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Gapped optical excitations from gapless phases: Imperfect nesting
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We consider the effect of imperfect nesting in quasi-one-dimensional unconventional density waves in the
case in which the imperfect nesting and the gap depends on the same wave-vector component. The phase
diagram is very similar to that in a conventional density wave. The density of states is highly asymmetric with
respect to the Fermi energy. The optical conductivityTat0 remains unchanged for small deviations from
perfect nesting. For a higher imperfect nesting parameter, an optical gap opens, and a considerable amount of
spectral weight is transferred to higher frequencies. This makes the optical response of our system very similar
to that of a conventional density wave. Qualitatively similar results are expecdénsity waves.

DOI: 10.1103/PhysRevB.71.245101 PACS nunt®er71.45.Lr, 75.30.Fv, 72.15.Eb, 72.15.Nj

I. INTRODUCTION These include heavy fermions like URi,,*>~1*CeColn,'®
organic conductors as(BEDT-TTF),KHg(SCN), (Ref. 16

. o ) . . and (TMTSPF),PF;,° high T, superconductor§~° Two dif-
is a band structure consisting of a pair of Fermi sheets, whic brent models are possible: twé2D) or three-dimensional

can be nested to each other with a certain wave véQ0I (3p) \yhen the gap and the imperfect nesting depends on the
giving rise to the density wave instabilityn real materials, same or different wave-vector component, respectively. Pre-
however, this condition is not perfectly fulfilled:i(k)+e(k viously, we analyzed the properties of the 3D mcdeand
-Q)=27x(k) #0. In quasi-one-dimensional models studiedow we turn to the investigation of the 2D one.

during the early history of DW, one can choose it (%) The object of the present paper is to extend the analysis of
=€ cog2bky), which shows the deviation from the one Refs. 20 and 21 to the presence of imperfect nesting when
dimensionality>® In higher dimensional systems, different the gap and the imperfect nesting depend on the same wave-
n(k)’s are deduced.In conventional charge-density waves vector component. We discuss the temperature dependence
(CDWs) such as NbSg the depression of the transition tem- of the order parameter for differeeg’s. The phase boundary
perature under pressure is described in terms of the pressugealmost the same as in a conventional DW. The chemical
dependence of imperfect nesting, and the large ratio ofotential is shifted from its original value of the metallic
2A/T, is also interpreted:’ Similar to field-induced spin- state due to the presence of imperfect nesting. The tempera-
density wavesFISDWs, many features are successfully de- ture dependence of the order paramefdi, y) is anoma-
scribed by this modeél The general consequence&fis the  |ous: although it decreases monotonically with increasing
destruction of the density wave phase: imperfect nesting daemperature, it exhibits a sharp cuspMi, ;) =2¢,. In the
presses the DW transition temperature and destroys congensity of state$DOS), the particle-hole symmetry is broken
pletely the density wave whesy becomes larger than a criti- for the 2D model, leading to asymmetric density of states
cal value. In addition, the imperfect nesting term gives rise tayith respect to the Fermi energy. For high valuesegfthe

dip structures in the angle-dependent magnetoresistance jaro of the density of states at the Fermi energy disappears,
a-(BEDT-TTF),KHg(SCN), (see Ref. 8 and Bechgaard and DOS becomes finite for all energies. Different optical
salts(TMTSF),PF.® Imperfect nesting turned out to be cru- responses are obtained depending on the electric field orien-
cial for the appearance of FISD¥\This motivates us to in- tation and gap structure. The optical conductivity is not af-
corporate the effect of imperfect nesting in unconventionafected by the deterioration of perfect nesting in a wide pa-
density wave(lUDW) theory. UDW is a density wave whose rameter range. By further increasiag the divergent peak at
gap function depends on the wave vector, and vanishes @\ is divided into two new peaks. Moreover, a finite optical
certain points of the Fermi surface, allowing for low-energygap shows up at=0 in spite of the finite density of states.
excitations. The average of the gap function over the Ferm&imilar behavior was identified in a two-dimensional UDW
surface is zero, causing the lack of periodic modulation ofthe so-calledd-density wavé’): deviations from perfect
the charge and spin density. Such systems have been studiedsting induce a finite optical gdpln clean systems, the
and proposed over the years in a variety of systéhds. weight of the Dirac delta peak at zero frequency is finite for

The basic ingredient of the density wa{i2W) formation
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FIG. 1. The phase diagrafeolid line) and the
zero temperature order parametelashed ling
are plotted in the presence of imperfect nesting.
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all temperatures. We expect similar results drdensity  neighbor electrons on the lattice; namely, on-site and nearest-
waves as well. neighbor direct Coulomb interaction, exchange, pair-
hopping, and bond-charge terms. For a detailed description,
Il. PHASE DIAGRAM see Refs. 21 and 22. This interaction is able to support a
variety of low-temperature phas&sput we are only inter-
To start with, we consider the Hamiltonian of interacting ested in unconventional D\Wwhose gap depends on the per-

electrons: pendicular momentupt:24 The latter can be either UCDW
. or USDW depending on the strength of the exchange and
H=2> &(K)ay ;8 pair-hopping integrals. Within the mean-field approximation,

the single-particle electron thermal Green’s function using
1 -, N Nambu’s notation &2
+ X/ E V(k,k !q)ak+q,o'ak,0'ak'—q,g—’ak’,o"! (1) P )
kK’ G, (Kiwp) =iwy = (k) = &(K)p3 = Ay(K)py,  (7)

!
0,0

wherep; (i=1,2,3 are the Pauli matrices acting on spinor
Whereak anday , are, respectively, the creation and anni- space, and\ (k) is the UDW order parameter. In order to
hilation operators of an electron of momentinand spinc. describe USDW, we assurteas an odd function of the spin
V is the volume of the sample. Our system is based on apA =-A_,). AssumingA, to be an even function of the spin,
orthogonal lattice, with lattice constands b, ¢ toward di- e would have UCDW. From now on, we will drop the spin
rectionsx, y, z respectively. The system is anisotropic, theindices since they are irrelevant for most of our discussion
quasi-one-dimensional direction is theaxis. The kinetic-  and most of our results apply to both unconventional charge

energy spectrum of the Hamiltonian is: and spin density waves. With this, the gap equation reads as
(k) = — 2t, cogk,a) — 2t, cogkyb) — 2t; cogk,C) — u, A(K)
A(l) = 2 P(k,)——~

(2) 4E(K)
which, in the vicinity of the Fermi surface, is well approxi- E(K) + n(k E(K) — n(k
mated by~ X[tan%(w) + tanl‘(Mﬂ ,

2 2T
e(k) = &(k) + n(k), 3 (8)

where whereE(k)=/&(k)Z+|AK)[%, A(k)=A,(k) and the kernel of

&k) = ve(kyd — ke) — 2t, cogk,b) - 2t cogk,c), (4) the integral equation is diagonal on the basis of the leading
harmonics &

7(k) = €5 cog2bk,), (5
° 4 PkD _Po, Py  codkbycos )+ 22 2 sinllyb)sin(l,b)
) V N
S tpcodake) (6)
°7 2t sirf(ake)’ + % cogk,c)codl,c) + %‘ sin(k,c)sin(l,c).  (9)

which is valid fort,>t,>t.. In the second term of Ed1)
we consider the interaction between on site and nearedthe P; coefficients are linear combinations of the interaction
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matrix elements. As a consequence of the general form of theote that this change belongs to a sinusoidal gap, while for a

kernel, the gap will be of the form cosinusoidal gap the sign of the shift is reversed. The change
] in the spectrum in the presence of imperfect nesting is shown
A(l) =Ag+ Ay codlyb) + A, sin(lyb) + Az cogl €) in Fig. 2, which is given by
+ A4 sin(l,0). (10

2
From now on we assume that only one kind of gap amongg, (k) = k) +ek-Q) | \/< e(k) ek - Q)> +[AK)2.
the five possible candidates, whose transition temperature is™ 2 2

the highest, opens, and persists all the way down to zero (12
temperature. For the stability of different phases, we refer the

reader to Ref. 21. In quasi-one-dimensional systems, the 998 the perfectly nested case, the low-energy part of the spec-

function of UDW vanishes linearly on lines at the Fermi trum consists of Dirac cones with peaks at the Fermi
surface. Hence, the thermodynamics of UDiVthese sys-  gnarov21 For small ey, the spectrum is still crossed by the
temsdoes not depend on the explicit wave-vector depenyg i energy at the zeros of the gap. By increasigga

dence O.f. the gap; only transport properti_es_ are sensitive Broad bump develops in the upper band, and crosses the
the position of zeros of gap, and can distinguish betweegg i anergy. At this point, a large number of possible states

\éarlous. gapl structnl%e’é.lt IS Wort? notlch, th?t |n.h|gher becomes available, and the chemical potential starts decreas-
Imensional systems, more complicated gap functions can ing to keep the total number of particles unchanged.

be identified with line or point nodes, possessing distinct “a qiract consequence of this shift is a cusp in the tem-
thermodynammgl_propemes. . . perature dependence df at A=2¢,, since at this point the
From Eq.(7), itis clear that the effect of imperfect nesting ;o mical potential changes. This feature is shown in Fig. 3,

Is incorpqrated in Fhe theory by replacing the Matsub_ara frei/vhich is obtained from the numerical solution of the gap
quency in the single-particle Green’s function with, equation:

+i[ g cOg2bky) — 5u],>"? where ou is the change of the
chemical potential due to the change in the spectrum. The om ,
order parametét is assumed to depend on the wave-vector 1 :TP%E f sir(y)dy
as A(k)=A sin(bk,) or A cogbk,). Identical results are ob- 47 )0 (o, +i[€cog2y) — sul)?+ A sirk(y)
tained for thek,dependent gap. The second-order phase (13)
boundary is given byey=Ay(T.), where Ay(T) is the tem-
perature dependence of the gap in a perfectly nested conven- ) i ) )
tional DW with T, transition temperaturél,, is the transi- WhereP=0 is the interaction responsible for the UDW for-
tion temperature in the absence of imperfect nesting. This i§ation from Eq.(9), andNo is the density of states in the
almost the complete phase diagram. At high temperatur8ormal state at the Fermi energy per spin.
when T becomes of order oé,, the deviation from perfect
nesting becomes irrelevant, the best nesting vecto® is lIl. DENSITY OF STATES
=(2kg, /b, m/c). In the conventional scenario, two DW
phases can occd?,characterized by slightly different wave  The quasiparticle density of states is given by
vectors andQ is replaced by a temperature-dependent wave
vector, opening a narrow region above the critical nesting -

ew op(E) = N(x,a)
low temperatures. For the present model, the possibility o
ordering with different wave vector is there, although its ex- : 2m dy |E + Su — €y cog2y)|
ar_n_ination i§ b(a_yond the scgqg of the present discussion. The =No 0 o e\,’[E+ S — € cOS2y) 2 — AZ sirR(y) '
critical nesting is given byy=veAqy/ 2~ 0.82A4o, WhereAy,
is the gap in a perfectly nested system at zero temperature. (14)
The order parameter remains unchangedefer A/ 2, and
vanishes sharply asg, approaches its critical value. This to- The energy variables are expressed in unitsegfi.e., a
gether with the phase diagram is shown in Fig. 1. The most A/ ey, andx=(E+&u)/ €y, the energy is measured from the
interesting consequence of imperfect nesting is that th@ew Fermi energy. The density of states is obtained as
chemical potential does not remain constant under the den-

sity wave formation. Its shift is given by 1 2 e
A(T, &) '\'(X'a)“‘o#[(x—l‘T)K(g\/—)
o = €O[A(T, &) — 2€o] + 4;60[26O - A(T, )], Al pP-q pq

€ 2 2
p+a. ((p-a*1 [1-(p q))
(1) ’ p—qn( ~4pq ‘2 pq } (13

where O(x) is the Heaviside function. This behavior can /

readily be seen from the density of states, where for anjor x>a?/8+1, where p=,(m-1)?+n? g=ym?+n? m
finite A, the total number of states below the Fermi energy is=[a-4(x-1)]/8, n=a\-a?+8(x-1)/8, and K(z and
regained only by shifting the Fermi energy as given abovell(n,z) are the complete elliptic integrals of the first and
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FIG. 4. The density of states as a function of energy is shown in the left pane}/fa=0 (solid line), 0.2 (dashed ling and 0.45
(dashed-dotted lineln the right panelk,/A=0.55(solid ling), 0.7 (dashed ling and 0.8(dashed-dotted lineare shown.

third kind, respectively® In the remaining regions the DOS

reads as
N(x,a) = Ng[®(a—4)fi(x,a) + O(4 —a)fs(x,a)],

(@%8)+1>x>a-1,
N(x,a) = Ngsgnx—-1)fs(x,a), a-1>x>-a-1,

N(x,a) = = Npfs(x,@), -a-1>x, (16)

where the following notations are used:

1 Y2~ VY1
fi(x,@) = ————| (x= 1+ 2K \/7 )
e (Y2 = 1))/1[()( ) ( (Y2— Dyr
Y2= VY1
— 2y,11 , ,
& ( 1-y, V(Y- 1))’1)} (a7
fa(x,@) = ;{(x— 1+ 2y2)K< (2= 1))/1)
m™Y2~ Y1 Y2~ Y1
) 2y2H< yl{l)’2' (yjz__l;jﬁ) } , (18)

f3(X, a) =

1 [a _yZ)Y:L)
2
m(1 —yl)yz{ 2=yl (y 1-y)y,
y, (L —yz)yl)
— 2 sgrix— DII ,
sgrx-=1) <y1— 1 V(A-y)y,

+[x=1+2y; +sgrix-1)(x+1)]
XK( /(1‘3/2)3/1)},
(1=y)y>
and y,=[a’-4(x-1)-a\a’-8(x-1)]/8, y,=[a’-4(x-1)
+a,/a’-8(x-1)]/8.

(19

The particle-hole symmetry is broken, which can be
readily seen from the behavior of the peaks in the density of
states, which slide from A to —A-e,— u below the Fermi
surface, while above it ta —e;— du for 4ep<A and to e,
+A2/8¢y,— Su otherwise. In addition, the zero in DOS is at
the new Fermi energy fog,<<A/2, and for largere, there
exists no zero in the DOS. The density of states is plotted in
Fig. 4. These statements correspond Atk)=A sin(k/b),
while for a cosinusoidal gag — —E change is needed in the
density of states.

The residual density of statgise., g,p(E=0)] is given by
No®(2€5—A). Since on the Fermi surface the DOS vanishes
in the same way foley<<Agg than in the perfectly nested
case, the specific heat increases quadratically with tempera-
ture close toT=0 K in this region, while for largee, it
equals to the specific heat in the normal state.

IV. OPTICAL CONDUCTIVITY

In this section we investigate the quasiparticle contribu-
tion to the optical conductivity. For simplicity we neglect the
effect of the quasiparticle damping due to impurity scattering
for example. The quasiparticle part of the conductivity con-
tains relevant information about the system in the perpen-
dicular casesy andz) when the effect of the collective con-
tributions can be neglected. The regular part of the optical
conductivity (without the Dirac deltais given by

Reo,j(w)

- N Wezf d(bky) ™ d(ck,) Reva(k)vﬁ(k)AZ(k)
° a2 (wl2)? - A2(K)

-2 +2
y tanr("‘"—”)ﬂanr('“"—”) |
4T 4T

wherev (k) is the quasiparticle velocity in the direction,
vx(K)=vE, vy(k)=2bt, sin(bk)), v,k)=2ct;sin(ck), and »
=€y c092bk)) — du. The wave-vector dependence of velocity

(20)
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g | Ss e os e'z)“/A";o oo on b ] by changingy, to ve. The inset shows the, de-
o N pendence of the optical gap. The same optical gap
! opens for other electric field orientations as well.
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vertices distinguishes between the gaps with different wave- w w2
vector dependence, as we shall see below. From now on wdg;(«,8,9) = oA B(1-p) (Z) - 43

restrict our investigation to th€=0 K case. The optical con-
ductivity remains the same as in the perfectly nested case for w2
—\/a(l—a)[( ) —4a2}

260<A(0,€y)=Aq For highere,, the optical conductivity is
zero forow<G, G=A(y8-a%-a)/2, similar to the effect of
magnetic field where the <2ugH part of the conductivity { o 1/wg)d — —
is chopped! In other words, a clean optical gap develops for +|—+ —(—) [F(gVB,x) — F(gVa,X)]
all electric field orientations. This can readily be observed in Ag 2\ A
Fig. 2: when the upper band crosses the Fermi energy, the {ng 9/ w3 - -
chemical potential moves below the zeros of the gap, sup- - —+ —<—) ][E(g\ﬂﬁ,x) +E(gVa,x)]
pressing the low-energy excitations, since oqglyO transi- A 2\A
tions are allowed for. Parallel to this the peak & &plits (22)
into two new peaks aA(y8-a+a)/2 and atA(a/2+2/a).

5 . . )
Fr?r w>d260(1+a /43 the o?tlgal C(;nduc?wt);l remains ;]Jn- and loda@, 8,9)=1(a, 8.9)~ (@, B.g), where F(z,k) and
changed compared to Ref. 21. The only ¢ ange in the reI'E(z,k) are the incomplete elliptic integrals of the first and
maining region can be expressed by redefining the : ; _ 5
functions2t second klr_1d, respectlvglx—ZA/wg , and the arguments of

the | functions are obtained as

w2g 5 ~ -
I(a,8,9) = E[F(ng,X) -F(gVa,x) — E(gVB,x)

1 & aw
- a=ma><0,—————>, (23
+E(gVa,X)], (21) 2 8 4A
8
7r i
5
sl =
N;g ‘g
Z sl i‘ FIG. 6. The real part of the complex conduc-
< g tivity for the 2D model for a sinusoidal gap in the
ﬁ al y direction is shown forey/ Agp=0-0.5 (dotted
3 line), 0.6 (dashed ling 0.7 (dashed-dotted line
gé 3l and 0.8(solid line). The inset shows the, de-
g pendence of the peaks, which show up in all elec-
&=L tric field orientations.
i
OO 0.5 1 1.5 2 2.5 3 35 . 4
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q 2sf tivity for the 2D model for a cosinusoidal gap in
%'\ the y direction is shown forey/Agp=0 (dotted
2w line), 0.6 (dashed ling 0.7 (dashed-dotted line
ol and 0.8(solid line).
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. 2 aw [ w)? cles is zero. At finite temperature, the optical gap vanishes,
B=min 115 ) + aa'\oa) | (24)  put excitations belows are only possible with a probability
of ~exp{-[eg—A?/(4€y) 1/ T}.
V. CONCLUSION
g=maX<1,—), (25) _ _ :
w We have studied theoretically the effect of imperfect nest-

for w>G and fora<2. Fora>2, =0, 8=1, and thel ing in unconventional density waves. Two qualitatively dif-

functions reduce to those in Ref. 21. Here, min and max givéerent cases are possible: the gap and imperfect nesting de-
the largest and the smallest values of its arguments, respepf—end on the samralled the 2D modglor different wave-

20
tively. With these notations the optical conductivity reads agyector componenti3D casg. Her_e we concc_antr_atgd on the
former. We explored the phase diagram which is identical to

28A(o,,50)2 the one in a conventional density wave. The zero temperature
yT'sin,eo&a'lB'Q)' (26) gap function is not constant, contrary to the conventional
case. The chemical potential changes compared to the nor-
2 mal state value. The density of states turned out to be asym-
Reo, w) = ezNoviwl(a,ﬁ,g)- (27) metric with respect to the Fermi energy due to the particle-
) hole symmetry breaking, but the logarithmically divergent
The optical conductivity in the three qualitatively differ- p_eaks of thee,=0 case remain present, b.Ut at different ener-
ent cases is shown in Figs. 5-7 with=vg, vy:v‘Ebtb, and 9ies. For larger valugs of |mperfect nestity, > A(T, )],
v,= \Ectc. In the x direction the quasiparticle part of the op- the Zero at the Fermi energy disappears, and the Iow-_energy
tical conductivity is the same ag () if we replacev, with density of states regains its normal's.tate form. Usuajly_s
v, although in thex direction it does not give the total thought to vary W'th. pressure providing the opportunity to_
conductivity since collective contributions change signifi- check these results In-a wide range_of parameters. The opti-
cantly the quasiparticle part, as was shown in Ref. 32. At firsf:al gap of the model in the perpendlcular optical conductiv-
sight, the sum rule seems to be violated in all figures since %}" can be observgd experlmentally at low temperatures.
lot of optical weight is missing at small frequencies below Ereover the splitting and lowering of the resonant peak at
the optical gap. However, thé(w) part of the conductivity w=2A (when the wave vector dependence of the gap and the

. S . . 0
does not freeze out &— 0 in the presence of imperfect velocity coincidé or its absencéfor the other kind of gag

. i o . . .could provide robust signatures of the microscopic nature of
nesting, and its coefficient provides the missing area. As e low temperature phase

well known, in the presence of impurity scatteringf,w)
changes to a Drude-like peak centere@dat0. In Fig. 6, the ACKNOWLEDGMENTS
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