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Influence of the zero motion of a positron on positron lifetime in a metal lattice due to higher
Fourier components of its Bloch function
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Arponen and Pajanne suspected that the strong internal electric field of a real lattice decreases the contact
density of electrons on the positron in comparison to expectations based on jellium calculations. In this work
we propose an approach to this problem which indeed leads to decreasing annihilation rates of positrons in real
metals. This is due to higher Fourier components of the Bloch function of the positron. With some probability
the positron moves with regard to the electron gas. Owing to that the electron accumulation on this particle
decreases. This improves agreement between theoretical and experimental annihilation rates in metals. How-
ever, because of the smallness of this effect the best agreement is still obtained if thskBblieminen
formula is accepted for the electron-positron correlations in an electron gas. Consequences of this fact are
discussed.
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[. INTRODUCTION This became possible only after introducing appropriate cor-
rections in the wave functio®? This does not mean that an
effective dependence af-e~ correlations on the distance
problem is given in Ref. 1 ?_rom the positror_1 QOes not occur als_o_in_ L_antto’s approxima-
It is known thate™-e” .int.eraction in metals increases the tions. Howeyer, Itis not based on minimizing t.he mean value
: . ; of the Hamiltonian with regard to any function parameter
contact density of electrons on the positron typically by or]edescribing electron-electron correlations which would in-
prdler of magnitude, decreasing the positron lifetime accord—Clude the positron coordinates
ingly.

I . . On the other hand, neither the Kohn-Sham-like ideas of
For an electron gas the annihilation rates/erse of life-

. . : Rubaszelet al® or StachowiaR nor the generalized Tamm-
time) depend on the_elect.ron densﬁydesgrlbeq usually by Dancoff approximation of Arponen and Pajakhean be
therg parameter defined in Hartree atomic units as

treated as absolute truth. Maybe the calculations of Lantto

The problem of positron lifetime in metals has attracted
considerable interest. A review of different approaches to thi
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They are obtainedin units of 13/s) from the formula -
8_
12
Arg = r—gg(rs,o), (2
S

whereg(rg,r) is the e*-e~ correlation function at distanae
from the positron.

Theoretical investigations of different authors led to sev-
eral forms of the functiom(rg,0). The resulting annihilation
rates are shown in Fig. 1. They differ by the assumptions
introduced in order to obtain them. In Refs. 2 and 3 it was
shown how important for the annihilation rates, especially
for large values of , is the dependence on the distance from
a positron ofe™-e” correlations. The momentum dependence

A (10°s™)

of electron scattering on the positron is also an effect which 0 —
has been the subject of many investigations both theoretical 20 25 30 35 40 45 50
and experimental. The calculations of Lartfforming the ;

base of the Bongski-Nieminer? (BN) formula, Eg.(A3) in ¢

Ref. 5] assume a trial function which does not allow momen- G, 1. Comparison of different formulas for the positron anni-

tum dependence of electron-positron scattering nor depefkilation rate A(ro in an electron gagdashed curve: Gondzik-
dence ofe™-e” correlations on the presence of the positron.stachowiak(Ref. 2; dashed-dotted curve: Barbiellieit al. (Ref.
This is why Lantto and co-worket§’were unable to predict 14); solid curve: Stachowiakt al. (Ref. 8; dotted curve: Borski-
the momentum dependence of annihilation probabilitiesNieminen(Ref. 5].
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include some important contributions which are neglected irthe positron in a positronium atom. This effect, which de-
other approaches? It is worth to mention here the recent catreases the experimental annihilation rates in comparison
culations of Apajaet al!* The authors assuming the trial with the jellium model, has never been described in a realis-
wave function of Lantto improved his calculations by addingtic way.”
refinements to the Fermi-hypernetted-chain approximation.  The present paper points at a possible mechanism leading
The early results of Lantfchave been parametrized suc- to such an effect. However, we did not find any analog of the
cessively by Boraski and Nieminert, and, as_concerns his siark effect which consists of an external field acting on an
final ffSU'tS(Cf- Ref. 6, by Stemne and Kaistrand Puska  glectron bound to a positive charge. In the present work an
et al® The approach of Gondzik and Stachowfidbased on  oyternal periodic field modulates the ground-state wave func-

; 2 o
}_he t‘t’vor']f ”?f Ka#.'o et al.t) b‘fert‘ﬁf'tfh like trﬁ. apgroacc?ﬁof tion of the positron. The screening of the nonzero Fourier
antto ot the achievements of the theory otiiquias. 1t ditiers components of this wave function is influenced by the finite

from the approach of Lantto by expressing electron-electron . . . .
correlations and the electron-positron potential along thééigce';ﬁg; t?ﬁepg@irt?gnwggnrg?argntc;ﬁge (lee.?:cr)(:]n sr?;'czr;:ze-
lines of the Kohn-Sham theory. 1ty posi

The correlation function parametrized by Barbiellini quently the annihilqtion rate.. In earlier W(_)r_ks we considered
et all4 has been calculated by Arponen and Pajahpep) ~ an analog of chemical bondirig* Collectivization of core
after diagonalizing the Hamiltonian rewritten in terms of €/€ctrons by the nucleus and the positron gives rise to an
Sawada boson operators. This approach includes both m@itractive term in the positron potential which increases its
mentum dependence ef-e~ scattering and positron influ- densny in the core region where t_h(_a e[ectron density is high.
ence one-e~ correlations. Let us mention that the calcula- ThiS leads to increase the annihilation rate. Perhaps the
tions of Lowy and Jackséh and of Rubaszek and 9auge field theory formalism proppsed by ‘Arponen and
Stachowiak® though using more traditional formalisms, led Pajanné® could throw an additional light on this problem.
to practically the same annihilation rates as those of Arponen 1he ground-state wave function of the positron is modu-
and Pajanne. The approach of Stachofidkerturbed lated by the IaFtlce in such away that _the positron is ex.pelled
hypernetted-chain approa¢dRHNC), see also the paper of from.the atomic cores. I.Develop!ng this wave function into a
Stachowiak and Laéh(SL) and Ref. 1§ includes an addi- Fourier series needs introducing components of nonzero
tional effect, namely weak nonorthogonality of scatteredWave vectors corresponding to a moving positron. From our
one-electron wave functionihis problem was pointed out Works published a couple of years &3¢’ it follows that in
by Lowy and Jackson This effect leads to a slight decrease the case of a proton moving in an electron gas the contact
of the contact density and contributes to lowering the annidensity decreases with increasing momentum. Treatment of a
hilation rates. moving positron interacting with the electron gas is a diffi-

Most calculations of positron lifetimes in metals use theCult problem. This is why we replace the positron by a heavy
BN formula for the correlation function. Obviously it gives Particle of charge 1/2 of the electronic charge showing at the
the best agreement with experiment, though the lifetimes obsa@me time why such an approach is legitimate. We show that
tained by using it in computations are still a little shorter than@t rest the contact density of electrons on this particle does
measured. All calculations use such simplifying approache§0t differ much from that for a positron in the whole range of
as the local density approximatidhDA) (Ref. 17 or the ~ Mmetallic electron densities. _
weighted density approximatiofWDA).18 Barbiellini et al. Sgch an approach to a positron in an electr_on gas mgkes it
used the generalized gradient approé8IBA) (Ref. 14 and possible to extend on the_ positron the formalism used in the
the annihilation rates of Arponen and Pajafhélowever, —Case of a proton moving in an electron gas and compute the
Mijnarendset al1® showed that using LDA and the annihila- mfluenc_:e of the modu_Ia.tlor} of the positron wave function by
tion rates of Puskat al® would lead to a better agreement the lattice on the annihilation rates.
with experiment, at least in Alin fact, the formula of Puska Il THE POSITRON AS A HEAVY PARTICLE
et al?is equivalent to the BN formujaFrom the paper of '

Mitroy and Barbiellinf® it also follows that the annihilation In this first calculation of the effect of the modulation of
rates of Arponen and Pajanfealled LDA in their papgrare  the positron wave function on the screening we will adopt
too high. For more comments, see the Appendix. the simplest and less sophisticated approach. Benefitting of

The deficiencies of the Jastrow-type trial function used bythe achievements of the theory of liquids interpreted accord-
Lantto made us skeptical as concerns the formula of Boro ing to Ref. 7 Gondzik and Stachowfagroposed to write the
ski and Nieminen. Developing a first-principles approach toEuler-Lagrange equation for the density amplitwdaround
e*-e” interaction in inhomogeneous systéit$®we tried in  a positron in jellium in the form
vain to find an effect which would decrease the annihilation )
rates in comparison to expectations based on calculations [=Vo+ Vo(r)w(r) =0 3
concerning the electron gas. The present work is devoted g (after dividing the above equation by 2
studies of the possible influence of the zero motion of the
positron in a metal lattice on its screening and annihilation
rate. Arponen and Pajanne wraof@ Sec. 6.3 of Ref. 10
“One expects the strong internal electric field of a real lattice ~
to suppress the electron-positron correlations much in thevhere the Coulomb part of the effective potentia(r) sat-
same way as the Stark effect decreases the electron densityisfies the Poisson equation

(—%V2+\~/(r)>w(r):0, (4)
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~ 1 Im
VZVC(I') = 5[— 47TAp(I’) + 47T5(r)] (5) wk(r) = \ﬂ%{ékr + % (2| + l)i',8|(k,r)P|(cosﬁ)} ,

In the above approximatioricalled after Kallio et al. (12)
hypernetted-chaitHNC),” according to the terminology of
the theory of liquid$ the positron can be considered as a
heavy particle of charge 1/2 apart from the fact that the Bi(k,r) =€4®p (k,r) - j,(kr) (13)
screening chargdp also appears with a coefficient 1/2.

Let us try to find to what extent the positron can be de-
scribed as a heavy particle also when applying the Kohn- R(kr) = (2l + 1)i'da®p,(k,r). (14
Sham formalism instead of HNC.

In Eq. (3) the potential is labeled with a zero in order to
indicate that it is self-consistent only in HNC approximation.
According to Ref. 2 it is expressed as

where
andb, is defined by the formula

Q) is the volume of the sampléy is the maximal value of
chosen in the calculations.
p(r) is obtained from the expression

p(N =22 h(r)y(r). (15)
| q + Vi {W?(1)} = Vi {po}, k oce
which finally leads to the formula

(6)

1 Im ke

where Vy, {p} is the exchange-correlation correction in the p(r) =po+ ?%(Z *D o KZdK{bf(k.r) = jf(kn)],
form proposed by Hedin and Lundqvfst. B

In Kohn-Sham formalism the wave function of an elec- (16)
tron gas in presence of a heavy positron is described by @herek- is the Fermi vector.
Slater determinant of one-electron functiofigr) consisting Let us apply in Eq(7) the potentiaN,(r) obtained from
of plane waves scattering on the positron and obeying theq (3). Then, following the routine method of iteration, the
equation potentialV,(r) is obtained from Eqs(8) and(9) as

Vi(r) = Vo(r) + ave(r), (17)

wherea is smaller than Xe.g., equal to 02 In general, in
successive iterations we use the potential

Viia(r) = V(1) + afVo(r) +va(r) = V(] (18)
V(r) = Vo(r) +u(r), 8  where

WA(r') = po

1
Vo(r):—F+fdr’

1 1 K2
(— EVZ + Ev(r)) i(r) = Ewk(r), (7)

where

(r) —wAr’)
N — (! - d , Pn _ W2 .
v(r) = J dr ’% + VHL{P(r)} —_ VHL{WZ(I')}. v“(r) J r |r —r /| + VHL{pn(r)} VHL{ (r)}

| (19

® pn(r) is the electron density following from E¢7) with the
p(r) is the Kohn-Sham density distribution of electrons.  potentialV,(r). The total screening cloud, i.e.,
Choosing theZ-axis parallel to thek vector we can ex-
press the wave functiom(r) in the form of a series in Sn:fdf[Pn(f)—Po], (20)
Legendre polynomials,

. should be equal to one electronic charge. Some complica-
_ tions occur becauss, in successive iterations is not necces-
lr) = % Ri(k,r)Pi(cos ), (10 sarily equal to 1. For this reason we decided to renormalize
- pn(r) before using it in Eq(19). This is accomplished by

where ¥ is the angle betweek andr. adding top,(r) a term of the form

Asymptotically (i.e., outside the range of interaction of Apy(r) = A€ (21)
the positron R, takes the forr#
such that the renormalized screening cldgjdsatisfies the

R(k,r) =Alcos§(k)ji(kn - sing(kn(kn], (11  equation

/ -
where 6§ are phase shifts angl and n, are the spherical S$1=A& -1 (22)
Bessel functions. wheref is a constant smaller than 1 chosen in such a way as
Assuming that only the first partial waves are scattered weo facilitate achieving self-consistency. Calculations continue
can write the wave functiog(r) in the form until self-consistency is reached. The criterion for self-
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FIG. 2. (a) The screening cloud distribution?Ap(r) around a
heavy positron forrs=2. The dashed curves correspond to HNC FIG. 3. The same as in Fig. 2 but fog=4.
approximation, the full curve has been obtained in this wdbl.
The screening cloud distribution according to Hashed curve  of a heavy positron which obviously are smeared out in the
PHNC (full curve), and from Ref. 3dashed-dotted curye case of a light positron because of its recoil. Remark also that
the screening of a heavy positron reproduces better the re-
consistency is vanishing &f,,;—V, and simultaneous small- sults of Ref. 3 than those of PHNC. This is due to assuming
ness ofS,,;—1 andS,-1. Note that because of Friedel os- in the approach proposed by Kah&hexact orthogonality of
cillations the value of the total screening cloud oscillatesone-electron wave functions. This assumption has been criti-
with the maximal value of taken into account in calcula- cized by Lowy and Jacksoi.In PHNC this assumption is
tions. Increasing this value improves the results only to avoided. The annihilation rates are for metallic densities a
limited degree because of increasing numerical errors. ltittle higher for a heavy positron in Kohn-Sham approxima-
comparison to analogous calculations which we performedion than according to HNC, while in S(PHNC) they are a
for an Li atom in an electron gas, the requirements concernlittle lower. They are given in Table I. The correlation func-
ing |y are rather high. In our calculations it was necessary tdions g(rg,r) are shown in Fig. 4 for=0 and compared to
usely equal at least 3. We were able in this way to getthe predictions of RPA and of the asymptotic formula of
self-consistent solutions up 1@=4.5. Assuming that actual Arponer?? for smallr,,
positron screening in an electron gas is given by perturbed
HNC calculation$;® we can see how the screening of a
heavy positron reproduces the screening of a real one. Let us
remark that within the approach of Gondzik and Stachotviak
a heavy positron is equivalent to a real one. In Figs. 2 and 3
we find the screening cloud around a heavy positron in 1Il. SCREENING OF A MOVING HEAVY POSITRON
Kohn-Sham approximation compared to the HNC result ob-
tained according to the approach of Ref. 2. We show also the We can now apply the results of Sec. Il to the screening of
corresponding quantities obtained according to PHN@d  a moving heavy positron.
according to the self-consistent solution of the Bethe- The main difference between screening a heavy positron
Goldstone equatioh.The corresponding curves are quite and a proton lies in the Poisson equati@ which for a
similar except that Friedel oscillations occur in the screeningproton would have the form

g(rs0)=1+1.23. (23)
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TABLE I. The electron-positron correlation function in different 24 1
approaches. The figures labeled HNC and Kohn-Sham have been 22
obtained in this work. SL indicates the numerical results obtained g ]
(using PHNQ in Ref. 9 while BN follows from the formula for 18]
9(rs,0) proposed in Ref. 5. 161
e HNC Kohn-Sham sL BN =y :‘2".
0.1 1.176 1.117 1.097 1.138 > 10
0.2 1.318 1.236 1.196 1.277 8
0.3 1.458 1.360 1.346 1.413 6
0.5 1.746 1.631 1.529 1.672 4]
0.7 2.052 1.937 1.782 1.921 2
0.9 2.393 2.282 2.058 2.169 0 T . T . .
1. 2.577 2.473 2.212 2.295 0 ! S 4 >
1.3 3.192 3.122 2.715 2.698 °
15 3.658 3.623 3.111 3.002 FIG. 4. The electron-positron correlation functigyrg,0) in
1.8 4.455 4.498 3.786 3.535 Kohn-Sham approximation as obtained in this paffell curve),
2. 5.061 5173 4.287 3.958 according to PHNQdotted curvg and according to RPAdashed
curve. The straight dash-dot-dot line corresponds to the asymptotic
25 6.875 7.242 58172 5.330 behaevior for sme?lrs according to the formulapof ArpondRef. gz.p
3. 9.201 9.956 7.988 7.283
35 12.147 13.394 10.719 9.978 «
4. 15.845 17.646 14.187 13.578 Ap(0) = 1 f oRdqF(ke, ko, ), (29)
4.5 20.412 22.531 17.724 18.241 27 0
where
V2V = - 4mAp + 4mw(r). (24)
So for a moving heavy positron in an electron gas the screen- ! J
ing charge distributiomp(r) in random-phase approxima- F(kF’kO’q):JO dtq2+3 (29

tion (RPA) should be
1 f g (1/2)J(kg, 0, kt)e ™"
@ ] T+ 123k akd

wherekg is the wave vector of the heavy positrdr,cosd
where is the angle betweeg andk,, while for a proton we
would have

Ap(r) = (25)

0= f % ;STJq(kk:zek;) (20
ke ef) = 25 + %{[kﬁ -
+ 2k0t)2/4]ln‘ % +[k2
-(q- 2k0t)2/4]ln‘ % } :
(27)

IV. NUMERICAL DETERMINATION OF  Ap(0)

andJ=(1/2)J.

These computations need some care because of the singu-

larities appearing in the integrél8) at some values ok

ko/ke. This is due to vanishing of the denominator. In Fig.

5 we show forrg=2 and three values of the curves in the
plane(q,t) corresponding to the equation

0.6

g g
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0.2 1

0.1 1

1
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1
+
1
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1
1
1
1
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T T T T T T
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t

.0

We are interested mainly in the contact density of elec-
trons on the positron, since this quantity determines the pos- FIG. 5. Curves of singularities far,=2. The solid curve corre-
itron annihilation rate which is an observable. The integral insponds tox=2.5, the dashed curve to=1.2 and the dashed-dotted

Eq. (25) is computed as usual as

curve tok=0.85. The values afj; andq, are indicated fox=2.5.
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FIG. 7. The functionf(rg, «1)/g(rg,0) vs rg for the lowest non-
zero momentum componery [cf. Eq. (42)].

(35

FIG. 6. The functionQ(rs, x) for re=1, 2, and 6.

A= 1677J drp(r)glry(r),01¢(r)?,
where ¢(r) is the positron wave function ang(r) is the

local value of the electron density.
Let us developp(r) into the Fourier series

B(r) =2 ae'®.
|

q>+J/2=0. (30)

The integral in Eq(28) is understood as the principal value.
Singularities appear, however, nfor q equalg; andq,, as
indicated in Fig. 5.

The singularity afg; has the form

(36)

F(q) ~ In|]g-q (31) The p}g)b_abilityP, of finding the positron in the momentum
while ata, state|IB] is
njal?
1 P=— (37)
F(q) ~ - ———for q>q,. (32 ' 2’
\q ) 2 En |aﬂ|

For q<q, F(q) behaves regularly.
The quantity of interest is the dependenceAp{0) on «
andr,. It is described by the functioQ(r, x) defined as

wheren, is the number of reciprocal-lattice vectors of abso-
lute value equallB|.

Now, taking into account that in a metal the probabikty
is different from zero fot # 0, owing to the interaction of the

Q(rg k) = M (33) positron with the lattice, we introduce the following expres-
s Ap(rs,0,0 sion for the annihilation rate:
The x dependence d(r, x) is shown in Fig. 6 for several

values ofrg.

A2:16w2| P|fdfp(r)|¢(r)|2f[rs(r),K|(r)]- (38)

According to the principle applied in this work of adopting
the simplest approximation, we assume that in an electron

. . o _ gas the correlation factor for a positron of momentliBj is
We will use the local-density approximation for the posi-

V. COMPUTATION OF THE POSITRON ANNIHILATION
RATE

tron annihilation rate in order to study the effect of positron f(re i) =1+[g(r,,0) — 1]Q(rg, x)), (39
zero motion on the observed values of positron lifetime
(computations supporting the LDA approach are given invhere
Refs. 22 and 283

In a homogeneous electron gas we have for the annihila- Kk(r) = 'B| (40)
tion rate), in units of 10/s the formula ke(r)

No = 16mpo g(rs,0). (349 and

In the subsequent formulas we shall use the valuegrgf0) ke(r) =[3m2p(r)]*3. (41)

corresponding to the three approaches belongin@)t&o-

ronski and Nieminer, (i) Stachowiaket al.° (jii ) Arponen

and Pajanné®'4In a metal lattice while neglecting the effect

of positron motion we have for the annihilation rate the
formula

Q is defined by Eq(33).

The relationf(rs, «1)/9(rs,0) vsrg for the smallest differ-
ent from zero reciprocal-lattice vectay is shown in Fig. 7.
k1 in the case of monovalent fcc metals is
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TABLE II. Positron lifetimes(in ps) in metals from the first and second group, and for Al. The experimental véRefs40 are given
in the second column. Some more recent experimental (R&h 41 are labeled with an asterisk. The next column contains the results of
Puska(Ref. 39. The next three columns present the results of LMTO-ASA calculations of RubasztkRef. 39 (from Table V in Ref.
36). Then six columns present our FLAPW results: Note that the 9th, 10th, and 11th columns contain the results of calculations taking into
account the smaller enhancement due to the nonzero momentum of the positron. The last column presents the céntbubbihe
higher components in the Fourier expansion of the positron wave function of the corresponding metals.

Puska
Metal Expt. BN AR(LMTO-LDA) This work (FLAPW-LDA) This work (hp) % high
BN SL AP BN SL AP BN SL AP comp.
Li 291 305 300 284 260 298 275 258 300 277 260 1.7
Na 338 337 328 323 291 328 308 294 332 312 294 2.7
K 397 387 367 373 331 368 352 332 375 359 338 4.2
Rb 406 396 377 388 342 377 364 343 385 372 351 4.6
Cs 418 407 389 409 357 388 377 355 398 386 364 6.5
Al 163 166 163.4 155.4 145 162.3 152 143.9 165.9 155.3 147.2 5.3
Cu 110, 118 106 104.6 102.9 97 105 101 97.4 107.8 103.4 101 5.6
Ag 131, 136 120 119.1 116.6 109 121 115 111 126 120 116 7.4
Au 117 107 106.0 104.2 98 110 105 101 115 110 106 8.7
1o 2 13 nonzero reciprocal-lattice vectdNRV). It is sufficient to
k1=3 37 T 2.216. (42)  take into account the momenta belonging to the first star of

reciprocal-lattice vectors. The contribution corresponding to
We performed calculations of positron lifetimes in a few the momenta belonging to the second star is negligible, only
metals(Li, Na, K, Rb, Cs, Al, Cu, Ag, Allaccording to Egs. for Ag and Au it is slightly bigger than 1%.
(35 and(38). Both valence and core electrons were treated The first conclusion one can draw from the results pre-
on equal footing, i.e., we used the LDA approximation to thesented in Table Il is that the BN formula describes the ex-
Fermi momentum as given in EG1). We made sure to omit  perimental results better than the alternative expressidRs
transition metals for which we could not apply the abovegng s|). This should be treated as an experimental fact, since

approach since the shells are not completely filled with e BN figures reproduce in principle the results of Lahtto
electrons. In this situation we have to allow for participation, nich are based on maybe too crude approximations. Obvi-
in the screening of the positron of electron states belonging, o\ e still do not fully understanef-¢ interaction even

to the partially filledd bands. As pointed out in Refs. 23 and

33 this could (es_ult in deviations of the annihi!ation rate fromIn ?{nec?éiiltgol\r/lliggjand Barbiellid? compared results of dif-
the LDA predictions. The results are shown in Table Il. The rent approaches like LDA, symmetrized LDSLDA)
electronic structure was determined according to the FLAP pp 4 th » SY h of Bmkl
(full potential linearized augmented plane waveode PM, GGA and the two-component approach o :
WIEN9534 The electron densities and potentials obtained if?"d Niéminen with direct calculations for molecules contain-
this way were used to calculate the positron wave functiond?d @ positron, effectuated using the stochastic variational
according to the finite difference methdthe appropriate Method (SVM). Such calculations can be considered as a
code was based on thgsup code of Pusk®). Three corre- benchmark. In the case when LDA and SLDA approaches
lation functions were tried in the computations: the one ofdive identical resultsi.e., the positron density is everywhere
Boronski and Nieminen(BN),° the one of Arponen and smaller than electron densjtyhe jellium annihilation rates
Pajanné’ as parametrized by Barbielliet al,'* and the one  of Arponen and Pajanne used in their paper lead to too high
of Stachowiak and LackSL).° The results are compared to annihilation rates in the corresponding molecu(particu-
those of Rubaszekt al2® who applied the self-consistent larly LiPs and NaPs Applying the annihilation rates of Bo-
linearized muffin-tin orbital methodLMTO) within the ronski and Niemineneventually of Stachowiak and Labh
atomic-spheres approximatiofASA) for determining the would decrease these values. It is surprising that these au-
electronic structure and the BN, SL, and AP correlation functhors did not perform this attempt to improve the agreement
tions (7°* in Table V of Ref. 36. The differences between of their results with experiment.
the corresponding calculations for positron lifetimes within ~ The case of lithium has already been treated in detail in
FLAPW and LMTO are almost negligible, however, it is recent workg2232538The amplitude of NRV components is
worthwhile to remember the conclusions of Saital3”ifthe  small and their influence on the annihilation rate negligible.
electronic structure is calculated at different assumptionsin Ref. 23 it is shown, based on many-body calculations, that
Note that Ref. 36 is devoted mainly to developing the ap-the total positron annihilation rate in lithium can be obtained
proach labeled weighted density approximat{tviDA). using the local-density approximation for the interaction. The
The last column of Table Il shows the probability By  positron wave function on the other hand is affected by an
(in %) of observing the positron in a state corresponding to attraction term in the effective interaction of the positron and
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the nucleus due to collectivization of core electrons by thehilation rate is thus opposite to that of other effects consid-
two positive charges. This leads to a decrease of the positragred up to now. This effect helps to reduce the gap between
lifetime in comparison to the local-density approximationtheory and experiment in this field.
amounting to about 5 ps. This improves agreement with ex- As we have seen previous®??(cf. also Refs. 23-25the
perimental data. local-density approximation t@"-e” interaction describes
Comparing our BN lifetimes with the corresponding re- quite well (at least in lithium the behavior of the annihila-
sults of Pusk® we observe a marked difference for alkalis tion rate even in an inhomogeneous electron gas.
heavier than lithium. We do not understand the reasons for The effect due to higher momentum components of the
this discrepancy since our self-consistent FLAPW results arpositron wave function is smallin lithium negligible.
almost the same as those of Rubasetkal3® calculated Though it improves agreement between theory and experi-
self-consistently within the LMTQLDA) method and yet ment, the best agreement is still obtained if the Bekd
we used the numerical code of Pu¥kéor calculating the Nieminen formula for the electron-positron correlation func-
positron wave functionatsup). The computations of the tion in an electron gas is assumed.
positron wave function were performed on different meshes The annihilation rates computed by Arponen and
(up to 112<112x 112 point3 in order to control the accu- Pajanné? by Rubaszek and StachowfaARS), and by Sta-
racy of the calculation. Moreover, we have tested the accuehowiak and Lachare too high as compared to experiment
racy of calculations for Cs using the atomic superpositionf the local-density approximatiofto €*-e~ correlation$ is
method. The calculations have been performed subsequentiyopted. The works of Barbiellinet al,'* Mijnarends
for the meshes of 6866x 66, 82x82x82, 112<112 et al,'® as well as our calculations mentioned above show
X112, 134X 134X 134 points within the elementary cell. that going beyond the local-density approximation does not
The overall relative change in annihilation rates wag  change this conclusion. The ARS annihilation rates remain
X 107, higher than the experimental ones. The formula of Bekd
It may be worthwhile to point out here that the results forand Nieminen still gives the best description of the experi-
positron lifetimes of the WDA calculations of Rubaszek ment.
et al3® for heavier alkali metals such as Rb and Cs are quite Since this last formula parametrizéat least for metallic
far from the experimental values. However, in contrast todensitie$ the results of the approach of Lantto of which the
LDA results which are lower, the WDA lifetimes are mark- deficiencies have been pointed out in the Introductich
edly higher than experimental onésimilarly for Cu, Ag, also the Monte Carlo calculations of Fra®gr this shows
Au). It is obvious that the problem of lifetimes in real metals that we still do not fully understanef-e™ interaction even in
needs further studies. an electron gas. More precisely, in order to get better agree-
Our calculations[according to Eqs(35) and (38)] for ment between theory and experiment calculations concerning
noble metals reproduce quite well the experimental results*-e” interaction in an electron gas must be improved.
[note that the annihilation rate for NRV is, approximately,
only half of that for a positron at regtf. Fig. 8]. For Al,
despite that the contribution of higher Fourier components to
the positron function is considerable, the difference between We are greatly indebted to Dr. M. J. Puska for making
the enhancements corresponding to zero and first nonzeercessible to us his numerical cogesup for calculating
reciprocal-lattice vectors is less than in the case of Cu, Agpositron wave functions. We thank also Dr. Anna Rubaszek
and Au (cf. Fig. 6). This is due to the higher value of the for valuable discussions.
Fermi momentum in comparison to the length of these vec-
tors.
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APPENDIX

Mitroy and Barbiellinf® find that LDA-type approxima-
tions give overestimates of annihilation rates in positron-

An approach te*-e” interaction in an electron gas called atom systems whereas the two-component density-functional
heavy positron model has been developed. It is shown thaheory(TC-DFT) of Boroaski and Nieminehunderestimates
the screening of such a particle in an electron gas reproduc&ystematically the enhancement factor for large interparticle
quite well the screening of a real positron. The approach tgeparations. Our comments to these conclusions are the fol-
the screening of a moving proton developed in earliedowing.
papers’?8is then applied to a heavy positron. In this way it ~ In undefected metals the electron density is always
was possible to compute the dependence of the contact degreater than,|?, so this remark is maybe not very relevant
sity of electrons on the positron as a function of its momen-as concerns the present work. However, we would like to
tum. make here the following statement.

In a crystal lattice the positron is expelled from the core We do not consider TC-DFT as an ideal approach, quite
region, so its ground-state Bloch function includes a substarthe contrary, we appreciate the success of the SLDA approxi-
tial contribution of higher momentum components. This fac-mation proposed by Mitroy and Barbiellini. Nevertheless,
tor reduces the annihilation rate of positrons in a metal sinceur opinion is that the superiority of SLDA over TC-DFT is
the accumulation of electrons on a moving positron islargely due to the inexact results calculated by Lantto for
smaller than for a positron at rest. Its influence on the annin,=n_ and n;%n_ (see, e.g., pp. 3822 and 3823 in Ref. 5

VI. CONCLUSIONS
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