is the wave vector of the heavy positron,t=cosq
whereq is the angle betweenq andk0, while for a proton we
would have

Drsr d =
1

s2pd3 E dq
JskF,q,k0tde−iqr

q2 + JskF,q,k0td
. s26d

JskF,q,k0td =
2kF

p
+

1

pq
HfkF

2 − sq

+ 2k0td2/4glnUq + 2k0t + 2kF

q + 2k0t − 2kF
U + fkF

2

− sq − 2k0td2/4glnUq − 2k0t + 2kF

q − 2k0t − 2kF
UJ .

s27d

IV. NUMERICAL DETERMINATION OF Dr„0…

We are interested mainly in the contact density of elec-
trons on the positron, since this quantity determines the pos-
itron annihilation rate which is an observable. The integral in
Eq. s25d is computed as usual as

Drs0d =
1

2p2E
0

`

q2dqFskF,k0,qd, s28d

where

FskF,k0,qd =E
0

1

dt
J̃

q2 + J̃
s29d

and J̃=s1/2dJ.
These computations need some care because of the singu-

larities appearing in the integrals28d at some values ofk
=k0/kF. This is due to vanishing of the denominator. In Fig.
5 we show forrs=2 and three values ofk the curves in the
planesq,td corresponding to the equation

FIG. 4. The electron-positron correlation functiongsrs,0d in
Kohn-Sham approximation as obtained in this papersfull curved,
according to PHNCsdotted curved and according to RPAsdashed
curved. The straight dash-dot-dot line corresponds to the asymptotic
behavior for smallrs according to the formula of ArponensRef. 32d.

TABLE I. The electron-positron correlation function in different
approaches. The figures labeled HNC and Kohn-Sham have been
obtained in this work. SL indicates the numerical results obtained
susing PHNCd in Ref. 9 while BN follows from the formula for
gsrs,0d proposed in Ref. 5.

rs HNC Kohn-Sham SL BN

0.1 1.176 1.117 1.097 1.138

0.2 1.318 1.236 1.196 1.277

0.3 1.458 1.360 1.346 1.413

0.5 1.746 1.631 1.529 1.672

0.7 2.052 1.937 1.782 1.921

0.9 2.393 2.282 2.058 2.169

1. 2.577 2.473 2.212 2.295

1.3 3.192 3.122 2.715 2.698

1.5 3.658 3.623 3.111 3.002

1.8 4.455 4.498 3.786 3.535

2. 5.061 5.173 4.287 3.958

2.5 6.875 7.242 5.872 5.330

3. 9.201 9.956 7.988 7.283

3.5 12.147 13.394 10.719 9.978

4. 15.845 17.646 14.187 13.578

4.5 20.412 22.531 17.724 18.241

FIG. 5. Curves of singularities forrs=2. The solid curve corre-
sponds tok=2.5, the dashed curve tok=1.2 and the dashed-dotted
curve tok=0.85. The values ofq1 andq2 are indicated fork=2.5.
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q2 + J/2 = 0. s30d

The integral in Eq.s28d is understood as the principal value.
Singularities appear, however, inF for q equalq1 andq2, as
indicated in Fig. 5.

The singularity atq1 has the form

Fsqd , lnuq − q1u s31d

while at q2

Fsqd , −
1

Îq − q2

for q . q2. s32d

For q,q2 Fsqd behaves regularly.
The quantity of interest is the dependence ofDrs0d on k

and rs. It is described by the functionQsrs,kd defined as

Qsrs,kd =
Drsrs,k,0d
Drsrs,0,0d

. s33d

The k dependence ofQsrs,kd is shown in Fig. 6 for several
values ofrs.

V. COMPUTATION OF THE POSITRON ANNIHILATION
RATE

We will use the local-density approximation for the posi-
tron annihilation rate in order to study the effect of positron
zero motion on the observed values of positron lifetime
scomputations supporting the LDA approach are given in
Refs. 22 and 23d.

In a homogeneous electron gas we have for the annihila-
tion ratel0 in units of 109/s the formula

l0 = 16pr0 gsrs,0d. s34d

In the subsequent formulas we shall use the values ofgsrs,0d
corresponding to the three approaches belonging tosid Bo-
roński and Nieminen,5 sii d Stachowiaket al.,8,9 siii d Arponen
and Pajanne.10,14In a metal lattice while neglecting the effect
of positron motion we have for the annihilation ratel1 the
formula

l1 = 16pE drrsr dgfrssr d,0gfsr d2, s35d

where fsr d is the positron wave function andrsr d is the
local value of the electron density.

Let us developfsr d into the Fourier series

fsr d = o
l

ale
ilBr . s36d

The probabilityPl of finding the positron in the momentum
stateulBu is

Pl =
nlualu2

on
uanu2

, s37d

wherenl is the number of reciprocal-lattice vectors of abso-
lute value equalulBu.

Now, taking into account that in a metal the probabilityPl
is different from zero forl Þ0, owing to the interaction of the
positron with the lattice, we introduce the following expres-
sion for the annihilation rate:

l2 = 16po
l

Pl E drrsr dufsr du2ffrssr d,klsr dg. s38d

According to the principle applied in this work of adopting
the simplest approximation, we assume that in an electron
gas the correlation factor for a positron of momentumulBu is

fsrs,kld = 1 + fgsrs,0d − 1gQsrs,kld, s39d

where

klsr d =
ulBu

kFsr d
s40d

and

kFsrd = f3p2rsrdg1/3. s41d

Q is defined by Eq.s33d.
The relationfsrs,k1d /gsrs,0d vs rs for the smallest differ-

ent from zero reciprocal-lattice vectork1 is shown in Fig. 7.
k1 in the case of monovalent fcc metals is

FIG. 6. The functionQsrs,kd for rs=1, 2, and 6.

FIG. 7. The functionfsrs,k1d /gsrs,0d vs rs for the lowest non-
zero momentum componentk1 fcf. Eq. s42dg.
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k1 = 31/2S2

3
pD1/3

= 2.216. s42d

We performed calculations of positron lifetimes in a few
metalssLi, Na, K, Rb, Cs, Al, Cu, Ag, Aud according to Eqs.
s35d and s38d. Both valence and core electrons were treated
on equal footing, i.e., we used the LDA approximation to the
Fermi momentum as given in Eq.s41d. We made sure to omit
transition metals for which we could not apply the above
approach since thed shells are not completely filled with
electrons. In this situation we have to allow for participation
in the screening of the positron of electron states belonging
to the partially filledd bands. As pointed out in Refs. 23 and
33 this could result in deviations of the annihilation rate from
the LDA predictions. The results are shown in Table II. The
electronic structure was determined according to the FLAPW
sfull potential linearized augmented plane waved code
WIEN95.34 The electron densities and potentials obtained in
this way were used to calculate the positron wave functions
according to the finite difference methodsthe appropriate
code was based on theATSUP code of Puska35d. Three corre-
lation functions were tried in the computations: the one of
Boroński and NieminensBNd,5 the one of Arponen and
Pajanne10 as parametrized by Barbielliniet al.,14 and the one
of Stachowiak and LachsSLd.9 The results are compared to
those of Rubaszeket al.36 who applied the self-consistent
linearized muffin-tin orbital methodsLMTOd within the
atomic-spheres approximationsASAd for determining the
electronic structure and the BN, SL, and AP correlation func-
tions st1

LDA in Table V of Ref. 36d. The differences between
the corresponding calculations for positron lifetimes within
FLAPW and LMTO are almost negligible, however, it is
worthwhile to remember the conclusions of Šobet al.37 if the
electronic structure is calculated at different assumptions.
Note that Ref. 36 is devoted mainly to developing the ap-
proach labeled weighted density approximationsWDAd.

The last column of Table II shows the probability 1−P0
sin %d of observing the positron in a state corresponding to a

nonzero reciprocal-lattice vectorsNRVd. It is sufficient to
take into account the momenta belonging to the first star of
reciprocal-lattice vectors. The contribution corresponding to
the momenta belonging to the second star is negligible, only
for Ag and Au it is slightly bigger than 1%.

The first conclusion one can draw from the results pre-
sented in Table II is that the BN formula describes the ex-
perimental results better than the alternative expressionssAP
and SLd. This should be treated as an experimental fact, since
the BN figures reproduce in principle the results of Lantto6

which are based on maybe too crude approximations. Obvi-
ously, we still do not fully understande+-e− interaction even
in an electron gas.

Recently Mitroy and Barbiellini20 compared results of dif-
ferent approaches like LDA, symmetrized LDAsSLDAd,
IPM, GGA, and the two-component approach of Boroński
and Nieminen with direct calculations for molecules contain-
ing a positron, effectuated using the stochastic variational
method sSVMd. Such calculations can be considered as a
benchmark. In the case when LDA and SLDA approaches
give identical resultssi.e., the positron density is everywhere
smaller than electron densityd the jellium annihilation rates
of Arponen and Pajanne used in their paper lead to too high
annihilation rates in the corresponding moleculessparticu-
larly LiPs and NaPsd. Applying the annihilation rates of Bo-
roński and Nieminenseventually of Stachowiak and Lach9d
would decrease these values. It is surprising that these au-
thors did not perform this attempt to improve the agreement
of their results with experiment.

The case of lithium has already been treated in detail in
recent works.22,23,25,38The amplitude of NRV components is
small and their influence on the annihilation rate negligible.
In Ref. 23 it is shown, based on many-body calculations, that
the total positron annihilation rate in lithium can be obtained
using the local-density approximation for the interaction. The
positron wave function on the other hand is affected by an
attraction term in the effective interaction of the positron and

TABLE II. Positron lifetimessin psd in metals from the first and second group, and for Al. The experimental valuessRef. 40d are given
in the second column. Some more recent experimental datasRef. 41d are labeled with an asterisk. The next column contains the results of
PuskasRef. 39d. The next three columns present the results of LMTO-ASA calculations of Rubaszeket al. sRef. 36d sfrom Table V in Ref.
36d. Then six columns present our FLAPW results: Note that the 9th, 10th, and 11th columns contain the results of calculations taking into
account the smaller enhancement due to the nonzero momentum of the positron. The last column presents the contributionsin %d of the
higher components in the Fourier expansion of the positron wave function of the corresponding metals.

Metal Expt.
Puska
BN ARsLMTO-LDA d This work sFLAPW-LDAd This work shpd % high

BN SL AP BN SL AP BN SL AP comp.

Li 291 305 300 284 260 298 275 258 300 277 260 1.7

Na 338 337 328 323 291 328 308 294 332 312 294 2.7

K 397 387 367 373 331 368 352 332 375 359 338 4.2

Rb 406 396 377 388 342 377 364 343 385 372 351 4.6

Cs 418 407 389 409 357 388 377 355 398 386 364 6.5

Al 163 166 163.4 155.4 145 162.3 152 143.9 165.9 155.3 147.2 5.3

Cu 110, 118* 106 104.6 102.9 97 105 101 97.4 107.8 103.4 101 5.6

Ag 131, 136* 120 119.1 116.6 109 121 115 111 126 120 116 7.4

Au 117 107 106.0 104.2 98 110 105 101 115 110 106 8.7
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the nucleus due to collectivization of core electrons by the
two positive charges. This leads to a decrease of the positron
lifetime in comparison to the local-density approximation
amounting to about 5 ps. This improves agreement with ex-
perimental data.

Comparing our BN lifetimes with the corresponding re-
sults of Puska39 we observe a marked difference for alkalis
heavier than lithium. We do not understand the reasons for
this discrepancy since our self-consistent FLAPW results are
almost the same as those of Rubaszeket al.36 calculated
self-consistently within the LMTOsLDA d method and yet
we used the numerical code of Puska35 for calculating the
positron wave functionsATSUPd. The computations of the
positron wave function were performed on different meshes
sup to 11231123112 pointsd in order to control the accu-
racy of the calculation. Moreover, we have tested the accu-
racy of calculations for Cs using the atomic superposition
method. The calculations have been performed subsequently
for the meshes of 66366366, 82382382, 1123112
3112, 13431343134 points within the elementary cell.
The overall relative change in annihilation rates was,1
310−6.

It may be worthwhile to point out here that the results for
positron lifetimes of the WDA calculations of Rubaszek
et al.36 for heavier alkali metals such as Rb and Cs are quite
far from the experimental values. However, in contrast to
LDA results which are lower, the WDA lifetimes are mark-
edly higher than experimental onesssimilarly for Cu, Ag,
Aud. It is obvious that the problem of lifetimes in real metals
needs further studies.

Our calculationsfaccording to Eqs.s35d and s38dg for
noble metals reproduce quite well the experimental results
fnote that the annihilation rate for NRV is, approximately,
only half of that for a positron at restscf. Fig. 8dg. For Al,
despite that the contribution of higher Fourier components to
the positron function is considerable, the difference between
the enhancements corresponding to zero and first nonzero
reciprocal-lattice vectors is less than in the case of Cu, Ag,
and Au scf. Fig. 6d. This is due to the higher value of the
Fermi momentum in comparison to the length of these vec-
tors.

VI. CONCLUSIONS

An approach toe+-e− interaction in an electron gas called
heavy positron model has been developed. It is shown that
the screening of such a particle in an electron gas reproduces
quite well the screening of a real positron. The approach to
the screening of a moving proton developed in earlier
papers27,28 is then applied to a heavy positron. In this way it
was possible to compute the dependence of the contact den-
sity of electrons on the positron as a function of its momen-
tum.

In a crystal lattice the positron is expelled from the core
region, so its ground-state Bloch function includes a substan-
tial contribution of higher momentum components. This fac-
tor reduces the annihilation rate of positrons in a metal since
the accumulation of electrons on a moving positron is
smaller than for a positron at rest. Its influence on the anni-

hilation rate is thus opposite to that of other effects consid-
ered up to now. This effect helps to reduce the gap between
theory and experiment in this field.

As we have seen previously19,22scf. also Refs. 23–25d, the
local-density approximation toe+-e− interaction describes
quite well sat least in lithiumd the behavior of the annihila-
tion rate even in an inhomogeneous electron gas.

The effect due to higher momentum components of the
positron wave function is smallsin lithium negligibled.
Though it improves agreement between theory and experi-
ment, the best agreement is still obtained if the Boroński-
Nieminen formula for the electron-positron correlation func-
tion in an electron gas is assumed.

The annihilation rates computed by Arponen and
Pajanne,10 by Rubaszek and Stachowiak3 sARSd, and by Sta-
chowiak and Lach9 are too high as compared to experiment
if the local-density approximationsto e+-e− correlationsd is
adopted. The works of Barbielliniet al.,14 Mijnarends
et al.,19 as well as our calculations mentioned above show
that going beyond the local-density approximation does not
change this conclusion. The ARS annihilation rates remain
higher than the experimental ones. The formula of Boroński
and Nieminen still gives the best description of the experi-
ment.

Since this last formula parametrizessat least for metallic
densitiesd the results of the approach of Lantto of which the
deficiencies have been pointed out in the Introductionscf.
also the Monte Carlo calculations of Fraser42d, this shows
that we still do not fully understande+-e− interaction even in
an electron gas. More precisely, in order to get better agree-
ment between theory and experiment calculations concerning
e+-e− interaction in an electron gas must be improved.
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APPENDIX

Mitroy and Barbiellini20 find that LDA-type approxima-
tions give overestimates of annihilation rates in positron-
atom systems whereas the two-component density-functional
theorysTC-DFTd of Boroński and Nieminen5 underestimates
systematically the enhancement factor for large interparticle
separations. Our comments to these conclusions are the fol-
lowing.

In undefected metals the electron densityn− is always
greater thanuc+u2, so this remark is maybe not very relevant
as concerns the present work. However, we would like to
make here the following statement.

We do not consider TC-DFT as an ideal approach, quite
the contrary, we appreciate the success of the SLDA approxi-
mation proposed by Mitroy and Barbiellini. Nevertheless,
our opinion is that the superiority of SLDA over TC-DFT is
largely due to the inexact results calculated by Lantto for
n+=n− andn+= 1

2n− ssee, e.g., pp. 3822 and 3823 in Ref. 5d.
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