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We discuss conditions to be put on mean-field-like theories to be able to describe fundamental physical
phenomena in disordered electron systems. In particular, we investigate options for a consistent mean-field
theory of electron localization and for a reliable description of transport properties. We argue that a mean-field
theory for the Anderson localization transition must be electron-hole symmetric and self-consistent at the
two-particlesvertexd level. We show that such a theory with local equations can be derived from the asymptotic
limit to high spatial dimensions. The weight of the diffusion pole, i.e., the number of diffusive states at the
Fermi energy, in this mean-field theory decreases with the increasing disorder strength and vanishes in the
localized phase. Consequences of the disclosed behavior for our understanding of vanishing of electron diffu-
sion are discussed.

DOI: 10.1103/PhysRevB.71.245106 PACS numberssd: 72.10.Bg, 72.15.Eb, 72.15.Qm

I. INTRODUCTION

Mean-field theories play an important role in the descrip-
tion of thermodynamic systems. They are intended and used
as a first approximation offering a qualitative picture of the
physics of the studied phenomena. The mean-field concept
has developed from its initial intuitive ideas of van der Waals
and Weiss through the Landau theory of critical phenomena
to its present sophistication and systematics provided by the
limit to infinite-dimensional lattice models. At present, a
modern mean-field theory is no longer a weak-coupling ap-
proximate treatment neglecting spatial fluctuations. It repre-
sents a comprehensive theory providing a phase diagram in
the whole range of the input parameters and simulating the
exact behavior in specific limiting situations. Without a
mean-field theory we are mostly unable to identify the rel-
evant fluctuations, the mean values of which are reflected by
thermodynamicsorderd parameters. Mean-field theory is par-
ticularly important for critical phenomena with divergent
correlation functions, where it allows us to handle singulari-
ties in a consistent and manageable way and to select the
proper low-temperature phase, at least above the lower criti-
cal dimension.

Mean-field theories were primarily developed for collec-
tive phenomena in interacting systems. Nontrivial and some-
times not easily understandable effects are, however, also
induced by randomness. Randomness, in connection with in-
teraction or with quantum interference, can cause significant
and sometimes even unexpected changes in the behavior of
the system. Since mostly no exact solutions are available for
disordered systems, a mean-field approximation has become
one of the most powerful tools to handle fluctuations in the
chemical composition of solids.

Milestones of a mean-field theory for disorderedsnonin-
teractingd electron systems were laid at the end of the 1960s
and the beginning of the 1970s. The so-called coherent po-
tential approximationsCPAd developed at that time is a self-
consistent approximation describing rather accurately the
electronic structure and thermodynamic properties of random
alloys not only at the model level but also in realistic
settings.1 Later on, the CPA was shown to fit the modern

definition of the mean-field theory as an exact solution of the
model system in infinite spatial dimensions.2,3

The coherent potential approximation is nowadays con-
sidered as an archetype of mean-field theories of quantum
disordered and interacting systems. Its generalized form4 of-
fers one possible interpretation of equations of motion in the
dynamical mean-field theorysDMFTd.5 The CPA has proved
reliable to produce an accurate equilibrium electronic struc-
ture of disordered systems6 as well as transport properties of
random alloys.7 It, however, fails to account for intersite
quantum coherence and backscattering effects. The CPA is
essentially unable to go beyond the semiclassical description
of transport properties qualitatively captured by the Boltz-
mann equation. This inability is due to the fact that the CPA
does not include vertex corrections to the electrical conduc-
tivity independently of how strong the disorder may be.8 The
CPA is hence unsuitable for the description of one of the
most prominent features of disordered systems, Anderson
localization.

Anderson localization in disordered or amorphous solids
takes place when there are available electronic states at the
Fermi surface but no diffusion or charge transport at long
distances is observed. Possibility of the absence of diffusion
in impure metals and alloys was proposed by Anderson on a
simple tight-binding model of disordered noninteracting
electrons.9 Since then, vanishing of diffusion, now called
Anderson localization, has attracted much attention of both
theorists and experimentalists.10,11 In spite of a considerable
portion of amassed experimental data, disclosed various spe-
cific and general aspects of the Anderson metal-insulator
transition, and a number of theoretical and computational
approaches so far developed we have not yet reached com-
plete understanding of Anderson localization. Although
many features of the critical behavior at the Anderson local-
ization transition have been uncovered, the position of this
disorder-driven metal-insulator transition within the standard
classification scheme of phase transitions with control and
order parameters has remained unclear. It has been mainly
due to the nonexistence of an appropriate mean-field-like
theory for this phenomenon.
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The existing attempts to go beyond the single-sitesmean-
fieldd approximations for disordered systems based on cluster
expansions have concentrated mostly on one-particle proper-
ties and momentum-dependent self-energyscoherent poten-
tiald. Instead of individual sites, their clusters are self-
consistently embedded in an average medium. Apart from
the traveling-cluster approximation,12,13cluster expansions in
the direct space fail to warrant global analytic properties of
the self-energy, and hence spurious effects can emerge.14,15

An alternative cluster expansion with discrete sets of avail-
able momenta was recently suggested so as analyticsHer-
glotzd properties of the resulting averaged propagators and
the self-energy were guaranteed.16 Cluster approximations,
however, reduce spatial quantum coherence only to a discrete
set of lattice sites or momenta. Such approximations then
remain perturbative in the coherence range and cannot lead
to Anderson localization for which we need long-range co-
herence with infinite-many backscattering or “crossed” dia-
grams.

Only very recently the present authors demonstrated that a
mean-field-like solution for the Anderson metal-insulator
transition can be derived from the asymptotic limit to high
sbut finited spatial dimensions.17 This solution is very close
to the CPA in the resulting electronic structure. It shares the
analytic properties of the CPA and reduces to it in infinite
dimensions. It, however, differs from the CPA significantly in
transport properties derived from two-particle functions. In
addition to the one-electron self-consistency of the CPA, the
mean-field theory is endowed with a two-particle self-
consistency. That is, the two-particle irreducible vertices are
determined from self-consistent nonlinear equations.

The mean-field-like theory for the disorder driven vanish-
ing of diffusion of Ref. 17 shows some unexpected features.
It contradicts the dogma that the weight of the diffusion pole,
i.e., the number of diffusing particles, does not depend on the
disorder strength. The weight of the diffusion pole is con-
served only if all the states near the Fermi energy are finite
combinations of Bloch waves for any configuration of the
random potential. Or, equivalently, if a Ward identity be-
tween self-energy and the irreducible electron-hole vertex
holds for all transfer energies.18,19 We demonstrated in Ref.
20 that once the electron-hole irreducible vertex contains the
so-called Cooper pole, the number of extended states at the
Fermi level decreases with increasing the disorder strength.
Hence, there is no chance for a theory with the Cooper pole
to fully satisfy the Ward identity between the averaged one-
and two-electron Green functions and to keep the number of
diffusive states independent of the disorder strength.

The aim of this paper is to clarify the ambiguities con-
nected with the mean-field concept applied to two-particle
functions in disordered electron systems. We leave aside all
interaction-driven phenomena and concentrate exclusively
on the effects of randomness. We delimit the content and the
range of validity of the two existing mean-field theories for
the Anderson model of noninteracting electrons—the CPA
and that of Ref. 17. The common ground for both theories is
the limit to high spatial dimensions. We show that the ambi-
guity in the identification of the mean-field theory for two-
particle functions results from two different ways how it can
be derived: either via the generating local functional and

Ward identities, or via a direct diagrammatic construction in
high dimensions. The former construction, CPA, is suitable
only for one-electron spectral and thermodynamic properties.
Since the CPA lacks the electron-hole symmetry at the two-
particle level, it becomes unreliable when applied to the cal-
culation of transport properties in situations when localiza-
tion effects are expected, e.g., near band edges. We
demonstrate that the latter approach, when properly formu-
lated, can lead to a theory being self-consistent and mani-
festly electron-hole symmetric at the one-particle level and
as well at the two-particle level. The last two conditions are
necessary ingredients for a theory being able to describe the
Anderson localization transition.

The layout of the paper is as follows. In Sec. II we sum-
marize basic properties of the CPA defined from the limit to
infinite spatial dimensions. We show how the averaged grand
potential is derived from the local one-particle propagator
and the self-energy. The higher-order Green functions are
then determined via local external perturbations. The mean-
field theory with a two-particle self-consistency is con-
structed in Sec. III. First, inability of the CPA to reproduce
the proper infinite-dimensional limit for two-particle Green
functions is demonstrated. Then, using the parquet scheme
and the electron-hole symmetry we derive a self-consistent
snonlineard equation for the irreducible two-particle vertex.
This equation is then solved at the mean-field level, i.e., in
the leading nontrivial order of the high-dimensional limit.
The explicit form of the diffusion pole in high spatial dimen-
sions with its weight dependent on the disorder strength is
finally obtained. Consequences of our findings for under-
standing of the disorder-driven vanishing of diffusion and
Anderson localization are discussed in Sec. IV.

II. THERMODYNAMIC MEAN-FIELD THEORY:
ONE-PARTICLE SELF-CONSISTENCY

A. One-particle functions and generating functional

To construct a comprehensive mean-field theory for ther-
modynamic properties of a random system means to find an
approximate representation in closed form for the grand po-
tential averaged over random configurations

Vsmd = −
1

b
kln Tr exph− bĤ + bmN̂jlav s1d

wherem is the chemical potential andN̂ is the particle num-
ber operator. We will consider in this paper only a noninter-
acting lattice electron gas scattered on random impurities and
described by the Anderson tight-binding Hamiltonian

Ĥ = o
ki j l

tij ĉi
†ĉj + o

i

Viĉi
†ĉi , s2d

whereVi is a local, site-independent random potential.
It has become evident since the introduction of the con-

cept of the limit to infinite spatial dimensions in quantum
itinerant systems that a controllable comprehensive mean-
field theory of itinerant models should be defined via this
formal limit.21 In high spatial dimensions the diagonalslocald
and off-diagonal snonlocald elements of the one-particle
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propagator separate from each other. The former are of order
Osd0d, while the latter vanish asd−1/2, whered is the spatial
dimension. The full one-particle propagator and the self-
energy have the following high-dimensional asymptotics:

G = Gdiagfd0g + Gofffd−1/2g, s3ad

S = Sdiagfd0g + Sofffd−3/2g. s3bd

We can classify contributions to the many-body perturba-
tion expansion for the self-energy according to their high-
dimensional asymptotic contribution and obtain in the lead-
ing order a local approximation for the irreducible part of the
one-electron propagator. The interacting part of the thermo-
dynamic potential in infinite spatial dimensions is then a
functional of onlyGdiag andSdiag.3

In disordered systems the interparticle interaction is re-
placed by correlations between scatterings on impurities. The
self-energy is here a coherent potential of an effective homo-
geneoussnonrandomd medium representing the effect of im-
purity scatterings on the motion of electrons. Since the scat-
terings are static, we can find an explicit representation of the
averaged grand potential in infinite spatial dimensions. We
can write

VmfĜ,Ŝg = FhĜdiag−1+ Ŝdiagj

−
1

b
Tr ln Ĝdiag−

1

b
Tr lnsĜs0d−1 − Ŝdiag+ md

s4ad

where we denoted

FhX̂j = −
1

b
kTr lnfX̂ − V̂glav s4bd

the local “interacting part” of the thermodynamic potential,
in this case the effect of multiple scatterings.4 The trace op-
erator Tr extends over the lattice space as well as over the
Matsubara frequencies. The only nonlocal contribution to the
generating functionalVm comes from the bare propagator

Ĝs0d. The site-diagonalslocald complex vectorsGn
diagsmd and

Sn
diagsmd in fermionic Matsubara frequenciess2n+1dp /b are

variational parameters, the physical values of which are at-
tained at stationarity points of the generating functionals4d.

The defining equation for the local element of the aver-
aged one-particle propagator is obtained from an equation
dVm /dSn

diagsmd=0 and the self-energy is determined from
dVm /dGn

diagsmd=0. After straightforward manipulations the
two equations reduce to

1 =K 1

1 + fSnsmd − VigGnsmdLav
s5ad

and

Gnsmd =
1

N
o
k

Gsk,ivnd =E dersed
ivn + m − Snsmd − e

. s5bd

We dropped the superscript diag in the local functions and
introduced the electronic density of statesrsed. Due to the
static character of the impurity scatterings the stationarity

equations are diagonal in the Matsubara frequencies and can
be solved for each frequency independently. Inserting the
solution for all Matsubara frequencies to Eqs.s4d we obtain
the equilibrium thermodynamic potential for noninteracting
electrons scattered on random impurities. The equilibrium
thermodynamics of the systems is then determined only by
the local irreducible part of the averaged one-particle resol-
vent. This irreducible part is self-consistently determined
from the Soven equations5d.

B. External sources and two-particle functions

Thermodynamics of disordered systems is not of much
interest unless interparticle interactions are present. But even
then the averaged thermodynamic potentials depend on only
one-electron functions. One-electron functions, however, do
not contain the complete information about the behavior of
statistical ensembles, in particular of disordered systems. The
equilibrium thermodynamic potentials do not contain suffi-
cient information from which we could derive transport
properties of the system and its response to weak external
electromagnetic perturbations. To include the electrical con-
ductivity into the mean-field description, the thermodynamic
construction from the preceding section must be extended to
include averaged two-particle propagators.

Averaged two-particle propagators in disordered systems
contain at least two energy argumentsstwo in noninteracting
and three in interacting systemsd. The best way to guarantee
that one- and two-particle functions are approximated con-
sistently within a single approximate scheme is to use the
Baym-Kadanoff concept of external sources added to the
equilibrium thermodynamic potential.22 To introduce higher-
order Green functions with several energiesschemical poten-
tialsd into the thermodynamic description we must replicate
the original system so as for each energy we had an indepen-
dent replica of the original system, that is, of creation and
annihilation operators.

We replicate the creation and annihilation operators and
introduce external perturbations into the thermodynamic de-
scription via a generalized grand potential of an-times rep-
licated systemVnsE1,E2,… ,En ;Ud with n chemical poten-
tials E1,… ,En. An external perturbationU is used to couple
different replicas and to break the initial replica indepen-
dence. We then can write

VnsE1,E2,…,En;Ud = −
1

b
K ln Tr expS− b o

i,j=1

n

sĤAD
sid di j

− EiN̂
siddi j + DĤsi j ddDL

av

, s6d

where we assigned to each replica characterized by energy
schemical potentiald Ei a separate Hilbert space and denoted

DĤsi j d=oklUkl
si j dĉk

sid†ĉl
s jd an external perturbation to be set zero

at the end. Thermodynamic potentialVnsE1,E2,… ,En ;Ud is
a generating functional for averaged products of Green func-
tions up to thenth order. In practice, we will use linear-
response theory with one- and two-particle Green functions,
i.e., VnsE1,E2,… ,En ;Ud is expanded up toU2. Therefore it
is sufficient to introduce only two replicas.
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In fact we are interested only in corrections to the prod-
ucts of the averaged one-particle propagators expressed via
vertex functions. The two-particle vertexG is defined from
the two-particle resolventGs2d in momentum representation
as

Gkk8
s2d sz1,z2;qd = Gsk,z1dGsk + q,z2dfdsk − k8d

+ Gkk8sz1,z2;qdGsk8,z1dGsk8 + q,z2dg.

s7d

The external disturbanceU mixes different replicas and
propagators in the replicated space are matrices in the replica
indexes. Since we are interested only in the averaged two-
particle functions, we can resort to two energies and to a
two-by-two matrix propagator

Ĝ−1sk1,z1,k2,z2;Ud

= sĜs0dd−1 + Û − Ŝ

= Sz1 − esk1d − S11sUd U − S12sUd
U − S21sUd z2 − esk2d − S22sUd

D , s8d

where eskd is the lattice dispersion relation and the self-
energy elementsSi j generally depend on both energiesz1,z2.

The matrixĜ represents the averaged resolvent that is to be
used in the grand potentialV2sE1,E2;Ud from Eq. s6d. It is

now a straightforward task to derive a matrix Soven equation
generalizing Eq.s5ad. We obtain

Ĝsz1,z2;Ud = kfĜ−1sz1,z2;Ud + Ŝsz1,z2;Ud − V̂ig−1lav,

s9d

where Ĝsz1,z2;Ud=N−2ok1k2
Ĝsk1,z1,k2,z2;Ud is the local

element of the matrix one-particle propagator. Inversions in
Eq. s9d have matrix character in the replica space. The diag-
onal elements of the matrix equations9d determine the one-
particle propagators for energiesz1 andz2. The off-diagonal
elements, proportional to the perturbationU, determine the
local two-particle resolvent that is defined as the coefficient
at the linear term in the expansion of the local matrix propa-

gator Ĝsz1,z2;Ud in the external perturbationU. The local
two-particle Green function can be represented with the aid
of the irreducible vertexstwo-particle self-energyd l via a
Bethe-Salpeter equation. We find from Eq.s9d that the Bethe-
Salpeter equation in the mean-field approximation reduces to
an algebraic one

gsz1,z2d =
lsz1,z2d

1 − lsz1,z2dGsz1dGsz2d
, s10d

whereg is the local part of the two-particle vertexG. The
irreducible vertexl in equilibrium sU=0d determined via
Eq. s10d obeys an equation

lsz1,z2d = U dSUsz1,z2d
dGUsz1,z2d

U
U=0

=
1

Gsz1dGsz2dS1 −K 1

1 + fSsz1d − VigGsz1d
1

1 + fSsz2d − VigGsz2dLav

−1D . s11d

We can easily verify that this equation coincides with the
CPA solution for the irreducible vertexlsz1,z2d.8

There is no ambiguity in the mean-field construction of
local one- and two-particle functions. But a mean-field treat-
ment has a physical relevance only if it is able to produce
nonlocal correlation functions, the long-range fluctuations of
which may significantly influence the thermodynamic and
dynamical behavior. There is not, however, a unique way
how to generate the two-particle vertex with nonlocal contri-
butions within the local mean-field approach. The simplest
and most straightforward way is to use the Bethe-Salpeter
equation with the CPA irreducible vertexl, Eq. s10d, and to
replace the local propagators with the full nonlocal one-
electron propagatorsGsk ,zd. Such a Bethe-Salpeter equation
remains algebraic in momentum representation and results in
a two-particle vertex with only one transfer momentum. We
obtain

G±sz1,z2;q±d =
lsz1,z2d

1 − lsz1,z2dx±sz1,z2;q±d
, s12d

where we denoted the two-particle bubble

x±sz1,z2;qd =
1

N
o
k

Gsk,z1dGsq ± k,z2d. s13d

The ambiguity in this definition of the full mean-field vertex
is in the type of nonlocal multiple scatterings we include into
the Bethe-Salpeter equation. They are here denoted by the
superscript ±. The plus sign corresponds to multiple scatter-
ings of electron-hole pairs, while the minus sign to electron-
electron pairs. In case of elastic scatterings the electron-hole
and electron-electron bubbles produce numerically the same
number. However, the difference between the two types of
pair scatterings lies in the respective transfer momentumq±.
Using the notation for momenta in the two-particle resolvent
from Eq. s7d we haveq+=q andq−=q+k +k8.

This ambiguity in the definition of the mean-field two-
particle vertex is not usually acknowledged in the literature,
since the electron-hole scattering channel, relevant for the
electrical conductivity, is preferred and directly derived from
the Baym-Kadanoff approach.8 However, when the mean-
field theory is viewed upon as the limit to infinite spatial
dimensions, both electron-hole and electron-electron mul-
tiple scatterings possess the same high-dimensional
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asymptotics.23 A priori, neither electron-hole nor electron-
electron multiple scatterings should be discarded. The appro-
priate form of the vertex is then selected by the physical
quantities in which it appears, such as is the case of the
electrical conductivity.

Incapability of the thermodynamic mean-field theory to
determine uniquely the nonlocal part of the two-particle ver-
tex results from the degeneracy of the local theory with elas-
tic scatterings onlysnoninteracting systemsd. Multiple single-
site scatterings, the only ones relevant in the mean-field
approach, are unable to distinguish between electrons and
holes. Only if we include explicitly scatterings on distinct
lattice sites we are able to distinguish between electrons and
holes. Hence, the standard thermodynamic mean-field theory
of quantum itinerant systems uniquely defines only the local
two-particle vertex, while it remains ambiguous in the deter-
mination of the full nonlocal two-particle vertex.

III. MEAN-FIELD THEORY FOR VERTEX FUNCTIONS:
TWO-PARTICLE SELF-CONSISTENCY

A. Nonlocal contributions to the vertex function

A rather inaccurate way to the momentum-dependent two-
particle vertex is not the only imperfection of the thermody-
namic mean-field theory. This theory completely fails to ac-
count for backscattering effects, vertex corrections to the
electrical conductivity, and the Anderson metal-insulator
transition. All these effects are induced by strong nonlocal
quantum coherence and spatial correlations reflected in the
momentum behavior of the two-particlesvertexd functions.
To capture these phenomena we must go beyond a perturba-
tive description and to employ a self-consistent scheme for
the sirreducibled vertex functions. The best local approxima-
tion for the irreducible vertex, CPA, is non-self-consistent at
the two-particle level. We hence must go beyond the CPA
and include nonlocalslong-ranged contributions to the vertex
function in a nonperturbative manner. Thereby a question
arises whether we are able to reach a reasonably simple ap-
proximation with a two-particle self-consistency that could
be called a mean-field theory. It is clear that such a theory
must be momentum dependent, but the momentum depen-
dence should be reduced to a necessary minimum. We will
demonstrate in the next sections that the desired momentum
dependence can be very effectively reduced by the
asymptotic limit to high spatial dimensions.

The best way to construct a mean-field-like approxima-
tion for momentum-dependent functions is to build up the
theory within a self-consistent expansion around the CPA. If
we denote the local CPA one-particle propagatorGlocszd
=N−1okGCPAsk ,zd, the small parameter controlling the ex-

pansion around the CPA is a perturbed propagatorḠsk ,zd
=Gsk ,zd−Glocszd, where Gsk ,zd is the full one-electron
propagator. The CPA propagatorGloc contains the local self-
energySlocszd from Eq.s5ad, while the full one a self-energy
Ssk ,zd that is to be determined later from a Dyson equation.
We apply the expansion around the CPA to two-particle
functions, where the one-particle propagators will be treated
as external functions. It means, that we first disregard the

consistency between the one- and two-particle functions.
This consistency will be restored later via Ward identities
once a suitable approximation for the vertex functions has
been accomplished.

We can classifynonlocalcontributions to the two-particle
vertex by the type of a correlated two-particle propagation.
We either simultaneously propagate an electron and a hole or
two electronssholesd. Diagrammatically it means that we
connectspatially distincttwo-particle scattering events with
antiparallel or parallel pairs of one-particle propagators. Mul-
tiple scatterings of pairs of the same type define a channel of
a two-particle irreducibility. We call a diagram two-particle
irreducible if it cannot be split into separate parts by cutting
simultaneously either an electron-hole or an electron-
electron pair of propagators. The two definitions of the two-
particle irreducibility lead to topologically nonequivalent ir-
reducible functions and to different Bethe-Salpeter equations
for the full vertex. In each Bethe-Salpeter equation the two-
particle functions are interconnected via one-particle propa-
gators in a different manner. We can generically represent the
channel-dependent Bethe-Salpeter equations as

Gkk8sz+,z−;qd = L̄kk8
a sz+,z−;qd + fL̄aḠḠ ( Ggkk8sz+,z−;qd.

s14d

We used the symbol( for the channel-dependent multipli-
cation of the two-particle functions represented by specific

momentum convolutions. HereL̄a is the irreducible vertex in
the a-channel.

We will specify the momentum convolutions in the ge-
neric Bethe-Salpeter equations14d for electron-hole and
electron-electron multiple scatterings only. There is also a
third two-particle channel, the so-called vertical channel with
one-particle self-correlating scatterings.24 These scatterings
are, however, unimportant for the phenomenon of Anderson
localization, since the corresponding two-particle propagator
does not contain the diffusion pole.

Using the notation from Eq.s7d for the momentum depen-
dence of the two-particle functions we can write explicitly
the Bethe-Salpeter equation in the electron-hole channel with
barred functions as

Gkk8sz+,z−;qd = L̄kk8
eh sz+,z−;qd

+
1

N
o
k9

L̄kk9
eh sz+,z−;qdḠ+sk9dḠ−sk9 + qd

3Gk9k8sz+,z−;qd. s15ad

The Bethe-Salpeter equation with the electron-electron mul-
tiple scatterings then analogously reads

Gkk8sz+,z−;qd = L̄kk8
ee sz+,z−;qd

+
1

N
o
k9

L̄kk9
ee sz+,z−;q + k8 − k9dḠ+sk9d

3Ḡ−sQ − k9dGk9k8sz+,z−;q + k − k9d,

s15bd
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where we denotedQ=q+k +k8 the transfer momentum be-
tween the two electrons of the scattered correlated pair. In

these equations we abbreviatedḠsk ,z±d→Ḡ±skd.
Equationss15d constitute the fundamental building blocks

for the construction of systematic approximations for the
two-particle vertex. They are analogues of the Dyson equa-
tion and enable us to determine the full vertex from irreduc-
ible vertices. We hence can apply the perturbationsdiagram-
maticd expansion to the two-particle irreducible vertices, i.e.,
two-particle self-energies. As a first step toward a mean-
field-like theory for these vertices we must maximally sim-
plify the momentum dependence of the vertex functions, but
still staying beyond the local CPA. This will be achieved by
the asymptotic limit to highsfinited spatial dimensions.

B. Asymptotic limit to high lattice dimensions

Bethe-Salpeter equationss15d use only off-diagonal one-
particle propagators and hence are suitable for performing
the limit to high spatial dimensions. We use the hypercubic
lattice that has a straightforward high-dimensional limit. The

one-electron propagatorḠ has the following asymptotics:

Ḡsk,zd 8
t

Îd
o
n=1

d

cossknd E dersed
fz− Sszd − eg2 , s16d

whereSszd is the CPAsd=`d self-energy.25

The irreducible two-particle vertices must collapse to lo-
cal quantities in the limit to infinite dimensions. Since the
Bethe-Salpeter equationss15d use only the off-diagonal

propagators vanishing in the limitd=`, both verticesL̄eh

and L̄ee must coincide with the full local two-particle CPA
vertex ind=`. We hence have

L̄kk8
eh sz+,z−;qd = L̄kk8

ee sz+,z−;qd = gsz+,z−d. s17d

We further denote x̄sz+,z−;qd=xsz+,z−;qd−G+G− with
xsz+,z−;qd=x+sz+,z−;qd ,G+=Glocsz+d, and G−=Glocsz−d. If
we take into account only the electron-hole and electron-
electron multiple scatterings we can represent the leading
asymptotics of the full two-particle vertex in high dimen-
sions as follows:

Gkk8sz+,z−;qd 8 gsz+,z−d + lsz+,z−d

3S gsz+,z−dx̄sz+,z−;qd
1 − lsz+,z−dxsz+,z−;qd

+
gsz+,z−dx̄sz+,z−;Qd

1 − lsz+,z−dxsz+,z−;Qd
D . s18d

The standard nonlocal CPA vertex can be recovered from the
above expression if we neglect the contribution from the
electron-electron multiple scatterings, the second term in the
brackets on the right-hand sidesrhsd of Eq. s18d. There is,
however, no reason for this neglect, since both terms within
the brackets on the rhs of Eq.s18d produce the same
asymptotic behavior in powers of the inverse dimension,
Osd−1d. Their only difference is in the momentum depen-
dence.

The limit to infinite spatial dimensions reduces the mo-
mentum dependence of two-particle functions but does not
lead to a mean-field-like approximation for vertices. There is
no self-consistency in the two-particle parameters and the
local irreducible vertices are determined from the CPA. We
hence cannot expect that this high-dimensional two-particle
non-selfconsistent asymptotics would lead to major devia-
tions from the CPA. The only significant change in the vertex
function, Eq.s18d, with respect to the CPA vertex from Eq.
s12d is the existence of vertex corrections to the electrical
conductivity in the form ofweak localizationproperly de-
scribed by multiple electron-electron scatteringssmaximally
crossed diagramsd.

C. Parquet equations and electron-hole symmetry

To go significantly beyond the CPA predictions for trans-
port properties and response functions we have to introduce a
self-consistency that would extend also to the two-particle
irreducible vertices. That is, the two-particle irreducible ver-

ticesL̄eh andL̄ee should be determined from nonlinear equa-
tions. This effect can be achieved by introducing the so-
calledparquet equations. The concept of parquet equations is
based on the observation that two-particle reducible dia-
grams in one scattering channel are irreducible in the other
distinguishablescattering channels. Parquet equations were
introduced in many-body theories26–28but recently they were
adjusted also to disordered systems.24 The reducible dia-
grams from one channel can become irreducible in the other
channels only if different channels are indeed distinguishable
or nonequivalent. The idea of parquet equations cannot be
applied to local propagators of noninteracting particles with
indistinguishable electrons and holes, hence within the CPA.
It, however, works very efficiently for nonlocal vertex func-
tions in the Anderson model of disordered electrons.

If we again take into account only the electron-hole and
the electron-electron scattering channels, we can write the
basic parquet equation for the full two-particle vertex in high
dimensions

Gkk8sz+,z−;qd = L̄kk8
eh sz+,z−;qd + L̄kk8

ee sz+,z−;qd − gsz+,z−d.

s19d

Equations19d tells us that the full vertex is decomposed into
irreducible and reducible diagrams in the either scattering
channel and that the reducible diagrams consist of only the
irreducible diagrams from the other channel from which the
completely irreducible vertex, i.e., the vertex irreducible in
both channels, was subtracted. The limit to high lattice di-
mensions then determines the completely irreducible vertex
to be the full local CPAsd=`d vertexg.

Parquet equations19d can now be used in the Bethe-
Salpeter equationss15d to exclude the full vertexG from
them. Thereby we reach a closed set of nonlinear integral

equations for the irreducible verticesL̄eh andL̄ee. This set of
equations is generally not solvable without further approxi-
mations. To approximate the resulting parquet equations in a
systematic and controlled way we again utilize the mean-
field idea—limit to high dimensions. For two-particle func-
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tions and parquet equations we must use this limit only in the
asymptotic sense so as nonlocal fluctuations would not be
lost completely.

One can make an important observation in high spatial

dimensions. The off-diagonal one-particle propagatorsḠ be-
have in the leading asymptotic order as Gaussian random
variables with respect to momentum summations.17 Using
representations16d we can easily prove the following rela-
tions:

1

N
o
q8

x̄sq8 + qdḠ±sq8 + kd 8
Z

4d
Ḡ±sq − kd, s20ad

1

N
o
q

x̄sq + q1dx̄sq + q2d 8
Z

4d
x̄sq1 − q2d, s20bd

where we used abbreviationsZ= t2kG+
2lkG−

2l with kG±
2l

=N−1okG±skd2. The equalities in Eq.s20d hold only within

the leading asymptotic orderd→`. The functionsḠ± and x̄
form a closed set of Gaussian random variables with respect
to momentum convolutions. We hence can use Eqs.s20d to
simplify the parquet equations for the irreducible vertices

L̄eh and L̄ee.
Before we attempt to resolve the parquet equations in

high dimensions, we utilize the time-reversal invariance of
the system. It is an important feature of electron systems
without spin- and orbital-dependent scatterings. According to
this invariance the physicalsmeasurabled results should not
depend on the orientation of propagators. We hence can write
for one- and two-particle propagators

Ḡsk,zd = Ḡs− k,zd, s21ad

Gkk8sz+,z−;qd = Gkk8sz+,z−;− Qd = G−k8−ksz+,z−;Qd.

s21bd

In case of the two-particle vertex, the time reversal was ap-
plied only to one fermion propagator. The time reversal
leaves the full two-particle vertex invariant but it transforms
the Bethe-Salpeter equations15ad to Eq. s15bd and vice
versa. It means that the irreducible vertices transform as fol-
lows:

L̄kk8
ee sz+,z−;qd = L̄kk8

eh sz+,z−;− Qd = L̄−k8−k
eh sz+,z−;Qd.

s21cd

The time-reversalselectron-holed symmetry reduces the
number of parquet equations to just one nonlinear integral
equation for a single vertex that we define as

L̄kk8sz+,z−;qd; L̄kk8
ee sz+,z−;qd=L̄kk8

eh sz+,z−;−Qd. The result-
ing equation for this vertex reads

L̄kk8sqd = g +
1

N
o
k9

L̄kk9s− q − k − k9dḠ+sk9dḠ−sq + k9d

3fL̄k9k8s− q − k8 − k9d + L̄k9k8sqd − gg . s22d

Equations22d can now be simplified in high spatial di-
mensions by using the Gaussian summation rules, Eqs.s20d.
It is clear from these rules that the fermionic momenta from
different two-particle functions must be summed indepen-
dently in the leading asymptotic order. Any correlated mo-
mentum summation involving two different two-particle
functions costs a factor 1/d. Then only the conserved
bosonic transfer momenta survive as in the case of the high-
dimensional vertex from Eq.s18d. We hence must sum both
sides of Eq.s22d over incoming and outgoing fermionic mo-
mentak ,k8 so as to extract the high-dimensional limit of the

irreducible vertexL̄. To reach an equation for the relevant
variables we introduce

L̄sqd =
1

N2o
kk8

L̄kk8sqd. s23ad

Further on we have in the leading order

1

N2o
kk8

L̄kk8sq + k + k8d =
1

N
o
q

L̄sqd = L̄0. s23bd

Since the fermionic momenta from different two-particle
functions are summed independently in high spatial dimen-
sions, the parquet equations22d reduces with the above defi-
nitions to

L̄sqd = g + L̄0
L̄0x̄sqd

1 − L̄0x̄sqd
. s24ad

We see that the high-dimensional irreducible vertex is com-
pletely determined from a single localsmean-fieldd param-

eter L̄0 and the two-particle bubblex̄sqd. Summing both
sides of Eq.s24ad over momenta we obtain an equation for
the local two-particle irreducible vertex

L̄0 = g + L̄0
2 1

N
o
q

x̄sqd

1 − L̄0x̄sqd
. s24bd

Knowing the local part of the two-particle irreducible vertex

L̄0 we can reconstruct the full two-particle vertex in high
spatial dimensions. We have

Gkk8sqd = g + L0S L̄0x̄sqd
1 − L0xsqd

+
L̄0x̄sk + k8 + qd

1 − L0xsk + k8 + qd
D ,

s25d

where, in analogy to the non-self-consistent high dimen-

sional vertex, Eq.s18d, L0=L̄0/ s1+L̄0G+G−d and x̄sqd
=xsqd−G+G−.

Equations s23d–s25d form an approximation for two-
particle functions with a single, local parameter determined
self-consistently. Such an approximation is a self-consistent
extension of the high-dimensional limit of the two-particle
vertex, Eq.s18d. We hence can call it a mean-field approxi-
mation for two-particle functions of noninteracting disor-
dered electron systems. The self-consistently determined

mean-field parameterL̄0 exactly reproduces the leading 1/d
correction to the CPA irreducible vertexl. The fundamental
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self-consistent equation of this approximation, Eq.s24bd, has
a typical mean-field character. That is, it can be used in any
dimension. The lattice structure enters the equation only
through the momentum summation running over the first
Brillouin zone. Notice, however, that we cannot reduce the
momentum summation in two-particle functions to an inte-
gral over the density of states.

D. Self-energy and diffusion pole in high dimensions

The mean-field theory constructed in the preceding sec-
tion is a self-consistent approximation for the two-particle
vertex where one-particle propagators are assumed to be ex-
ternal functions. Such a situation cannot be the final stage of
the theory, since due to conservation laws and thermody-
namic consistency the one- and two-particle functions are
correlated. Actually, the electron-hole irreducible vertex is
connected with the self-energy for noninteracting disordered
electrons via the Vollhardt-Wölfle Ward identity18

SRsk,E + vd − SAsk,Ed =
1

N
o
k8

Lkk8
RA sE + v,Ed

3fGRsk8,E + vd − GAsk8,Edg .

s26d

Here we denotedSR,SA the retarded and advanced self-
energy andLkk8

RA sE+v ,Ed;Lkk8
eh sE+v+ i0+,E− i0+;0d. Note

that the irreducible vertexL in Eq. s26d does not have bar,
i.e., it is defined via the Bethe-Salpeter equation with the full
one-electron propagatorsGR,GA. The Ward identity says that
if we modify the electron-hole irreducible vertex we must
change adequately the one-electron self-energy and vice
versa. We hence cannot approximate independently the irre-
ducible vertex without changing appropriately the self-
energy. If we have an analytic expression for the self-energy
as a functional of the one-electron resolvent, we can use a
differential form of the Ward identitys11d to determine the
irreducible vertex. Then the vertex function is determined
directly from the one-electron propagator. Such a construc-
tion of the irreducible vertex does not lead to bifurcation
points and multiple solutions, i.e., to a phase transition, un-
less we find them in the self-energy itself. It is normally very
difficult to determine bifurcation points in the self-energy
that is a bounded function. It is more convenient to search
for possible bifurcation points in two-particle functions that
may display divergences.

It is clear that we need self-consistent equations for func-
tions that could have multiple solutions. Such a self-
consistent approximation for the irreducible vertex was
achieved in the preceding section. A self-consistent equation
for the irreducible vertex cannot be derived from a self-
energy directly. To achieve consistency between the one- and
two-particle functions in this case we must determine the
self-energy as a functional of the irreducible vertex. This
must be done in concord with the Ward identitys26d.

The self-energy as a functional of the irreducible vertex is
overdetermined from identitys26d. We can nevertheless use
the Vollhardt-Wölfle identity to determine the self-energy
from the vertex function as suggested in Ref. 29 and used in

the parquet approach from Ref. 24. We use only a specific
element of the Vollhardt-Wölfle identity to determine the
imaginary part of the self-energy. In the mean-field case,
where the irreducible vertex is local, we can write a gener-
alized CPA equation

Im SRsEd = L0
RAsE,EdIm GRsEd. s27ad

Consistency, or negative definiteness of ImSR, demands that
the local element of the irreducible vertexL0

RAsE,Ed
=N−2okk8Lkk8sE+ i0+,E− i0+;0d, determined from the
mean-field equations24bd, is positive.

We cannot find the real part of the self-energy directly
from the irreducible vertex. Instead, we use causality of the
self-energy and the Kramers-Kronig relation expressing the
real part of an analytic function as a Hilbert transform of its
imaginary part. We have

ReSsEd = S` + PE
−`

` dE8

p

Im SRsE8d
E8 − E

. s27bd

Equations s27d now determine the self-energy from the
mean-field slocald irreducible vertexL0. Notice, however,
that to determine the self-energy at one frequency we must
know the irreducible vertex in the whole frequency range.
Equationss27d complete the mean-field theory for vertex
functions, Eqs.s23d and Eqs.s24d, and make it a consistent
approximation with proper analytic properties of one- and
two-particle Green functions.

The Vollhardt-Wölfle identity, its specific form from Eq.
s27ad, not only serves as a means for a consistent determina-
tion of a causal self-energy from a given irreducible vertex,
but it is also indispensable for the existence of the diffusion
pole in the electron-hole correlation function. We now show
in what form the diffusion pole survives in the mean-field
theory for vertex functions with the self-energy determined
by Eqs.s27d.

The electron-hole correlation function is defined from the
averaged two-particle Green function as

FE
RAsq,vd =

1

N2o
kk8

Gkk8
s2d sE + v + i0+,E − i0+;qd. s28d

The two-particle Green function is evaluated with the full
two-particle vertex via Eq.s7d.

From Eq.s27ad and fromxRAs0d=Im GR/ Im SR we obtain
that both the denominators in the high-dimensional limit of
the two-particle vertexGRA vanish at zero transfer momenta.
Hence, the mean-field approximation for vertex functions
contains the diffusion pole in the electron-hole channelsfirst
term in the brackets on the rhs of Eq.s25dd and the Cooper
pole in the electron-electron channelssecond termd. Only the
diffusion pole survives as a singularity in the electron-hole
correlation function, Eq.s28d.

To derive the low-energy behavior of the electron-hole
correlation function we denote

AE = 1 + 2i Im GRsEdU ]L0
RAsE + v,Ed

]v
U

v=0
s29ad

and
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DE
0svd = 2 Im SRsEdL0

RAsE + v,EdU ]xRAsqd
]sq2d

U
q=0

.

s29bd

With these two definitions we find the high-dimensional as-
ymptotics of the low-energy limit of the electron-hole corre-
lation function at zero temperature to be

FE
RAsq,vd <

2pnE

− iAEv + DE
0svdq2 , s30d

wherenE is the density of states at the Fermi energyE.
The low-energy asymptotics of the electron-hole correla-

tion function serves as an important tool for testing consis-
tency of approximations. We find from gauge invariance and
the sunrestrictedd Ward identity s26d that the electron-hole
correlation function should display the diffusion pole in form
of Eq. s30d with AE=1 for arbitrary disorder strength. It then
means that the low-energy behavior of the electron-hole cor-
relation function is controlled by a single parameter, the bare
dynamical diffusion constantDE

0svd.18,19 However, we al-
ready found in Ref. 17 that the constantAE increases with the
disorder strength and becomes infinite at the Anderson local-
ization transition. The disorder dependent weight of the dif-
fusion polenE/AE is the central unexpected feature of the
mean-field theory for vertex functions. This mean-field ap-
proximation obeys the Vollhardt-Wölfle identity only in the
limit to zero frequency, Eq.s27ad, and not for finite energy
differences. We found a consistent explanation for the de-
crease of the weight of the diffusion pole with increasing
disorder strength.20 The weight of the diffusion pole,nE/AE,
expresses a portion of extendedsdiffusived states from all
available states at the Fermi energy determined by the den-
sity of states calculated from the one-electron Green func-
tion, nE=−Im GRsEd /p .

The dependence of the weight of the diffusion pole on the
disorder strength found in the mean-field theory for averaged
two-particle functions could be an artifact of this specific
approximation. We could still hope that the full exact solu-
tion recovers the invariant weight of the diffusion pole ex-
pected from the unrestricted conservation laws for averaged
Green functions. Based only on approximation-free argu-
ments we found that the Vollhardt-Wölfle identitys26d for
finite frequenciesv cannot be fulfilled in any finite dimen-
sion if the electron-hole irreducible vertexLeh contains the
Cooper pole. Enforcing the full form of the Vollhardt-Wölfle
identity together with the Cooper pole in the electron-hole
irreducible vertex inevitably leads to a self-energy being a
nonanalytic function of its energy argument for almost all
Fermi energies within the energy bands.30,31 In our mean-
field approach the analytic properties of the self-energy are
determined by positivity of the vertex functionL0

RAsE,Ed
and Kramers-Kronig relation, Eq.s27bd. The form of the
two-particle vertex L0

RAsE,Ed is fixed by its high-
dimensional asymptotics. This asymptotics and analytic
properties of the self-energy force deviations from the
Vollhardt-Wölfle Ward identity. It hence seems that the high-
dimensional behavior of the two-particle vertex and the
disorder-dependent weight of the diffusion pole, disclosed by

the asymptotic mean-field solution, are generic features of
the Anderson model of disordered electrons. At least for
theories that can be analytically continued from the limit to
high spatial dimensions.

IV. DISCUSSION AND CONCLUSIONS

We presented in this paper two ways how to reach mean-
field-like approximations for noninteracting disordered elec-
tron systems. The first one, being the standard thermody-
namic mean-field theory known from many-body systems,
uses the limit to infinite spatial dimensions applied to the
generating, configurationally averaged thermodynamic po-
tential. The limit to infinite spatial dimensions enables one to
separate the diagonal and off-diagonal elements of the one-
particle propagator and its self-energy and to find an explicit
representation for the generating functional. The local one-
particle functions from the generating functional serve as
generalized variational parameters, the physical values of
which are determined from stationarity equations for the
generating functional. The higher-order Green and vertex
functions are determined from responses of the system to
local external perturbations. In this way the construction of a
mean-field approximation is consistent and unambiguous in
the determination of one-particle functions as they are the
only ones entering the generating functional. The higher-
order Green functions are defined uniquely only in their local
parts.

The nonlocal parts of two-particle Green functions are no
longer determined from the local thermodynamic theory
uniquely. We can either use the standard construction of
Baym and Kadanoff or we can directly apply the asymptotic
limit to infinite spatial dimensions to two-particle functions.
The outcome of these two constructions is not identical. In
the former way we miss some of the leading-ordersmaxi-
mally crossedd diagrams and lose the electron-hole symmetry
at the two-particle level. These deficiencies severely discredit
reliability of the thermodynamic mean-field theory in the cal-
culation of spatial coherence and transport properties of dis-
ordered systems. To overcome these drawbacks we proposed
another route toward a mean-field-like approximation for
vertex functions based on a direct analysis of two-particle
functions in high spatial dimensions.

The incapability of the thermodynamic mean-field theory
to correctly describe nonlocal correlations in two-particle
functions is caused by the degeneracy of local theories with
elastic scatterings. Static local approximations are unable to
distinguish between electrons and holes. Only quantum dy-
namics or multiple scatterings on spatially distinct impurities
can discern the motion of an electron from the motion of a
hole. The distinguishability of electrons and holes is of prin-
cipal importance for encountering backscattering effects and
for a two-particle self-consistency used in the construction of
a mean-field theory for vertex functions.

A mean-field approximation for vertex functions in disor-
dered electron systems was constructed from theasymptotic
limit to high spatial dimensions, where, unlike the thermo-
dynamic mean field, the lattice dimension is high but finite.
Alike the strict limit d=`, the asymptotic behavior in high
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dimensions leads to significant simplifications in momentum
convolutions that enable us to reduce the approximation to a
mean-field-like one with a local generator determined from a
self-consistent equation. We applied the asymptotic limit di-
rectly within a diagrammatic expansion around the CPA for
two-particle functions. The basic ingredients for the con-
struction were parquet equations for the two-particle irreduc-
ible vertices from the electron-hole and the electron-electron
scattering channels. Using the electron-hole symmetry at the
two-particle level and the asymptotic limit to high dimen-
sions we succeeded in producing a self-consistent approxi-
mation for the local part of the electron-hole irreducible ver-
tex. It is a self-consistent 1/d extension of the CPA
irreducible vertex. The mean-field theory for vertex functions
then determines in a unique way the full two-particle vertex
that correctly reproduces the limit to infinite dimensions with
the electron-hole symmetry at both one- and two-particle
levels.

The mean-field theory for vertex functions is an approxi-
mation for two-particle functions. The one-electron func-
tions, used as an input for the two-particle equations, are
then calculated from the vertex function via a specific form
of the Vollhardt-Wölfle Ward identity and the Kramers-
Kronig relation. With this extension of the theory to one-
particle functions we accomplished an approximate descrip-
tion of disordered systems fulfilling all consistency
conditions on one- and two-particle functions.

The most important achievement of this mean-field theory
is its ability to describe the disorder-induced vanishing of
diffusion, that is, the Anderson localization transition. This
theory succeeded for the first time to bridge qualitatively
correctly the weak and the strong disorder limits and to cover
the split-band limit as well as vanishing of diffusion. The
other existing approaches have concentrated on only one of
the two phenomena. They either miss the two-particle self-
consistency or do not consistently match the one- and two-
particle functions.

The consistency between the one-electron self-energy and
the electron-hole irreducible vertex is essential for credibility
of approximate treatments of the Anderson metal-insulator
transition. Only with this relation correctly taken into ac-
count we obtain the proper form of the diffusion pole and
electron diffusion on long distances. In this respect the mean-
field theory for vertex functions leads, surprisingly against
the common expectations, to a nonconserving weight of the
diffusion pole and its dependence on the disorder strength.
The thermodynamic mean-field theory and all other ap-
proaches to the Anderson localization transition assume or
use the unrestricted form of the Ward identitys26d being a
consequence of conservation of the norm of the wave func-
tion for all configurations of the random potential. We argued
already earlier that the Hilbert space of Bloch waves is in-
complete in the sense that it does not encompass the eigen-
states of all configurations of the random potential. At a
given energy we observe even in the metallic regime macro-
scopically relevant numbers of configurations with localized
states.20

Vanishing of the diffusion pole at the Anderson metal-
insulator transition and in the localized phase modifies the
existing picture of the critical behavior for vanishing of dif-

fusion. In the standard approaches, such as the nonlinear
sigma model or the Vollhardt-Wölfle self-consistent approxi-
mation, the dynamical diffusion constant is the only param-
eter controlling the low-energy behavior of the electron-hole
correlation function. In our mean-field theory we have apart
from the diffusion constant also the weight of the diffusion
pole that significantly influences the description of long-
range correlations and diffusion. In the critical region, how-
ever, only the constantAE→` from Eq.s29ad is relevant and
all critical scales can be derived from it. For instance the
renormalized diffusion constantDE=DE

0 /AE vanishes at the
localization transition with the diverging parameterAE, etc.
It means that the mean-field description of the Anderson lo-
calization transition is compatible with a one-parameter scal-
ing theory.

Although the one-parameter scaling holds for the Ander-
son localization transition, two relevant parameters in the
critical region, nE/AE and DE

0 /AE, nevertheless lead to a
modification of the critical behavior deduced from the field-
theoretic approaches. The two parameters stand for two
quantities influencing the electrical conductivity. The former
expresses the number of extended states at the Fermi energy
E and the latter the averaged velocity of the diffusive par-
ticles. Both quantities go simultaneously to zero at the
Anderson metal-insulator transition. It is straightforward to
verify that the mean-field theory for vertex functions predicts
that AE,ulc−lu−1/2, where l is the bare disorder strength
and lc its critical value. Having two vanishing parameters
we have to distinguish two types of the critical behavior.
First, we have properties of individual electrons. One of
them is diffusion as seen from the semiclassical diffusion
equation. This is quantitatively described by the renormal-
ized diffusion constantDE,ulc−lu1/2. Second, we have sta-
tistical values describing the disordered sample as a whole.
Among them the averaged conductivity is the most interest-
ing one. It is proportional to the product of the number of
available diffusive states and the renormalized diffusion con-
stant, so that we haves,nEDE

0 /AE
2 ,ulc−lu1. Notice, how-

ever, that there is not a direct relation between the diffusion
constant and the conductivity calculated from the Kubo for-
mula, since due to deviations from the Ward identity, the
Einstein relation does not hold. Finally we can also deduce
the critical exponent for the localization length in the local-
ized phase. Its square is inversely proportional to the order
parameter, being the imaginary part of the local irreducible
vertex ImLRAsE+0+,Ed,ul−lcu1/2. We hence obtainj
,ul−lcu−1/4. The critical exponent for the conductivity
equals the mean-field exponent from the Vollhardt-Wölfle
theory but the critical exponent for the localization length is
one-half of their value. We remind that the critical behavior
obtained from the mean-field theory for vertex functions
holds only for dimensionsd.du=4. We expect corrections
to the mean-field critical behavior in lower dimensions.

To conclude, we demonstrated that to reach a reliable
quantitative description of the Anderson localization transi-
tion one must sum up self-consistently nonlocal contribu-
tions to the electron-hole and the electron-electron irreduc-
ible vertex functions. It can be achieved in a mean-field
manner via the asymptotic limit to high spatial dimensions
leading to a self-consistent extension of the CPA local vertex.
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The most important conclusion of this mean-field theory of
Anderson localization is that the weight of the diffusion pole
is not conserved and that the diffusion pole is absent in the
localized phase. The decreasing weight of the diffusion pole
with the increasing disorder strength is a consequence of
incompleteness of the Hilbert space of Bloch waves. At any
Fermi energy there are macroscopically relevant numbers of
configurations with localized as well as with delocalized
states. The number of configurations with extended states
decreases with increasing the disorder strength and vanishes
at the localization transition. This feature can essentially be
checked by other, e.g., numerical means. Due to the disorder-

dependent weight of the diffusion pole the Einstein relation
does not hold and we have to distinguish individual and
statistical transport properties of disordered systems. One
should have this in mind when calculating the critical behav-
ior of the Anderson localization transition.
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