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We consider the effect of imperfect nesting in quasi-one-dimensional unconventional density waves in the
case in which the imperfect nesting and the gap depends on the same wave-vector component. The phase
diagram is very similar to that in a conventional density wave. The density of states is highly asymmetric with
respect to the Fermi energy. The optical conductivity atT=0 remains unchanged for small deviations from
perfect nesting. For a higher imperfect nesting parameter, an optical gap opens, and a considerable amount of
spectral weight is transferred to higher frequencies. This makes the optical response of our system very similar
to that of a conventional density wave. Qualitatively similar results are expected ind-density waves.
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I. INTRODUCTION

The basic ingredient of the density wavesDWd formation
is a band structure consisting of a pair of Fermi sheets, which
can be nested to each other with a certain wave vectorsQd,
giving rise to the density wave instability.1 In real materials,
however, this condition is not perfectly fulfilled:«skd+«sk
−Qd=2hskdÞ0. In quasi-one-dimensional models studied
during the early history of DW, one can choose it ashskd
=e0 coss2bkyd, which shows the deviation from the one
dimensionality.2,3 In higher dimensional systems, different
hskd’s are deduced.4 In conventional charge-density waves
sCDWsd such as NbSe3, the depression of the transition tem-
perature under pressure is described in terms of the pressure
dependence of imperfect nesting, and the large ratio of
2D /Tc is also interpreted.5–7 Similar to field-induced spin-
density wavessFISDWsd, many features are successfully de-
scribed by this model.2 The general consequence ofe0 is the
destruction of the density wave phase: imperfect nesting de-
presses the DW transition temperature and destroys com-
pletely the density wave whene0 becomes larger than a criti-
cal value. In addition, the imperfect nesting term gives rise to
dip structures in the angle-dependent magnetoresistance in
a-sBEDT-TTFd2KHgsSCNd4 ssee Ref. 8d and Bechgaard
saltssTMTSFd2PF6.

9 Imperfect nesting turned out to be cru-
cial for the appearance of FISDW.2 This motivates us to in-
corporate the effect of imperfect nesting in unconventional
density wavesUDWd theory. UDW is a density wave whose
gap function depends on the wave vector, and vanishes on
certain points of the Fermi surface, allowing for low-energy
excitations. The average of the gap function over the Fermi
surface is zero, causing the lack of periodic modulation of
the charge and spin density. Such systems have been studied
and proposed over the years in a variety of systems.10,11

These include heavy fermions like URu2Si2,
12–14 CeCoIn5,

15

organic conductors asa-sBEDT-TTFd2KHgsSCNd4 sRef. 16d
and sTMTSFd2PF6,

9 high Tc superconductors.17–19 Two dif-
ferent models are possible: two-s2Dd or three-dimensional
s3Dd when the gap and the imperfect nesting depends on the
same or different wave-vector component, respectively. Pre-
viously, we analyzed the properties of the 3D model,20 and
now we turn to the investigation of the 2D one.

The object of the present paper is to extend the analysis of
Refs. 20 and 21 to the presence of imperfect nesting when
the gap and the imperfect nesting depend on the same wave-
vector component. We discuss the temperature dependence
of the order parameter for differente0’s. The phase boundary
is almost the same as in a conventional DW. The chemical
potential is shifted from its original value of the metallic
state due to the presence of imperfect nesting. The tempera-
ture dependence of the order parameter,DsT,e0d is anoma-
lous; although it decreases monotonically with increasing
temperature, it exhibits a sharp cusp atDsT,e0d=2e0. In the
density of statessDOSd, the particle-hole symmetry is broken
for the 2D model, leading to asymmetric density of states
with respect to the Fermi energy. For high values ofe0, the
zero of the density of states at the Fermi energy disappears,
and DOS becomes finite for all energies. Different optical
responses are obtained depending on the electric field orien-
tation and gap structure. The optical conductivity is not af-
fected by the deterioration of perfect nesting in a wide pa-
rameter range. By further increasinge0, the divergent peak at
2D is divided into two new peaks. Moreover, a finite optical
gap shows up atT=0 in spite of the finite density of states.
Similar behavior was identified in a two-dimensional UDW
sthe so-calledd-density wave17d: deviations from perfect
nesting induce a finite optical gap.4 In clean systems, the
weight of the Dirac delta peak at zero frequency is finite for
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all temperatures. We expect similar results ind-density
waves as well.

II. PHASE DIAGRAM

To start with, we consider the Hamiltonian of interacting
electrons:

H = o
k,s

«skdak,s
+ ak,s

+
1

2V
o

k,k8,q

s,s8

Ṽsk,k8,qdak+q,s
+ ak,sak8−q,s8

+ ak8,s8, s1d

whereak,s
+ andak,s are, respectively, the creation and anni-

hilation operators of an electron of momentumk and spins.
V is the volume of the sample. Our system is based on an
orthogonal lattice, with lattice constantsa, b, c toward di-
rectionsx, y, z respectively. The system is anisotropic, the
quasi-one-dimensional direction is thex axis. The kinetic-
energy spectrum of the Hamiltonian is:

«skd = − 2ta cosskxad − 2tb cosskybd − 2tc cosskzcd − m,

s2d

which, in the vicinity of the Fermi surface, is well approxi-
mated by5–7

«skd = jskd + hskd, s3d

where

jskd = vFsukxu − kFd − 2tb cosskybd − 2tc cosskzcd, s4d

hskd = e0 coss2bkyd, s5d

e0 = −
tb
2 cossakFd

2ta sin2sakFd
, s6d

which is valid for ta@ tb@ tc. In the second term of Eq.s1d
we consider the interaction between on site and nearest

neighbor electrons on the lattice; namely, on-site and nearest-
neighbor direct Coulomb interaction, exchange, pair-
hopping, and bond-charge terms. For a detailed description,
see Refs. 21 and 22. This interaction is able to support a
variety of low-temperature phases,23 but we are only inter-
ested in unconventional DWswhose gap depends on the per-
pendicular momentumd.21,24 The latter can be either UCDW
or USDW depending on the strength of the exchange and
pair-hopping integrals. Within the mean-field approximation,
the single-particle electron thermal Green’s function using
Nambu’s notation is25,26

Gs
−1sk,ivnd = ivn − hskd − jskdr3 − Dsskdr1, s7d

whereri si =1,2,3d are the Pauli matrices acting on spinor
space, andDsskd is the UDW order parameter. In order to
describe USDW, we assumeD as an odd function of the spin
sDs=−D−sd. AssumingDs to be an even function of the spin,
we would have UCDW. From now on, we will drop the spin
indices since they are irrelevant for most of our discussion
and most of our results apply to both unconventional charge
and spin density waves. With this, the gap equation reads as

Dsld =
1

V
o
k

Psk,ld
Dskd

4EsK d

3FtanhSEskd + hskd
2T

D + tanhSEskd − hskd
2T

DG ,

s8d

whereEskd=Îjskd2+ uDskdu2, Dskd=Dsskd and the kernel of
the integral equation is diagonal on the basis of the leading
harmonics as21

Psk,ld
V

=
P0

N
+

P1

N
cosskybdcosslybd +

P2

N
sinskybdsinslybd

+
P3

N
cosskzcdcosslzcd +

P4

N
sinskzcdsinslzcd. s9d

The Pi coefficients are linear combinations of the interaction

FIG. 1. The phase diagramssolid lined and the
zero temperature order parametersdashed lined
are plotted in the presence of imperfect nesting.
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matrix elements. As a consequence of the general form of the
kernel, the gap will be of the form

Dsld = D0 + D1 cosslybd + D2 sinslybd + D3 cosslzcd

+ D4 sinslzcd. s10d

From now on we assume that only one kind of gap among
the five possible candidates, whose transition temperature is
the highest, opens, and persists all the way down to zero
temperature. For the stability of different phases, we refer the
reader to Ref. 21. In quasi-one-dimensional systems, the gap
function of UDW vanishes linearly on lines at the Fermi
surface. Hence, the thermodynamics of UDWin these sys-
tems does not depend on the explicit wave-vector depen-
dence of the gap; only transport properties are sensitive to
the position of zeros of gap, and can distinguish between
various gap structures.21 It is worth noting, that in higher
dimensional systems,14 more complicated gap functions can
be identified with line or point nodes, possessing distinct
thermodynamical properties.

From Eq.s7d, it is clear that the effect of imperfect nesting
is incorporated in the theory by replacing the Matsubara fre-
quency in the single-particle Green’s function withvn
+ ife0 coss2bkyd−dmg,27,28 where dm is the change of the
chemical potential due to the change in the spectrum. The
order parameter22 is assumed to depend on the wave-vector
as Dskd=D sinsbkyd or D cossbkyd. Identical results are ob-
tained for thekz-dependent gap. The second-order phase
boundary is given bye0=D0sTcd, whereD0sTd is the tem-
perature dependence of the gap in a perfectly nested conven-
tional DW with Tc0 transition temperature.Tc0 is the transi-
tion temperature in the absence of imperfect nesting. This is
almost the complete phase diagram. At high temperature
when T becomes of order ofe0, the deviation from perfect
nesting becomes irrelevant, the best nesting vector isQ
=s2kF ,p /b,p /cd. In the conventional scenario, two DW
phases can occur,29 characterized by slightly different wave
vectors andQ is replaced by a temperature-dependent wave
vector, opening a narrow region above the critical nesting at
low temperatures. For the present model, the possibility of
ordering with different wave vector is there, although its ex-
amination is beyond the scope of the present discussion. The
critical nesting is given bye0=ÎeD00/2<0.82D00, whereD00
is the gap in a perfectly nested system at zero temperature.
The order parameter remains unchanged fore0,D00/2, and
vanishes sharply ase0 approaches its critical value. This to-
gether with the phase diagram is shown in Fig. 1. The most
interesting consequence of imperfect nesting is that the
chemical potential does not remain constant under the den-
sity wave formation. Its shift is given by

dm = e0QfDsT,e0d − 2e0g +
DsT,e0d2

4e0
Qf2e0 − DsT,e0dg,

s11d

where Qsxd is the Heaviside function. This behavior can
readily be seen from the density of states, where for any
finite D, the total number of states below the Fermi energy is
regained only by shifting the Fermi energy as given above.

Note that this change belongs to a sinusoidal gap, while for a
cosinusoidal gap the sign of the shift is reversed. The change
in the spectrum in the presence of imperfect nesting is shown
in Fig. 2, which is given by

E±skd =
«skd + «sk − Qd

2
±ÎS«skd − «sk − Qd

2
D2

+ uDskdu2.

s12d

In the perfectly nested case, the low-energy part of the spec-
trum consists of Dirac cones with peaks at the Fermi
energy.21 For small e0, the spectrum is still crossed by the
Fermi energy at the zeros of the gap. By increasinge0, a
broad bump develops in the upper band, and crosses the
Fermi energy. At this point, a large number of possible states
becomes available, and the chemical potential starts decreas-
ing to keep the total number of particles unchanged.

A direct consequence of this shift is a cusp in the tem-
perature dependence ofD at D=2e0, since at this point the
chemical potential changes. This feature is shown in Fig. 3,
which is obtained from the numerical solution of the gap
equation:

1 = TP
N0

4 o
n
E

0

2p sin2syddy
Îsvn + ife0 coss2yd − dmgd2 + D2 sin2syd

,

s13d

whereP.0 is the interaction responsible for the UDW for-
mation from Eq.s9d, and N0 is the density of states in the
normal state at the Fermi energy per spin.

III. DENSITY OF STATES

The quasiparticle density of states is given by

g2DsEd = Nsx,ad

= N0E
0

2p dy

2p
Re

uE + dm − e0 coss2ydu
ÎfE + dm − e0 coss2ydg2 − D2 sin2syd

.

s14d

The energy variables are expressed in units ofe0, i.e., a
=D /e0 andx=sE+dmd /e0, the energy is measured from the
new Fermi energy. The density of states is obtained as

Nsx,ad = N0
1

pÎpq
FSx − 1 −

2q

p − q
DKS1

2
Î1 − sp − qd2

pq
D

+
p + q

p − q
PS sp − qd2

− 4pq
,
1

2
Î1 − sp − qd2

pq
DG s15d

for x.a2/8+1, where p=Îsm−1d2+n2, q=Îm2+n2, m
=fa2−4sx−1dg /8, n=aÎ−a2+8sx−1d /8, and Kszd and
Psn,zd are the complete elliptic integrals of the first and
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FIG. 2. The evolution of the quasiparticle spectrum is shown, viewed from the direction of thekx axis, for Dskd=D sinsbkyd in the
presence of imperfect nesting fore0/D=0, 0.3, 0.5 and 1 from left to right, top to bottom. The horizontal line denotes the Fermi energy. The
band structure is chosen as«skd=−2ta cossakxd−2tb cossbkyd+«0 coss2bkyd with parameters asta/D=2, tb/D=0.1 at half-filling.

FIG. 3. The temperature dependence of the
order parameter for the 2D model is shown for
e0/D00=0, 0.2, 0.3, 0.45, 0.55, and 0.7 from right
to left. The cusp shows up only for 2e0,D00.
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third kind, respectively.30 In the remaining regions the DOS
reads as

Nsx,ad = N0fQsa − 4df1sx,ad + Qs4 − adf3sx,adg,

sa2/8d + 1 . x . a − 1,

Nsx,ad = N0 sgnsx − 1df2sx,ad, a − 1 . x . − a − 1,

Nsx,ad = − N0f3sx,ad, − a − 1 . x, s16d

where the following notations are used:

f1sx,ad =
1

pÎsy2 − 1dy1
Fsx − 1 + 2y2dKSÎ y2 − y1

sy2 − 1dy1
D

− 2y2PS 1

1 − y2
,Î y2 − y1

sy2 − 1dy1
DG , s17d

f2sx,ad =
1

pÎy2 − y1
Fsx − 1 + 2y2dKSÎsy2 − 1dy1

y2 − y1
D

− 2y2PS y1

y1 − y2
,Îsy2 − 1dy1

y2 − y1
DG , s18d

f3sx,ad =
1

pÎs1 − y1dy2
H2sy2 − y1dPSy2 − 1

y1 − 1
,Îs1 − y2dy1

s1 − y1dy2
D

− 2 sgnsx − 1dPS y1

y1 − 1
,Îs1 − y2dy1

s1 − y1dy2
D

+ fx − 1 + 2y1 + sgnsx − 1dsx + 1dg

3KSÎs1 − y2dy1

s1 − y1dy2
DJ , s19d

and y1=fa2−4sx−1d−aÎa2−8sx−1dg /8, y2=fa2−4sx−1d
+aÎa2−8sx−1dg /8.

The particle-hole symmetry is broken, which can be
readily seen from the behavior of the peaks in the density of
states, which slide from ±D to −D−e0−dm below the Fermi
surface, while above it toD−e0−dm for 4e0,D and toe0
+D2/8e0−dm otherwise. In addition, the zero in DOS is at
the new Fermi energy fore0,D /2, and for largere0 there
exists no zero in the DOS. The density of states is plotted in
Fig. 4. These statements correspond toDskd=D sinskybd,
while for a cosinusoidal gapE→−E change is needed in the
density of states.

The residual density of statesfi.e., g2DsE=0dg is given by
N0Qs2e0−Dd. Since on the Fermi surface the DOS vanishes
in the same way fore0!D00 than in the perfectly nested
case, the specific heat increases quadratically with tempera-
ture close toT=0 K in this region, while for largee0 it
equals to the specific heat in the normal state.

IV. OPTICAL CONDUCTIVITY

In this section we investigate the quasiparticle contribu-
tion to the optical conductivity. For simplicity we neglect the
effect of the quasiparticle damping due to impurity scattering
for example. The quasiparticle part of the conductivity con-
tains relevant information about the system in the perpen-
dicular casessy andzd when the effect of the collective con-
tributions can be neglected. The regular part of the optical
conductivity swithout the Dirac deltad is given by

Resab
regsvd

= N0
pe2

v2 E
−p

p dsbkyd
2p

E
−p

p dsckzd
2p

Re
vaskdvbskdD2skd
Îsv/2d2 − D2skd

3FtanhS uvu − 2h

4T
D + tanhS uvu + 2h

4T
DG , s20d

wherevaskd is the quasiparticle velocity in thea direction,
vxskd=vF, vyskd=2btb sinsbkyd, vzskd=2ctc sinsckzd, and h
=e0 coss2bkyd−dm. The wave-vector dependence of velocity

FIG. 4. The density of states as a function of energy is shown in the left panel fore0/D=0 ssolid lined, 0.2 sdashed lined, and 0.45
sdashed-dotted lined. In the right panele0/D=0.55 ssolid lined, 0.7 sdashed lined, and 0.8sdashed-dotted lined are shown.
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vertices distinguishes between the gaps with different wave-
vector dependence, as we shall see below. From now on we
restrict our investigation to theT=0 K case. The optical con-
ductivity remains the same as in the perfectly nested case for
2e0,Ds0,e0d=D00. For highere0, the optical conductivity is
zero for v,G, G=DsÎ8−a2−ad /2, similar to the effect of
magnetic field where thev,2mBH part of the conductivity
is chopped.31 In other words, a clean optical gap develops for
all electric field orientations. This can readily be observed in
Fig. 2: when the upper band crosses the Fermi energy, the
chemical potential moves below the zeros of the gap, sup-
pressing the low-energy excitations, since onlyq=0 transi-
tions are allowed for. Parallel to this the peak at 2D splits
into two new peaks atDsÎ8−a2+ad /2 and atDsa/2+2/ad.
For v.2e0s1+a2/4d the optical conductivity remains un-
changed compared to Ref. 21. The only change in the re-
maining region can be expressed by redefining theI
functions:21

Isa,b,gd =
v2g

4D2fFsgÎb,xd − FsgÎa,xd − EsgÎb,xd

+ EsgÎa,xdg, s21d

Isinsa,b,gd =
v

12D
HÎbs1 − bdFSv

D
D2

− 4b2G
−Îas1 − adFSv

D
D2

− 4a2G
+ F v

Dg
+

1

2
Svg

D
D3GfFsgÎb,xd − FsgÎa,xdg

− F2vg

D
+

g

2
Sv

D
D3GfEsgÎb,xd + EsgÎa,xdgJ

s22d

and Icossa ,b ,gd= Isa ,b ,gd− Isinsa ,b ,gd, where Fsz,kd and
Esz,kd are the incomplete elliptic integrals of the first and
second kind, respectively,x=2D /vg2, and the arguments of
the I functions are obtained as

a = maxS0,
1

2
−

a2

8
−

av

4D
D , s23d

FIG. 5. The real part of the complex conduc-
tivity for the 2D model in thez direction is shown
for e0/D00=0−0.5 sdotted lined, 0.6 sdashed
lined, 0.7 sdashed-dotted lined, and 0.8 ssolid
lined. Note that the same curves belong tosxxsvd
by changingvz to vF. The inset shows thee0 de-
pendence of the optical gap. The same optical gap
opens for other electric field orientations as well.

FIG. 6. The real part of the complex conduc-
tivity for the 2D model for a sinusoidal gap in the
y direction is shown fore0/D00=0−0.5 sdotted
lined, 0.6 sdashed lined, 0.7 sdashed-dotted lined,
and 0.8ssolid lined. The inset shows thee0 de-
pendence of the peaks, which show up in all elec-
tric field orientations.
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b = minF1,
1

2
−

a2

8
+

av

4D
,S v

2D
D2G , s24d

g = maxS1,
2D

v
D , s25d

for v.G and for a,2. For a.2, a=0, b=1, and theI
functions reduce to those in Ref. 21. Here, min and max give
the largest and the smallest values of its arguments, respec-
tively. With these notations the optical conductivity reads as

Resyy
sin,cossvd = e2N0vy

28Ds0,e0d2

v3 Isin,cossa,b,gd, s26d

Reszzsvd = e2N0vz
24Ds0,e0d2

v3 Isa,b,gd. s27d

The optical conductivity in the three qualitatively differ-
ent cases is shown in Figs. 5–7 withvx=vF, vy=Î2btb, and
vz=Î2ctc. In thex direction the quasiparticle part of the op-
tical conductivity is the same asszzsvd if we replacevz with
vF, although in thex direction it does not give the total
conductivity since collective contributions change signifi-
cantly the quasiparticle part, as was shown in Ref. 32. At first
sight, the sum rule seems to be violated in all figures since a
lot of optical weight is missing at small frequencies below
the optical gap. However, thedsvd part of the conductivity
does not freeze out atT→0 in the presence of imperfect
nesting, and its coefficient provides the missing area. As is
well known, in the presence of impurity scattering,dsvd
changes to a Drude-like peak centered atv=0. In Fig. 6, the
low-energy excitations are suppressed because of the match-
ing of the wave-vector dependence of the gap and velocity:
low-energy excitations are only present in the system with
zero weight. Similarly, the divergent peaks are missing from
Fig. 7, since at the gap maximum the velocity of quasiparti-

cles is zero. At finite temperature, the optical gap vanishes,
but excitations belowG are only possible with a probability
of ,exph−fe0−D2/ s4e0dg /Tj.

V. CONCLUSION

We have studied theoretically the effect of imperfect nest-
ing in unconventional density waves. Two qualitatively dif-
ferent cases are possible: the gap and imperfect nesting de-
pend on the samescalled the 2D modeld or different wave-
vector componentss3D cased.20 Here we concentrated on the
former. We explored the phase diagram which is identical to
the one in a conventional density wave. The zero temperature
gap function is not constant, contrary to the conventional
case. The chemical potential changes compared to the nor-
mal state value. The density of states turned out to be asym-
metric with respect to the Fermi energy due to the particle-
hole symmetry breaking, but the logarithmically divergent
peaks of thee0=0 case remain present, but at different ener-
gies. For larger values of imperfect nestingf2e0.DsT,e0dg,
the zero at the Fermi energy disappears, and the low-energy
density of states regains its normal state form. Usuallye0 is
thought to vary with pressure providing the opportunity to
check these results in a wide range of parameters. The opti-
cal gap of the model in the perpendicular optical conductiv-
ity can be observed experimentally at low temperatures.
Moreover the splitting and lowering of the resonant peak at
v=2D swhen the wave vector dependence of the gap and the
velocity coincided or its absencesfor the other kind of gapd20

could provide robust signatures of the microscopic nature of
the low temperature phase.
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