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Mean-field theories for disordered electrons: Diffusion pole and Anderson localization
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We discuss conditions to be put on mean-field-like theories to be able to describe fundamental physical
phenomena in disordered electron systems. In particular, we investigate options for a consistent mean-field
theory of electron localization and for a reliable description of transport properties. We argue that a mean-field
theory for the Anderson localization transition must be electron-hole symmetric and self-consistent at the
two-particle(vertex level. We show that such a theory with local equations can be derived from the asymptotic
limit to high spatial dimensions. The weight of the diffusion pole, i.e., the number of diffusive states at the
Fermi energy, in this mean-field theory decreases with the increasing disorder strength and vanishes in the
localized phase. Consequences of the disclosed behavior for our understanding of vanishing of electron diffu-
sion are discussed.
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I. INTRODUCTION definition of the mean-field theory as an exact solution of the

Mean-field theories play an important role in the descrip-model system in infinite spatial dimensiohs.
tion of thermodynamic systems. They are intended and used The coherent potential approximation is nowadays con-
as a first approximation offering a qualitative picture of thesidered as an archetype of mean-field theories of quantum
physics of the studied phenomena. The mean-field conceglisordered and interacting systems. Its generalized ¥ofm
has developed from its initial intuitive ideas of van der Waalsfers one possible interpretation of equations of motion in the
and Weiss through the Landau theory of critical phenomenaynamical mean-field theof@MFT).> The CPA has proved
to its present sophistication and systematics provided by theeliable to produce an accurate equilibrium electronic struc-
limit to infinite-dimensional lattice models. At present, a ture of disordered systefthas well as transport properties of
modern mean-field theory is no longer a weak-coupling aprandom alloys. It, however, fails to account for intersite
proximate treatment neglecting spatial fluctuations. It reprequantum coherence and backscattering effects. The CPA is
sents a comprehensive theory providing a phase diagram mssentially unable to go beyond the semiclassical description
the whole range of the input parameters and simulating thef transport properties qualitatively captured by the Boltz-
exact behavior in specific limiting situations. Without a mann equation. This inability is due to the fact that the CPA
mean-field theory we are mostly unable to identify the rel-does not include vertex corrections to the electrical conduc-
evant fluctuations, the mean values of which are reflected biivity independently of how strong the disorder may®ghe
thermodynamidorden parameters. Mean-field theory is par- CPA is hence unsuitable for the description of one of the
ticularly important for critical phenomena with divergent most prominent features of disordered systems, Anderson
correlation functions, where it allows us to handle singulari-localization.
ties in a consistent and manageable way and to select the Anderson localization in disordered or amorphous solids
proper low-temperature phase, at least above the lower crittakes place when there are available electronic states at the
cal dimension. Fermi surface but no diffusion or charge transport at long

Mean-field theories were primarily developed for collec- distances is observed. Possibility of the absence of diffusion
tive phenomena in interacting systems. Nontrivial and somein impure metals and alloys was proposed by Anderson on a
times not easily understandable effects are, however, alssimple tight-binding model of disordered noninteracting
induced by randomness. Randomness, in connection with irelectrons’ Since then, vanishing of diffusion, now called
teraction or with quantum interference, can cause significanAnderson localization, has attracted much attention of both
and sometimes even unexpected changes in the behavior ihfeorists and experimentalists'! In spite of a considerable
the system. Since mostly no exact solutions are available fgoortion of amassed experimental data, disclosed various spe-
disordered systems, a mean-field approximation has beconuific and general aspects of the Anderson metal-insulator
one of the most powerful tools to handle fluctuations in thetransition, and a number of theoretical and computational
chemical composition of solids. approaches so far developed we have not yet reached com-

Milestones of a mean-field theory for disorder@mnin-  plete understanding of Anderson localization. Although
teracting electron systems were laid at the end of the 1960snany features of the critical behavior at the Anderson local-
and the beginning of the 1970s. The so-called coherent pdzation transition have been uncovered, the position of this
tential approximatiofCPA) developed at that time is a self- disorder-driven metal-insulator transition within the standard
consistent approximation describing rather accurately thelassification scheme of phase transitions with control and
electronic structure and thermodynamic properties of randororder parameters has remained unclear. It has been mainly
alloys not only at the model level but also in realistic due to the nonexistence of an appropriate mean-field-like
settingst Later on, the CPA was shown to fit the modern theory for this phenomenon.
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The existing attempts to go beyond the single-gitean-  Ward identities, or via a direct diagrammatic construction in
field) approximations for disordered systems based on clustérigh dimensions. The former construction, CPA, is suitable
expansions have concentrated mostly on one-particle propesnly for one-electron spectral and thermodynamic properties.
ties and momentum-dependent self-enefgyherent poten-  Since the CPA lacks the electron-hole symmetry at the two-
tial). Instead of individual sites, their clusters are self- partic|e level, it becomes unreliable when app“ed to the cal-
consistently embedded in an average medium. Apart frondylation of transport properties in situations when localiza-
the traveling-cluster approximatidi!3cluster expansions in ion effects are expected, e.g., near band edges. We
the direct space fail to warrant g_IobaI analytic properties ofjemonstrate that the latter approach, when properly formu-
the self-energy, and hence spurious effects can eméf§e. |ateq can lead to a theory being self-consistent and mani-
An alternative cluster expansion with discrete sets of ava'ITestIy electron-hole symmetric at the one-particle level and
able momenta was recently suggested so as andhjtec- s well at the two-particle level. The last two conditions are

lotz) properties of the resulting averaged propagators an . . . )
tghe gerl)f—err)]ergy were guarante’gdCIuste% apgrogimgations ecessary mgrgd@nts for a_t.heory being able to describe the
' tbénderson localization transition.

however, reduce spatial guantum coherence only to a discre ;
P g y The layout of the paper is as follows. In Sec. Il we sum-

set of lattice sites or momenta. Such approximations then . g ' . 2
remain perturbative in the coherence range and cannot led§2/1ze basic properties of the CPA defined from the limit to

to Anderson localization for which we need long-range Co_lnfinite_ spgtial d?mensions. We show how the_averaged grand

herence with infinite-many backscattering or “crossed” diaPotential is derived from the local one-particle propagator

grams. and the self-energy. The higher-order Green functions are
Only very recently the present authors demonstrated that @€n determined via local external perturbations. The mean-

mean-field-like solution for the Anderson metal-insulatorfi€ld theory with a two-particle self-consistency is con-

transition can be derived from the asymptotic limit to high Structed in Sec. lll. First, inability of the CPA to reproduce

(but finite) spatial dimension¥’ This solution is very close the proper infinite-dimensional limit for two-particle Green

to the CPA in the resulting electronic structure. It shares thdunctions is demonstrated. Then, using the parquet scheme

analytic properties of the CPA and reduces to it in infinite@nd the electron-hole symmetry we derive a self-consistent

dimensions. It, however, differs from the CPA significantly in (Nonlineay equation for the irreducible two-particle vertex.

transport properties derived from two-particle functions. InThis equation is then solved at the mean-field level, i.e., in

addition to the one-electron self-consistency of the CPA, théhe leading nontrivial order of the high-dimensional limit.

mean-field theory is endowed with a two-particle Se|f_T_he exp_I|C|t. form pf the diffusion pole in h|gh spatial dlmen—.

consistency. That is, the two-particle irreducible vertices aréions with its weight dependent on the disorder strength is

determined from self-consistent nonlinear equations. finally obtained. Consequences of our findings for under-
The mean-field-like theory for the disorder driven vanish-Standing of the disorder-driven vanishing of diffusion and

ing of diffusion of Ref. 17 shows some unexpected features”nderson localization are discussed in Sec. IV.

It contradicts the dogma that the weight of the diffusion pole,

i.e., the number of diffusing particles, does not depend on the 1. THERMODYNAMIC MEAN-FIELD THEORY:

disorder strength. The weight of the diffusion pole is con- ONE-PARTICLE SELF-CONSISTENCY

served only if all the states near the Fermi energy are finite

combinations of Bloch waves for any configuration of the

random potential. Or, equivalently, if a Ward identity be-  To construct a comprehensive mean-field theory for ther-

tween self-energy and the irreducible electron-hole vertexnodynamic properties of a random system means to find an

holds for all transfer energié8.1°We demonstrated in Ref. approximate representation in closed form for the grand po-

20 that once the electron-hole irreducible vertex contains théential averaged over random configurations

so-called Cooper pole, the number of extended states at the

Fermi level decreases with increasing the disorder strength. Q) = - l<|n Tr exp{— BH +,3MN}>av 1)

Hence, there is no chance for a theory with the Cooper pole

to fully satisfy the Ward identity between the averaged one- ) . . ~ _

and two-electron Green functions and to keep the number g¥herex is the chemical potential arid is the particle num-

diffusive states independent of the disorder strength. ber operator. We will consider in this paper only a noninter-
The aim of this paper is to clarify the ambiguities con- actmg lattice electron gas scgttereq on randorr_1 |mpur|t|es and

nected with the mean-field concept applied to two-particledescribed by the Anderson tight-binding Hamiltonian

functions in disordered electron systems. We leave aside all ~ Ata At

interaction-driven phenomena and concentrate exclusively H= 2 tiJCiTCJ' * E Vg, 2

on the effects of randomness. We delimit the content and the w '

range of validity of the two existing mean-field theories for whereV, is a local, site-independent random potential.

the Anderson model of noninteracting electrons—the CPA It has become evident since the introduction of the con-

and that of Ref. 17. The common ground for both theories iept of the limit to infinite spatial dimensions in quantum

the limit to high spatial dimensions. We show that the ambi-itinerant systems that a controllable comprehensive mean-

guity in the identification of the mean-field theory for two- field theory of itinerant models should be defined via this

particle functions results from two different ways how it can formal limit.2* In high spatial dimensions the diagortkical)

be derived: either via the generating local functional andand off-diagonal (nonloca) elements of the one-particle

A. One-particle functions and generating functional
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propagator separate from each other. The former are of ordequations are diagonal in the Matsubara frequencies and can
O(d%, while the latter vanish ad 2, whered is the spatial be solved for each frequency independently. Inserting the
dimension. The full one-particle propagator and the selfsolution for all Matsubara frequencies to E¢4). we obtain
energy have the following high-dimensional asymptotics: the equilibrium thermodynamic potential for noninteracting
_ ~diag 40 offr a1/ electrons scattered on random impurities. The equilibrium

G=G"qd’]+ G [d™7], (3a) thermodynamics of the systems is then determined only by
' . the local irreducible part of the averaged one-particle resol-
—~d 0 ff 3/
3 =290 + XM [d ™). (3b) vent. This irreducible part is self-consistently determined

We can classify contributions to the many-body perturbafrom the Soven equatio(s).
tion expansion for the self-energy according to their high-
dimensional asymptotic contribution and obtain in the lead-
ing order a local approximation for the irreducible part of the ~ Thermodynamics of disordered systems is not of much
one-electron propagator. The interacting part of the thermolnterest unless interparticle interactions are present. But even

dynamic potential in infinite spatial dimensions is then athen the averaged thermodynamic potentials depend on only
functional of onlyG®2d and > diag3 one-electron functions. One-electron functions, however, do

In disordered systems the interpartide interaction is rehot contain the Complete information about the behavior of

p|aced by correlations between scatterings on impurities_ Thét&tiStiC&' ensembles, in particular of disordered Systems. The
self-energy is here a coherent potential of an effective homoequilibrium thermodynamic potentials do not contain suffi-
geneougnonrandonm medium representing the effect of im- cient information from which we could derive transport
purity scatterings on the motion of electrons. Since the scafroperties of the system and its response to weak external
terings are static, we can find an explicit representation of thelectromagnetic perturbations. To include the electrical con-
averaged grand potential in infinite spatial dimensions. Weluctivity into the mean-field description, the thermodynamic

B. External sources and two-particle functions

can write construction from the preceding section must be extended to
A . . include averaged two-particle propagators.
0,[G,3] = F{Goae1+ 3 diag Averaged two-particle propagators in disordered systems
1 .1 R - contain at least two energy argume(tigo in noninteracting
- =Trin GY89— =Tr In(GO1 - 39891 ) and three in interacting system3he best way to guarantee

that one- and two-particle functions are approximated con-
(4a) sistently within a single approximate scheme is to use the
Baym-Kadanoff concept of external sources added to the
equilibrium thermodynamic potenti&t.To introduce higher-
- 1 ~ - order Green functions with several energielsemical poten-
F{X}=- ,E<Tr IN[X=V])ay (4b)  tials) into the thermodynamic description we must replicate
the original system so as for each energy we had an indepen-
the local “interacting part” of the thermodynamic potential, dent replica of the original system, that is, of creation and
in this case the effect of multiple scatterirfg§he trace op-  annihilation operators.
erator Tr extends over the lattice space as well as over the We replicate the creation and annihilation operators and
Matsubara frequencies. The only nonlocal contribution to théntroduce external perturbations into the thermodynamic de-
generating functional), comes from the bare propagator scription via a generalized grand potential of-imes rep-
G©. The site-diagonallocal) complex vectors®,) and licated system)*(Ey,Ey, ... ,E,;U) with » chemical poten-
sd29 ) in fermionic Matsubara frequenci¢gn+1)7/g are  tialsEy,...,E,. An external perturbatiot) is used to couple
variational parameters, the physical values of which are atdifferent replicas and to break the initial replica indepen-
tained at stationarity points of the generating functicial ~ dence. We then can write

where we denoted

The defining equation for the local element of the aver- oo
aged one-particle propagator is obtained from an equation QOY%E,,E,,....E,;U)=-={ InTr exp(—ﬁz (H<A‘>D§ij
5&)#/52%"""9(##0 and the self-energy is determined from ij=1
80,1 6G ") =0. After straightforward manipulations the
two equations reduce to —~ENOs; + Aﬁ“”)) , (6)
1 av
1= 1 +[2n(ﬂ) —Vi]Gn(M) av (53 where we assigned to each replica characterized by energy

(chemical potentialE; a separate Hilbert space and denoted

and AHD =3, UMW) an external perturbation to be set zero
1 . dep(e) at the end. Thermodynamic potentft(E,,E,,... ,E,;U) is
Gn(p) = N% Glk.iwn) = i+ pu—Sn(p) — € (5b) 5 generating functional for averaged products of Green func-

tions up to thewth order. In practice, we will use linear-
We dropped the superscript diag in the local functions andesponse theory with one- and two-particle Green functions,
introduced the electronic density of statelg). Due to the i.e., Q"(E;,E,,...,E,;U) is expanded up t&)2. Therefore it
static character of the impurity scatterings the stationarityis sufficient to introduce only two replicas.
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In fact we are interested only in corrections to the prod-now a straightforward task to derive a matrix Soven equation
ucts of the averaged one-particle propagators expressed vigneralizing Eq(5a). We obtain
vertex functions. The two-particle vertdx is defined from

the two-particle resolven&® in momentum representation G(z1,25;U) = (G Uz1,2;U) + 3(23,2;U) = Vi ] D,
as (9)
(2 eM) — ' ~ “
Gy (21,22;0) = G(k,2))G(k +q,2)[ 8k — k') where G(z;,2,; U):N‘ZEklsz(kl,zl, k,,7z,;U) is the local
+ T (2,2:9)G (K, 2)G(K' +,2,)]. element of the matrix one-particle propagator. Inversions in

Eq. (9) have matrix character in the replica space. The diag-

(7) onal elements of the matrix equati¢® determine the one-

The external disturbance mixes different replicas and Particle propagators for energiesandz,. The off-diagonal

propagators in the replicated space are matrices in the replijﬂemems' prqportlonal to the pgrturbgﬂblm determine thg
indexes. Since we are interested only in the averaged tw ocal tvyo—partlcle resolvent that' is defined as the cpefﬂuent
particle functions, we can resort to two energies and to &t theJmear term in the expansion of the local matrix propa-

two-by-two matrix propagator gator G(z;,2,;U) in the external perturbatiob). The local
) two-particle Green function can be represented with the aid

G Yky,21,k5,25;U) of the irreducible vertextwo-particle self-energy\ via a

R ~ A Bethe-Salpeter equation. We find from E@). that the Bethe-
=(G9)t+U-2 Salpeter equation in the mean-field approximation reduces to

_ (Zl —e(ky) —213(U) U-2.,U) ) ® an algebraic one
U-35(U) z, - e(ky) = 2p(U) ) ANzZ1,2)

where e(k) is the lattice dispersion relation and the self- 1-NM21,2)G(z)G(z)

energy elements;; generally depend on both energigsz,.  where y is the local part of the two-particle vertdx The

The matrixG represents the averaged resolvent that is to béreducible vertex\ in equilibrium (U=0) determined via
used in the grand potenti&l?(E;,E,;U) from Eq. (6). It is Eq. (10) obeys an equation

N2,2) = (10)

2y(21,2)
oGy(z1,2,)

1 1 1 N
Mz z) = u=o G(z)G(z) <1 ) < 1+[%(z) - Vi]G(zy) 1 +[2(z) - Vi]G(2) >aV) ' Y

We can easily verify that this equation coincides with the . 1
CPA solution for the irreducible vertex(z;,z,).2 X (21,25;0) = NE G(k,z)G(q £ k,2). (13
There is no ambiguity in the mean-field construction of k

local one- and two-particle functions. But a mean-field treat-the ambiguity in this definition of the full mean-field vertex

ment has a physical relevance only if it is able to producgs in the type of nonlocal multiple scatterings we include into

nonlocal correlation functions, the long-range fluctuations ofy,e Bethe-Salpeter equation. They are here denoted by the

which may significantly influence the thermodynamic andgynerscript +. The plus sign corresponds to multiple scatter-

dynamical behavior. There is not, however, a unique Wayngs of electron-hole pairs, while the minus sign to electron-

how to generate the two-particle vertex with nonlocal contri-gectron pairs. In case of elastic scatterings the electron-hole

butions within the local mean-field approach. The simplesgng electron-electron bubbles produce numerically the same

and most straightforward way is to use the Bethe-Salpetefmper. However, the difference between the two types of

equation with the CPA irreducible vertex Eq.(10), and to i scatterings lies in the respective transfer momergtim

replace the local propagators with the full nonlocal one-ygsjng the notation for momenta in the two-particle resolvent

electron propagatorG(k,z). Such a Bethe-Salpeter equation fqm, Eqg.(7) we haveq*=q andq =q+k+k’.

remains algebraic in momentum representation and results in Thig ambiguity in the definition of the mean-field two-

a two-particle vertex with only one transfer momentum. Wepgarticle vertex is not usually acknowledged in the literature,

obtain since the electron-hole scattering channel, relevant for the
electrical conductivity, is preferred and directly derived from

Az,2) the Baym-Kadanoff approa¢hHowever, when the mean-

Mazia = 1-N2z1,2)x (21,2,9%) (12 field theory is viewed upon as the limit to infinite spatial
dimensions, both electron-hole and electron-electron mul-
where we denoted the two-particle bubble tiple scatterings possess the same high-dimensional
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asymptotic$3 A priori, neither electron-hole nor electron- consistency between the one- and two-particle functions.
electron multiple scatterings should be discarded. The apprdrhis consistency will be restored later via Ward identities
priate form of the vertex is then selected by the physicabnce a suitable approximation for the vertex functions has
quantities in which it appears, such as is the case of thbeen accomplished.
electrical conductivity. We can classifynonlocalcontributions to the two-particle
Incapability of the thermodynamic mean-field theory tovertex by the type of a correlated two-particle propagation.
determine uniquely the nonlocal part of the two-particle ver-We either simultaneously propagate an electron and a hole or
tex results from the degeneracy of the local theory with elastwo electrons(holes. Diagrammatically it means that we
tic scatterings onlynoninteracting systemsMultiple single-  connectspatially distincttwo-particle scattering events with
site scatterings, the only ones relevant in the mean-fieléntiparallel or parallel pairs of one-particle propagators. Mul-
approach, are unable to distinguish between electrons artiple scatterings of pairs of the same type define a channel of
holes. Only if we include explicitly scatterings on distinct a two-particle irreducibility. We call a diagram two-patrticle
lattice sites we are able to distinguish between electrons anidreducible if it cannot be split into separate parts by cutting
holes. Hence, the standard thermodynamic mean-field theosimultaneously either an electron-hole or an electron-
of quantum itinerant systems uniquely defines only the locaklectron pair of propagators. The two definitions of the two-
two-particle vertex, while it remains ambiguous in the deter-particle irreducibility lead to topologically nonequivalent ir-
mination of the full nonlocal two-particle vertex. reducible functions and to different Bethe-Salpeter equations
for the full vertex. In each Bethe-Salpeter equation the two-
particle functions are interconnected via one-particle propa-
1. MEAN-FIELD THEORY FOR VERTEX FUNCTIONS: gators in a different manner. We can generically represent the
TWO-PARTICLE SELF-CONSISTENCY channel-dependent Bethe-Salpeter equations as

A. Nonlocal contributions to the vertex function

. T (20,2:50) = Ay (20,239) +[A°GG O T (2,2-50).
Arather inaccurate way to the momentum-dependent two-
particle vertex is not the only imperfection of the thermody- (14)

namic mean-field theory. This theory completely fails to aCve used the symbab for the channel-dependent multipli-

count for backscattering effects, vertex corrections o theasion of the two-particle functions represented by specific
electrical conductivity, and the Anderson metal-insulator . — . . .
omentum convolutions. Herk?® is the irreducible vertex in

transition. All these effects are induced by strong nonlocal"
guantum coherence and spatial correlations reflected in tHoe a-che_mnel. . : :
momentum behavior of the two-particlegertex functions. We will specify the momgntum convolutions in the ge-
To capture these phenomena we must go beyond a perturb eric Bethe-Salpeter _equat|0614)' for eIectron—hoIe and
tive description and to employ a self-consistent scheme fof ectron-electron multiple scatterings only. There is also a

the (irreducible vertex functions. The best local approxima- third two_—partlcle channel_, the so-ca!led vertical chann_el with
one-particle self-correlating scatterimfsThese scatterings

tion for the irreducible vertex, CPA, is non-self-consistent at .

the two-particle level. We hence must go beyond the CP, re, hovx_/ever,.ummportant for the_ phenomenqn ikt

and include nonlocallong-range contributions to the vertex ocalization, since the qorrgspondlng two-particle propagator
(loes not contain the diffusion pole.

function in a nonperturbative manner. Thereby a questio Using th tation f Ed7) for th tum d
arises whether we are able to reach a reasonably simple ap- sing the notation from d. ). or the momentum depen-
ence of the two-particle functions we can write explicitly

proximation with a two-particle self-consistency that could - .
be called a mean-field theory. It is clear that such a theor%he Bethe-Salpeter equation in the electron-hole channel with

must be momentum dependent, but the momentum depeR@/Ted functions as
dence should be reduced to a necessary minimum. We will

.4\ — A€h .
demonstrate in the next sections that the desired momentum Do (2,2:0) = A (2,2-9)

dependence can be very effectively reduced by the 1w —on _ _

asymptotic limit to high spatial dimensions. + NE Az, 2-,9)G(K")G_(k" + q)
The best way to construct a mean-field-like approxima- K

tion for momentum-dependent functions is to build up the XT e (20,2.:0). (153

theory within a self-consistent expansion around the CPA. If
we denote the local CPA one-particle propaga@?®(z) The Bethe-Salpeter equation with the electron-electron mul-
=N"13, G PAk,2), the small parameter controlling the ex- tiple scatterings then analogously reads

pansion around the CPA is a perturbed propagéik,z) —e

=G(k,2)-G°%(z), where G(k,2) is the full one-electron P (2,250) = Ay (2,2.50)

propagator. The CPA propagat6i° contains the local self- 1 — _
energy3'°%(z) from Eq.(5a), while the full one a self-energy + NE Aoz 259 + K" = K")G,(K")
>.(k,2) that is to be determined later from a Dyson equation. K"

We apply the expansion around the CPA to two-particle = " ) "
functic?r?s),/ where tﬁe one-particle propagators will beptreated XG_(Q = K" (2,259 +k = K"),
as external functions. It means, that we first disregard the (15b)
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where we denote@=q+k+k’ the transfer momentum be- The limit to infinite spatial dimensions reduces the mo-
tween the two electrons of the scattered correlated pair. Imentum dependence of two-particle functions but does not
these equations we abbreviatek ,z,) — G. (k). lead to a mean-field-like approximation for vertices. There is

Equations(15) constitute the fundamental building blocks NO Self-consistency in the two-particle parameters and the
for the construction of systematic approximations for thelocal irreducible vertices are determined from the CPA. We
two-particle vertex. They are analogues of the Dyson equahence canno_t expect that th_|s high-dimensional tV\_/o-partlple
tion and enable us to determine the full vertex from irreduc-Non-selfconsistent asymptotics would lead to major devia-
ible vertices. We hence can apply the perturbafidingram- t|ons_from the CPA. The only significant change in the vertex
matic) expansion to the two-particle irreducible vertices, i.e.,function, Eq.(18), with respect to the CPA vertex from Eqg.
two-particle self-energies. As a first step toward a mean(12 is the existence of vertex corrections to the electrical
field-like theory for these vertices we must maximally sim-conductivity in the form ofweak localizationproperly de-
plify the momentum dependence of the vertex functions, pugcribed by multiple electron-electron scatteririgsaximally
still staying beyond the local CPA. This will be achieved by crossed diagrams
the asymptotic limit to highfinite) spatial dimensions.

C. Parquet equations and electron-hole symmetry

B. Asymptotic limit to high lattice dimensions To go significantly beyond the CPA predictions for trans-
Bethe-Salpeter equatioris5) use only off-diagonal one- port properties and response functions we have to introduce a

particle propagators and hence are suitable for performingelf-consistency that would extend also to the two-particle

the limit to high spatial dimensions. We use the hypercubidrreducible vertices. That is, the two-particle irreducible ver-

lattice that has a straightforward high-dimensional limit. Thetices A®" and A¢® should be determined from nonlinear equa-

one-electron propagat@ has the following asymptotics: tions. This effect can be achieved by introducing the so-
calledparquet equationsThe concept of parquet equations is

d : . ; )
— ot dep(e) based on the observation that two-particle reducible dia-
G(k,2) = @Zlcos(kv) [2-3(2) - €2’ (16)  grams in one scattering channel are irreducible in the other
o distinguishablescattering channels. Parquet equations were
whereX,(z) is the CPA(d=x) self-energy® introduced in many-body theor#&s?but recently they were

The irreducible two-particle vertices must collapse to lo-adjusted also to disordered systethsThe reducible dia-

cal quantities in the limit to infinite dimensions. Since the grams from one channel can become irreducible in the other
Bethe-Salpeter equation€l5) use only the off-diagonal channels only if different channels are indeed distinguishable
propagators vanishing in the limit=c, both verticesAeh  Of npnequivalent. The idea of parquet eqL_Jations .cannot. be

— applied to local propagators of noninteracting particles with
indistinguishable electrons and holes, hence within the CPA.
It, however, works very efficiently for nonlocal vertex func-
“eh L\ _ nee o — tions in the Anderson model of disordered electrons.
Ao (2,2530) = A (2,,2530) = 12,2, (7 If we again take into account only the electron-hole and
We further denote x(z,,z.;q)=x(z.,z.;q)-G,G_ with  the _electron—electron scattering channels,. we can V\_/rite. the
Yz, 2:9)=x"(2,2.:0),G,=G%(z,), and G_=G"%(z). If bgsw parquet equation for the full two-particle vertex in high
we take into account only the electron-hole and electrondimensions

electron multiple scatterings we can represent the leading . _eh ) —ee o
asymptotics of the full two-particle vertex in high dimen- D (20,2:0) = Ay (20,2:50) + Ao (2.2.50) = A2, 2).

and A®€ must coincide with the full local two-particle CPA
vertex ind=%. We hence have

sions as follows: (19)
N (ze,2;9) = Y(z,,2) + N\ (z,,2) Equation(19) tells us that the full vertex is decomposed into
_ _ irreducible and reducible diagrams in the either scattering
( Nz, 2)x(2,,2_;q) channel and that the reducible diagrams consist of only the
1-NMz,2)x(z,2:;9) irreducible diagrams from the other channel from which the

— . completely irreducible vertex, i.e., the vertex irreducible in
y(z‘”'L)X(Z*'L’(?) ) (18)  both channels, was subtracted. The limit to high lattice di-
1-Mz,2)x(z,2;Q) mensions then determines the completely irreducible vertex

The standard nonlocal CPA vertex can be recovered from th® be the full local CPAd=c) vertexy.

above expression if we neglect the contribution from the Parquet equatior{19) can now be used in the Bethe-
electron-electron multiple scatterings, the second term in th&alpeter equation§l5) to exclude the full verteX” from
brackets on the right-hand sidens) of Eq. (18). There is, them. Thereby we reach a closed set of nonlinear integral
however, no reason for this neglect, since both terms withirequations for the irreducible verticd$" and A®¢ This set of

the brackets on the rhs of Ed18) produce the same equations is generally not solvable without further approxi-
asymptotic behavior in powers of the inverse dimensionmations. To approximate the resulting parquet equations in a
O(d™Y). Their only difference is in the momentum depen- systematic and controlled way we again utilize the mean-
dence. field idea—limit to high dimensions. For two-particle func-
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tions and parquet equations we must use this limit only in the Equation(22) can now be simplified in high spatial di-
asymptotic sense so as nonlocal fluctuations would not beensions by using the Gaussian summation rules, @Gs.
lost completely. It is clear from these rules that the fermionic momenta from
One can make an important observation in high spatiatlifferent two-particle functions must be summed indepen-
dimensions. The off-diagonal one-particle propagat@ise- ~ dently in the leading asymptotic order. Any correlated mo-
have in the leading asymptotic order as Gaussian randofi€ntum summation involving two different two-particle
variables with respect to momentum summatibhglsing ~ functions costs a factor @/ Then only the conserved

representatior{16) we can easily prove the following rela- Posonic transfer momenta survive as in the case of the high-
tions: dimensional vertex from Eq18). We hence must sum both

sides of Eq(22) over incoming and outgoing fermionic mo-
mentak ,k’ so as to extract the high-dimensional limit of the

irreducible vertexA. To reach an equation for the relevant
variables we introduce

1 LU ~ ’ _E_ -
N%x(q +Q)Gy(a’ +k) = -G(a-k), (209

la— _ zZ_ ol
_2 X(q + ql)X(q + qZ) = _X(ql - qz), (20b) A(Q) - 22 Akk’(q) . (233)
N 4d N-"",
q kk
where we used abbreviation&=tXG2)(G?) with (G2) ~ Further on we have in the leading order
=N"12,G, (k)% The equalities in Eq(20) hold orﬂ/ within 1\ — o 1E — =
the leading asymptotic order— . The functionsG, andy N_Z2 MA@k +k) = N A@=A,. (23D

K . . ’ q
form a closed set of Gaussian random variables with respect Kk

to momentum convolutions. We hence can use E28.t0  Since the fermionic momenta from different two-particle
simplify the parquet equations for the irreducible verticesfunctions are summed independently in high spatial dimen-
A¢h and Ace sions, the parquet equatid®2) reduces with the above defi-

Before we attempt to resolve the parquet equations imitions to
high dimensions, we utilize the time-reversal invariance of —
the system. It is an important feature of electron systems /T(q) = y+xow_ (243
without spin- and orbital-dependent scatterings. According to 1-Agx(q)
this invariance the physicdmeasurableresults should not

for one- and two-particle propagators pletely determined from a single locéhean-field param-
. . eter Ay and the two-particle bubblg(g). Summing both
G(k,2) =G(-k,2), (219 sides of Eq.(249 over momenta we obtain an equation for
the local two-particle irreducible vertex
T Z, =1 Z,— =T__ Z, . — — W
k' (2250) =Ty (2, 2,-Q) =Ty 4(24,25Q) A= y+A%lE )iqi . (245
(210 N'a' 1-Agx(a)

In case of the two-particle vertex, the time reversal was apKnowing the local part of the two-particle irreducible vertex
plied only to one fermion propagator. The time reversaly e can reconstruct the full two-particle vertex in high
leaves the full two-particle vertex invariant but it transformsspatia| dimensions. We have

the Bethe-Salpeter equatiaii5g to Eg. (15b) and vice

versa. It means that the irreducible vertices transform as fol-
lows: Fier(@) = v+ Ay

A(@) Ak +K’ +0) )

1-Aox(@) 1-Agx(k+k'+q)/’

A (2029) = AL (2,2 Q) = A% (2,,2:Q). (29
(210 where, in analogy to the non-self-consistent high dimen-

sional vertex, Eq.(18), Ag=Aq/(1+AyG,G.) and x(
The time-reversalelectron-hol¢ symmetry reduces the =v(q)-G.,G._. 9-18). Ao=Ao/( 0 ) X

number of parquet equations to just one nonlinear integral Equations (23)—(25) form an approximation for two-

equation  for 2 single ve_riehx that we define as,,icie functions with a single, local parameter determined
Az, 250) = Ay (2, 2;0) =AY (z,2;-Q). The result-  self-consistently. Such an approximation is a self-consistent

ing equation for this vertex reads extension of the high-dimensional limit of the two-particle

L vertex, Eq.(18). We hence can call it a mean-field approxi-

A (@) = vt =S Avon(=d -k = kNG.(kKNG.(q + K" mation for two-particle functions of non.|nteract|ng d|sqr-
@)=y N2 (=4 )G.(K")C-(q ) dered electron systems. The self-consistently determined

k!/
_ _ mean-field parametek, exactly reproduces the leadingdL/
X[Ak”k’(_ q-k' =K") + Agne(q) = 7]- (22)  correction to the CPA irreducible vertex The fundamental
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self-consistent equation of this approximation, Extb), has  the parquet approach from Ref. 24. We use only a specific
a typical mean-field character. That is, it can be used in anglement of the \ollhardt-Wélfle identity to determine the
dimension. The lattice structure enters the equation onlymaginary part of the self-energy. In the mean-field case,
through the momentum summation running over the firswhere the irreducible vertex is local, we can write a gener-
Brillouin zone. Notice, however, that we cannot reduce thealized CPA equation

momentum summation in two-particle functions to an inte-

R — AR R
gral over the density of states. Im 2R(E) = Ag(E,E)Im GR(E). (279
- o ) _ Consistency, or negative definiteness ofdff) demands that
D. Self-energy and diffusion pole in high dimensions the local element of the irreducible vertexRA\E,E)

The mean-field theory constructed in the preceding sec=N 2Zy: A (E+i0*,E~i0%;0), determined from the

tion is a self-consistent approximation for the two-particlemean-field equatio24b), is positive.

vertex where one-particle propagators are assumed to be ex- We cannot find the real part of the self-energy directly
ternal functions. Such a situation cannot be the final stage dfom the irreducible vertex. Instead, we use causality of the
the theory, since due to conservation laws and thermodyself-energy and the Kramers-Kronig relation expressing the
namic consistency the one- and two-particle functions areeal part of an analytic function as a Hilbert transform of its
correlated. Actually, the electron-hole irreducible vertex isimaginary part. We have
connected with the self-energy for noninteracting disordered

o0 ' Ry
electrons via the Vollhardt-Wolfle Ward identity Re3(E)=3, + pf d—EM (27b)
. @™ E'-E
SR(K,E + w) - SAk E)—12 ARB(E+ w,E) - -
BT Y kk’ @, Equations (27) now determine the self-energy from the
K’ mean-field (local) irreducible vertexA,. Notice, however,
x[GR(k’,E+ ) — GA(k’,E)], that to determine the self-energy at one frequency we must

(26) know the irreducible vertex in the whole frequency range.
Equations(27) complete the mean-field theory for vertex
Here we denoted®R,3A the retarded and advanced self- functions, Eqs(23) and Egs.(24), and make it a consistent
energy and\Elf\,(E+w,E)EA‘EE,(E+w+io+,E—io+;o)_ Note  approximation with proper analytic properties of one- and
that the irreducible vertex in Eq. (26) does not have bar, two-particle Green functions. B
i.e., itis defined via the Bethe-Salpeter equation with the full _The Vollhardt-Wolfle identity, its specific form from Eq.
one-electron propagato@?, GA. The Ward identity says that (278, not only serves as a means for a consistent determina-
if we modify the electron-hole irreducible vertex we musttion of a causal self-energy from a given irreducible vertex,
change adequately the one-electron self-energy and vidaHt itis also indispensable for th_e existence of the diffusion
versa. We hence cannot approximate independently the irrgt0l€ in the electron-hole correlation function. We now show
ducible vertex without changing appropriately the self-in what form the diffusion pole survives in the mean-field
energy. If we have an analytic expression for the self-energ{neory for vertex functions with the self-energy determined
as a functional of the one-electron resolvent, we can use &y Eds.(27).

differential form of the Ward identity11) to determine the The electron-hole correlation function is defined from the
irreducible vertex. Then the vertex function is determined@veraged two-particle Green function as
directly from the one-electron propagator. Such a construc- 1

> GZ(E+w+i0"E-i0%q). (28)
Kk’

tion of the irreducible vertex does not lead to bifurcation (I)EA(q,w) =
points and multiple solutions, i.e., to a phase transition, un-
Ie;:_s we find them n the_self-epergy |_tself.. Itis normally VelY The two-particle Green function is evaluated with the full
difficult to determine bifurcation points in the self-energy : ;

two-particle vertex via Eq(7).

fo posaible Bifurcation points m two-partidle functions shat , 10T EG:(273 and flomy'“0)=1m GF/im X% we obtain
P P P that both the denominators in the high-dimensional limit of

may display divergences. ; RA :
It is clear that we need self-consistent equations for funcl:he two-particle vert_e>F vamsh at Z€ro transfer momer_1ta.
Hence, the mean-field approximation for vertex functions

tions that could have multiple solutions. Such a self- ; A . :
consistent approximation for the irreducible vertex wasContalns the diffusion pole in the electron-hole charffiest

achieved in the preceding section. A self-consistent equatioF?rm n the brackets on the rhs of E@5)) and the Cooper
for the irreducible vertex cannot be derived from a self-pOIe in the electron-électron chanrisécond term Only the

energy directly. To achieve consistency between the one- an(af:lrjsl'otri' ﬁilenszr\gvelzzs (258)"" singularity in the electron-hole
two-particle functions in this case we must determine the-orrefation unction, £g2o). .
To derive the low-energy behavior of the electron-hole

self-energy as a functional of the irreducible vertex. This . .

must be done in concord with the Ward identig6). correlation function we denote
The self-energy as a functional of the irreducible vertex is ' IAGAE + o,E)

overdetermined from identit{26). We can nevertheless use Ag=1+2ImGRE)

the \ollhardt-Wolfle identity to determine the self-energy

from the vertex function as suggested in Ref. 29 and used iand

N2

(293

Jw =0
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Ix"AQq) the asymptotic mean-field solution, are generic features of
WP | oo the Anderson model of disordered electrons. At least for
a=0 theories that can be analytically continued from the limit to
(29b) high spatial dimensions.

With these two definitions we find the high-dimensional as-
ymptotics of the low-energy limit of the electron-hole corre- IV. DISCUSSION AND CONCLUSIONS
lation function at zero temperature to be

D(w) =2 IMSRE)AFAE + o,E)

We presented in this paper two ways how to reach mean-

(30) field-like approximations for noninteracting disordered elec-

tron systems. The first one, being the standard thermody-
_ ) ) namic mean-field theory known from many-body systems,
whereng is the density of states at the Fermi enefgy uses the limit to infinite spatial dimensions applied to the
~ The low-energy asymptotics of the electron-hole correlayenerating, configurationally averaged thermodynamic po-
tion function serves as an important tool for testing consisyentjal. The limit to infinite spatial dimensions enables one to
tency of approximations. We find from gauge invariance andseparate the diagonal and off-diagonal elements of the one-
the (unrestricted Ward identity (26) that the electron-hole particle propagator and its self-energy and to find an explicit
correlation function should display the diffusion pole in form yepresentation for the generating functional. The local one-
of Eq. (30) with Az=1 for arbitrary disorder strength. It then particle functions from the generating functional serve as
means that the low-energy behavior of the electron-hole COlgeneralized variational parameters, the physical values of
relation function is controlled by a single parameter, the bargyhich are determined from stationarity equations for the
dynamical diffusion constanDg(w).**'* However, we al- generating functional. The higher-order Green and vertex
ready found in Ref. 17 that the consta#gtincreases with the  functions are determined from responses of the system to
disorder strength and becomes infinite at the Anderson localpcal external perturbations. In this way the construction of a
ization transition. The disorder dependent Welght of the dif'mean-ﬁekj approximation is consistent and unambiguous in
fusion poleng/Ag is the central unexpected feature of thethe determination of one-particle functions as they are the
mean-field theory for vertex functions. This mean-field ap-on|y ones entering the generating functional. The higher-
proximation obeys the Vollhardt-Wélfle identity only in the order Green functions are defined uniquely only in their local
limit to zero frequency, Eq(27a), and not for finite energy parts.
differences. We found a consistent explanation for the de- The nonlocal parts of two-particle Green functions are no
crease of the weight of the diffusion pole with increasingjonger determined from the local thermodynamic theory
disorder strengtf’ The weight of the diffusion poleye/Ae,  uniquely. We can either use the standard construction of
expresses a portion of extendédiffusive) states from all  Baym and Kadanoff or we can directly apply the asymptotic
available states at the Fermi energy determined by the demmit to infinite spatial dimensions to two-particle functions.
sity of states calculated from the one-electron Green funcThe outcome of these two constructions is not identical. In
tion, ne=—Im GR(E) /7 . the former way we miss some of the leading-or@®axi-

The dependence of the weight of the diffusion pole on themally crossegidiagrams and lose the electron-hole symmetry
disorder strength found in the mean-field theory for averagedt the two-particle level. These deficiencies severely discredit
two-particle functions could be an artifact of this specific reliability of the thermodynamic mean-field theory in the cal-
approximation. We could still hope that the full exact solu-culation of spatial coherence and transport properties of dis-
tion recovers the invariant weight of the diffusion pole ex- ordered systems. To overcome these drawbacks we proposed
pected from the unrestricted conservation laws for averagegnother route toward a mean-field-like approximation for
Green functions. Based only on approximation-free arguvertex functions based on a direct analysis of two-particle
ments we found that the Vollhardt-Wolfle identit@6) for functions in high spatial dimensions.
finite frequenciess cannot be fulfilled in any finite dimen- The incapability of the thermodynamic mean-field theory
sion if the electron-hole irreducible verted®" contains the to correctly describe nonlocal correlations in two-particle
Cooper pole. Enforcing the full form of the Vollhardt-Wdlfle functions is caused by the degeneracy of local theories with
identity together with the Cooper pole in the electron-holee|astic scatterings. Static local approximations are unable to
ireducible vertex inevitably leads to a self-energy being adistinguish between electrons and holes. Only quantum dy-
nonanalytic function of its energy argument for almost allnamics or multiple scatterings on spatially distinct impurities
Fermi energies within the energy barfi$! In our mean- can discern the motion of an electron from the motion of a
field approach the analytic properties of the self-energy ar@ole. The distinguishability of electrons and holes is of prin-
determined by positivity of the vertex functiohngE,E)  cipal importance for encountering backscattering effects and
and Kramers-Kronig relation, Eq27b). The form of the for a two-particle self-consistency used in the construction of
two-particle vertex AJAE,E) is fixed by its high- a mean-field theory for vertex functions.
dimensional asymptotics. This asymptotics and analytic A mean-field approximation for vertex functions in disor-
properties of the self-energy force deviations from thedered electron systems was constructed fromathamptotic
\ollhardt-Wolfle Ward identity. It hence seems that the high-limit to high spatial dimensions, where, unlike the thermo-
dimensional behavior of the two-particle vertex and thedynamic mean field, the lattice dimension is high but finite.
disorder-dependent weight of the diffusion pole, disclosed byAlike the strict limit d=c0, the asymptotic behavior in high

27TnE
- iAgw + DY(w)g?’

PN, w) =
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dimensions leads to significant simplifications in momentumfusion. In the standard approaches, such as the nonlinear
convolutions that enable us to reduce the approximation to aigma model or the Vollhardt-Wolfle self-consistent approxi-
mean-field-like one with a local generator determined from amation, the dynamical diffusion constant is the only param-
self-consistent equation. We applied the asymptotic limit di-eter controlling the low-energy behavior of the electron-hole
rectly within a diagrammatic expansion around the CPA forcorrelation function. In our mean-field theory we have apart
two-particle functions. The basic ingredients for the con-from the diffusion constant also the weight of the diffusion
struction were parquet equations for the two-particle irreducpole that significantly influences the description of long-
ible vertices from the electron-hole and the electron-electromange correlations and diffusion. In the critical region, how-
scattering channels. Using the electron-hole symmetry at thever, only the constam{z — o from Eq.(299 is relevant and
two-particle level and the asymptotic limit to high dimen- all critical scales can be derived from it. For instance the
sions we succeeded in producing a self-consistent approxrenormalized diffusion constarﬁ]E:D(E’/AE vanishes at the
mation for the local part of the electron-hole irreducible ver-localization transition with the diverging parametsy, etc.
tex. It is a self-consistent #/ extension of the CPA It means that the mean-field description of the Anderson lo-
irreducible vertex. The mean-field theory for vertex functionscalization transition is compatible with a one-parameter scal-
then determines in a unique way the full two-particle vertexing theory.
that correctly reproduces the limit to infinite dimensions with  Although the one-parameter scaling holds for the Ander-
the electron-hole symmetry at both one- and two-particleson localization transition, two relevant parameters in the
levels. critical region, ng/Ag and D%/AE, nevertheless lead to a
The mean-field theory for vertex functions is an approxi-modification of the critical behavior deduced from the field-
mation for two-particle functions. The one-electron func-theoretic approaches. The two parameters stand for two
tions, used as an input for the two-particle equations, arguantities influencing the electrical conductivity. The former
then calculated from the vertex function via a specific formexpresses the number of extended states at the Fermi energy
of the Vollhardt-Wélfle Ward identity and the Kramers- E and the latter the averaged velocity of the diffusive par-
Kronig relation. With this extension of the theory to one- ticles. Both quantities go simultaneously to zero at the
particle functions we accomplished an approximate descripAnderson metal-insulator transition. It is straightforward to
tion of disordered systems fulfilling all consistency verify that the mean-field theory for vertex functions predicts
conditions on one- and two-particle functions. that Ac~ |\.—\|"Y2, where\ is the bare disorder strength
The most important achievement of this mean-field theoryand \. its critical value. Having two vanishing parameters
is its ability to describe the disorder-induced vanishing ofwe have to distinguish two types of the critical behavior.
diffusion, that is, the Anderson localization transition. This First, we have properties of individual electrons. One of
theory succeeded for the first time to bridge qualitativelythem is diffusion as seen from the semiclassical diffusion
correctly the weak and the strong disorder limits and to coveequation. This is quantitatively described by the renormal-
the split-band limit as well as vanishing of diffusion. The ized diffusion constanDg~ |\.—\|"2. Second, we have sta-
other existing approaches have concentrated on only one titical values describing the disordered sample as a whole.
the two phenomena. They either miss the two-particle selfAmong them the averaged conductivity is the most interest-
consistency or do not consistently match the one- and twoing one. It is proportional to the product of the number of
particle functions. available diffusive states and the renormalized diffusion con-
The consistency between the one-electron self-energy argtant, so that we have~ ngD2/AZ~|\.~\['. Notice, how-
the electron-hole irreducible vertex is essential for credibilityever, that there is not a direct relation between the diffusion
of approximate treatments of the Anderson metal-insulatoconstant and the conductivity calculated from the Kubo for-
transition. Only with this relation correctly taken into ac- mula, since due to deviations from the Ward identity, the
count we obtain the proper form of the diffusion pole andEinstein relation does not hold. Finally we can also deduce
electron diffusion on long distances. In this respect the mearthe critical exponent for the localization length in the local-
field theory for vertex functions leads, surprisingly againstized phase. Its square is inversely proportional to the order
the common expectations, to a nonconserving weight of thparameter, being the imaginary part of the local irreducible
diffusion pole and its dependence on the disorder strengthvertex IMARAE+0*,E)~|N-\J¥2 We hence obtainé
The thermodynamic mean-field theory and all other ap—~|\—-\J™4 The critical exponent for the conductivity
proaches to the Anderson localization transition assume agquals the mean-field exponent from the \ollhardt-Wélfle
use the unrestricted form of the Ward ident{86) being a  theory but the critical exponent for the localization length is
consequence of conservation of the norm of the wave funcene-half of their value. We remind that the critical behavior
tion for all configurations of the random potential. We arguedobtained from the mean-field theory for vertex functions
already earlier that the Hilbert space of Bloch waves is in-holds only for dimensionsl>d,=4. We expect corrections
complete in the sense that it does not encompass the eigeto- the mean-field critical behavior in lower dimensions.
states of all configurations of the random potential. At a To conclude, we demonstrated that to reach a reliable
given energy we observe even in the metallic regime macrogquantitative description of the Anderson localization transi-
scopically relevant numbers of configurations with localizedtion one must sum up self-consistently nonlocal contribu-
states?° tions to the electron-hole and the electron-electron irreduc-
Vanishing of the diffusion pole at the Anderson metal-ible vertex functions. It can be achieved in a mean-field
insulator transition and in the localized phase modifies thenanner via the asymptotic limit to high spatial dimensions
existing picture of the critical behavior for vanishing of dif- leading to a self-consistent extension of the CPA local vertex.
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The most important conclusion of this mean-field theory ofdependent weight of the diffusion pole the Einstein relation

Anderson localization is that the weight of the diffusion poledoes not hold and we have to distinguish individual and

is not conserved and that the diffusion pole is absent in thetatistical transport properties of disordered systems. One
localized phase. The decreasing weight of the diffusion poleshould have this in mind when calculating the critical behav-

with the increasing disorder strength is a consequence abr of the Anderson localization transition.

incompleteness of the Hilbert space of Bloch waves. At any
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