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Zero-momentum cyclotron spin-flip mode in a spin-unpolarized quantum Hall system
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We report on a study of the zero-momentum cyclotron spin-flip excitation itz quantum Hall regime.
Using the excitonic representation the excitation energy is calculated up to the second-order Coulomb correc-
tions. A considerable negative exchange shift relative to the cyclotron gap is established for cyclotron spin-flip
excitations in the spin-unpolarized electronic system. Under these conditions this type of state presents the
lowest-energexcitations. For a fixed filling factap)’=2) the energy shift is independent of the magnetic field,
which is in agreement with recent experimental observations.
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It is well known that in a translationally invariant two- «rajsing” operators: K{ ,=S,.,vn+1cl,, . coo,. Kl
dimensional2D) electron system Kohn's theorémrohibits =S nrl-1)ect . p nd,p,a P i ,
li fah | bati llec npe YN+ (-1) Cn+1,p,6Cn,p.00 an 1,4/-
coupling of a homogeneous external perturbation to collec- + is th . inila
Eann+1Cn+1,p,T/LCn,p,UT’ [Cnpo is the Fermi annihilation

tive excitations of the electrons. As a result, the energy of” ‘ Fiod to the Land d
cyclotron excitationgCE) at zero momentum has no contri- operator corresponding to the Landau-gauge state) an

bution from Coulomb interaction and the dispersion of CESPIN index ¢=T1,|]. The commutators with the kinetic-
starts from the cyclotron gap. In addition to inter-Landau-energy operatorH; are [Hl,K;SZ]EﬁwCKTSSZ. (The total
level cyclotron excitations(magnetoplasmaMP) mode Hamiltonian is |:|t0t2|:|1+|:|im, where |:|im is the exact

there are two other bra.n_ches of collective excitations in thpCoqumb-interaction Hamiltonianlf |0) is unpolarized, we
system of 2D electrons: intra-Landau-level spin-figF) ex-

citations (spin wave$ and inter-Landau-level combined cy- have SzKTssJO)ES(S*' 1)K%*SZ|O>L Sz'igsJO)ESzK;sJO), and
clotron spin-flip expitations{CS!:E’s). In the case of SF ex- pesides get the identit@lesz[HmuKl;sz]|0>50 (|0), to de-
citations, there exists Larmor's theorem which forbids anygqipe he zeroth-order ground stat@he latter determines
contribution from Coulomb interaction to the excitation en- the first-order Coulomb corrections vanishing both for the

ergy at zero momentum in spin rotationally invariant systemsS:0 MP mode and for th&=1 triplet states corresponding

(see, e.g., Ref.)2 However, in contrast to the CE and SF th mbined spin lotron excitation. At th me tim
excitations, there are no symmetry reasons for the absence@f e co ed spin-cyclotron excitation. € same time

many-body corrections to the zero-momentum energy of CSEHin, K§ o =0" but [Hiy, K] s1#0, which means that the
FE's. Moreover, it is well established now both theoretically MP mode indeed has no exchange energy calculateshyo
and experimentalfythat for the spin-polarized electron sys- orderin r¢, whereas the triplet states have the exchange cor-
tem (V=1) the energy of cyclotron spin-flip excitations is rection even in terms c]fé
strongly shifted to higher values relative to the cyclotron gap The second-order correctioAESF~ﬁwCr(2;, does not de-
due to the exchange interaction. Therefore, the energy giend on the magnetic field sinég = ae?/¢lg. The renormal-
combined cyclotron spin-flip excitations is a very convenientization factor,«, is determined by the size-quantized wave
t_ool to probe many-body effects, for example, in the inelastiGynction of electrons confined to the quantum wWeMW). In
light scattering - measurements performed at  ZerQne jgeal 2D caser=1. However, in experiments with com-
momentum®> paratively wide QW’s we expect a well-reduced valueaof
The sensitivity of CSFE energy a=0 to many-body oy analytical calculation of the second-order correction to

effects strongly depends on the spin polarization of the elec,e cSFE energy is performed in termsrefassumed to be
tron system. For the spin-unpolarized electron syst®n g a1

=2), theory developed within théirst-order perturbation ap- All three triplet states have certainly the same exchange
proach in terms of the parametey=Ec/fiw; (Ec is the char-  energy, and it is sufficient to calculate this, e.g., for the CSFE

acteristic Coulomb energyy, is the cyclotron frequendy with S=1 andS,=-1. The obtained result confirms experi-
predicts a zero many-body contribution to the zero-mental observations.

momentum energy of CSFE. We show below that calculation In the homogeneous System under integer-quantum_Ha”
of the CSFE zero-momentum energy for the2 system  conditions there are no excitations of quasielectron or quasi-
performed to within thesecond-orderCoulomb corrections hole type but all excitations are reduced to excitonlike or
yields a considerable negative exchange shift relative to thﬁ]any-exciton stategE.g., a pair of separated electron and
cyclotron gap. hole is a particular case of tlep— o exciton?®) These are
The studied system is characterized by exact quanturgpit off from the ground state by energy gaps. In this situa-
numbersS, S, andq and by a nonexact but “good” quantum tjon the adequate approach to the microscopic calculations is
number on corresponding to the change of the single-pased on thexcitonic representatiofER) technique~ The
electron energyiw.on with an excitation. The relevant exci- |atter means that instead of single-electron states belonging
tations withq=0 and sn=1 may be presented in the form g a continuously degenerate Landau leftel) we employ
K;SZ|O>, where |0) is the ground state and(éSZ are  as the basic set the exciton sta@ﬁo q|0>, wherethe degen-
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eration becomes well lifted’he exciton creation operator is this would correspond to summationaf diagrams contrib-

defined a§1° uting to the spin-density response function up to second or-
1 derinrc.
T2 N aigont It is well known that in a magnetized electron system the
=—D, e '%p A 1. 1 . . . A .
Qavq v‘N(ﬁ% pray27p-a/2 @) single LL approach inevitably fails if one studies thecond-

] order Coulomb corrections. In other words, the LL mixing
N¢=A/2wlé stands for the number.of mggnetlc—flux_ quanta,(LM), even being small due to the <1 condition, has to
q=(dx,qy) is the 2D wave vector in units of 14. Binary  pe properly considered. The LLM is not reduced to an “in-
indexesa andb present both the LL number and spin index. teraction” of nearest LL's but the mixing of occupied levels
[That is,a=(n,, ), anda, in Eq. (1) stands for the corre- with all other levels must be taken into account. In terms of
sponding annihilation operator; when exploiting below thethe two-exciton basis this means that\at2 the lower in-

notationa=n or a=n as sublevel indexes, this means that yoyes of appropriate exciton operators are 0 doud the
a=(n, 1) gra=(n,_l),Trespectlvelﬂ.The annihilation exciton —nner ones run over all numbers of higher sublevels. There
operator _ISQabq:%blaO—Q' The commutation rules define a 5e eight different kinds of such two-exciton states. In our
special Lie algebré;” case the relevant ones are those corresponding to spin num-
o i bers S,=-1 and S,=0, namely: [»,1)=Q} _, QL |0),
(ol 4y ol 0] = N¢1’2[e i x 9225 QT - S S, y:|v, ) Qon, -q,%0n, qv| )

s
|V12>:Qaﬁ2 —qyggﬂ qV|0>- |V’3>:%anz -qugnl qV|O>' v.4)

— @4y X a2 i
¢ PadQbapah (2 =0b, 0,9, o0 and [1.5)=305  Of 00 (cer-
where Bab™=6n_n, 00,0, is the Kronecker symbol. In th&¥  tainly only the states with th&=1 momentum should be
=2 case we get the following identityN;S”ZQ;aq\@ consideregl We have used hereas a composite index cor-
= 8q.0(Oa0t 3,00 responding to the sdh;,n,,q,). The two-exciton states of

The advantage of the exciton states lies in the fact that aflifferent types are orthogonal, i.€l, v[u,)=0if | # I [uis
essential part of the Coulomb interaction Hamiltonian maythe set (m;,m;,q,), below A=(l,15,q,),...]. However,
be diagonalized in this basis. In the perturbative approach theithin the same type their orthogonalization rules should be
excitonically diagonalized pattgp should be included into defllznecti 'I” ta spemal_(\j/vay. binat
the unperturbed Hamiltoniad,=H,+Hgp and only the off- Irst, et us consider a combination
diagonal part H;=H;+—Hgp is considered as a > f,lv,0) (4)
perturbatior’. Now even within the zero-order approximation v
in terms ofH;, there are Coulomb correctiofdepending on  (summation is performed over all components of the com-
theq modulug to the energies of basis excitohidt is useful  posite index. However, only a certain transform of the func-
to take into account that all terms of the relevaty, part  tion f,=f(n;,n,,q,) has a physical meaning. Indeed, actually

may be presented in the fortof. Ref. 7) only a projection of the sun4) onto a certain two-exciton
&2 state|u,J) would be of any sense. With the help of the com-
o & t mutation ruleg2) we obtain
Hint = 2¢l Bq,a%c,d V(q)[hnanb(q) 5<ra,zerab q]
+ E fV<J,,LL|V,|> = ‘sl,\]{f,u,}l (5)
X[hncnd(_ q)éac,adch —q]- () v

Here 27V(q) is the dimensionless 2D Fourier component of(Cf' Ref. 7). Here the curly brackets mean the transform
the averaged Coulomb poter12tiéih the ideal 2D case/ {f.) :fV_N¢_1E f'ﬂ{fx, ifl=1,2, or4d: and
=1/qg), and h,(q)=(k!/n!)Y2e7a74(q_)"KLI(q?/2) are the \

ER “building-block” functions(L} is the Laguerre polyno-
mial, g.=i/\V2(qxiqy); cf. also Refs. 2, 7, and)9The
functionsh,, satisfy the identityh, (q) =h,(-q).

At the }}:2 filling the CSFF state calculated tq zeroth o De _
order in M, is simply |SF>:Q:;jO> (the notation Q;bo The definition of the kernel§-‘f}xfx is also parametrized by

e N n the kind| of the state, namely,
=Ql, is Aemployed. We thus have [Hgp,Qy]0) AU FOZ O s s @ %a
=(0| Qg q[HinthgI:HO):O for any indexesq and ab (one AT T T Oyl gl ’
could check it dllrectlyﬂusmg the ER approach; see also Refs. ﬁyzA) — 5n1’|25n2‘|1e—i<qv X a)z, and]—'ﬁ) =0. 7)
2, 7, and 9. Action of H;,; on the|SF state does not gener-
ate one-exciton states but leads to two- and even thredVote that the transforrft- -}, is to within a factor equivalent
exciton states. Therefore the excitonic basis should be exe its double application{f},},=K{f},, whereK;=K,=2 and
tended. K3;=K,=Ks=1. Therefore, if we replace, e.d.,,— f,+K,¢,
Below we calculatexactlythe second-order correction to —{¢,}, (¢, is an arbitrary functiop then this operation does
the CSFE energy. Within the Green's-functions formafism not affect the combination&) and (5). So, only the “anti-

{fy}.%(f,,—N(,,‘lE}ﬂng), iflI=30or5. (6)
N
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symmetrized” part{f,}, contributes to the matrix-element mined by thethree-exciton statesee Eq(10)]. This correc-

calculgtions. The origin of this .feature. of the two-exciton tion arises from the commuting pawith Qg? of H;, acting
states is related to the permutation antisymmetry of the total

+ .
wave function describing the electron system studiefd, on the StathojO)' 1.€.,

e.g., Refs. 6 and)7There is also a useful identity, * t o~
J Y ABss= 3 3 CU(L Qe (15

2 win,n)f g,k = 2 wing,m{f .} g, ® =345 v
v v The equations for the coefficients are
which is valid for any kinds of the transfornis--}, if the

0 T —_ LY . ~
function w in Eq. (5) is assumed to be such thatn,,n,) > C, {1, 71QoQqytie, 1 = = (1,11 QoQy; Hind 0Y/A, (16)
=w(n,,n;). In particular, Eq(5) gives the equations . N

1=3,4,9, where A, =ho(n;+ny)=2. Substitutin
<| ’ V|/"L’J> = (sl,‘]{gylll}lr (9) ( T _5 -1/2 TwC(_l. 2) g

) Qu1Qy;= N;"*(Qoo~ Q) +Qy; Qo1 into Egs. (15) and (16)
where we deduce that the operatq%ﬁo] gives no contribution,

S =00 =80 = Sn,.my On,m, 9,0, whereas action of the remaining terms reduces the convolu-

and tions in Egs.(15) and(16) to the “bra-ket” products of two-

exciton states. In so doing we find a huge contributiewven-
SO 56 _ 1 tu_al/lzy ~N,) into Eq. (15) due to the co_mmuting part of
o = O = 2 (OnymyOnymy0a,.0, Oy, Onmy 8o, -a,)- N,"4(Qoo~Qm), Wwhich is actually nothing else but the
second-order correctiofin terms ofr) to the ground state,
Summation in thééﬂ)}q transform is performed over the first namely:AE,=3 -5, 5C(|)<O|']:{im|y’ ). According to Eq(16)
index: e.g.,{éﬁ}ls éﬁ—]—'ﬁ/N(ﬁ, and so on. o R
The first-order correctionén terms of;,) to the CSFE {Ch =~ [€(elahiwd G h/(ny + ny) 17
state are presented as an expanfion over the two-excitgn=3,4,5 with
stategv,1) and three-exciton statég-{v,1), namely, G, = V(@) hon (0, )gn,(~ ). (18
ISP =Qgﬂ0> + 22 C(vl)|”'|>+ > > C(,,')Q;jv,w (10) The noncommuting part determines the corrections to
=12 v =345 v the bra vectors in Eq(15). For the =3 states we get
(here the LLM manifests itself by the fact thatuns overall N;l’Z[QOO—Ql—léanZ i anl o Jloo=-2»,3)/N,, and atl
unoccupied levelsn; +n,=2). A regular application of the =4 5 correspondinély ”(-1+5n ’1)|V,4>/N¢ and
perturbative approaéFlIead§ to the following expression for _(s. 1+, 1)|v, BN, [the identities(lz) have been usdd
the PXCh,f‘”ge correction to the energyAEse  The'similar corrections to the bra vectors in Et6) do not
=(SHHnQ;0). SubstitutingSF) from Eq.(10) we see that  affect the equatiori17) for Cﬂ>.
the contribution of the two-exciton statés the energy arises The desirable exchange shift should be measured from
only due to the terms of Eq3) which do not commute with corrected energy of the ground state. We keep thus in Eg.
T (15 only the contribution of the noncommuting pdite.,
. consideringAE;_s— AE;_s—AEp). Then by substituting Eq.
AE; ,= > > cW (I,v|[ﬁint,ng|O>. (11) (3 for H,, into Eq. (15) and using again the summation
=12 » rules (5) and (8) we find from Egs.(15 and (17) the
I =3-5correction

or’

The coefficientscg) are determined by the equations

“ 1
2O vl == (1 Hin, QulOVA, (12 Ay 5=, 22+ 01+ 5,)(G s
" v
(1=1,2), whereA ,=fiw.(n;+n,—1) stands for the difference +(1+ 5n1,1)GV]Gj/(n1 +ny) (19

of the cyclotron energies in the stafes!) and QéjO). Cal-

culating the commutator in Eq$11) and (12) [employing
the rules(2)], and then using the properti€s) and(8) of the AEge=AE; 5+ AEg_s. (20)
summation over index, we obtain

(in units of 2 Ry. The combination with Eq(13) yields

The sum ovew in Egs.(13) and (19) means summation
AE, ,=- N;Sl s S {FV}|Fy(n1+ ny— 1) (13) overn; andn, and the integration ovey,. This is a routine

=12 » procedure and the suitable sequence of operations is as fol-
] ) 5  4) oo lows. First we perform the summation over allmf=1 and
[in units of 2 Ry=(€?/elg)*/hw.=m.e*/ £*h?], where n,=1 keeping the sum,=n,+n, fixed. Then we make the

F,=V(q,)[h )= 810 Noo(@,) TNon. (= G, 14 integration overq,. According to the above definition, the
(Q)[Mun, (@) = 1, on, (- @) 14 transforms{F,}, and {G,}, already contain an integration,

Now we calculate the contributioAE; 5 which is deter-  therefore some terms in E) present twofold integration

241310-3



RAPID COMMUNICATIONS

S. DICKMANN AND I. V. KUKUSHKIN PHYSICAL REVIEW B 71, 24131@R) (2005

. ing AEgr=(In2-1)/2=-0.153 4.. .(in units of 2 Ry).

So, the exchange interaction lowers thereby the CSFE en-
ergy relative to the singlet MP mode. Another feature of the
found shift is its independence of the magnetic field. Due to
theq=0 condition the studied state is optically active. In the
recent worR the inelastic light scatteringLS) was studied
in a single 30-nm AlGaAs/GaAs QW in the situations where
V=2;4. Thetriplet and MP cyclotron excitations are mani-
fested as peaks in the ILS spectra. The measurements were
performed in magnetic fields varied in a wide range, but with
the filling factor kept constant. The central triplet line is
shifted downward from the cyclotron energy by 0.35 meV

0,00 L. T independently of th®& magnitude. Thus, a qualitative agree-
0.0 0.2 0.4 Wi 0.6 0.8 1.0 ment with our calculation is obvious.
e Quantitative comparison should be done with taking into

FIG. 1. The CSFE exchange shift is calculated from the formula@ccount of finite thickness of a two-dimensional electron gas.
of Eq. (2) with the modified Coulomb interaction The calculation in Fig. 1 incorporates the effect of the finite
V(q) =g~ erfo(qw); the shift value absolute aw=0 is  Width of the 2D layer. This is carried out by writing the
(1-In2)/2. Coulomb vertex as/(q)=F(gqw)/q, where the form factor

) F(gw) is parametrized by an effective thickness If the
o¥erf2D v:ector;qk _a;ndgy. dReS"y the latter, V‘r’rﬂﬂlimi qr;glp variational envelope function is chosen in the form
of formula  (2m)™/Jdq,ddzU(qy, Gp) (00" |{(2)[2~ exp(-2212w?), thenF(qw) =e"?” erfqwq) (see Ref.

=25 odandp(aud) ™ U (Ar, G Jsm(@a) (I IS the : . . .
Bessel functionU is an arbitrary functiop is reduced to 14). Exactly this form fac_tor IS employed in the calculation
based on Eq.(21). Taking into account the value of

integration over absolute valugg andq,. Finally the sum- : i )

mation ovem, is performed. Ry=5.67 meV in GaAs, we find from Fig. 1 that the agree-
In so doing, a simplifying circumstance was found: all of Ment with the experiment is obtained &t=0.9;. This is

the twofold-integration terms cancel each other in the finafiUite @ reasonable value for the 30-nm GaAs structure.

combination(20). (This feature is not a general one but only ~ AS & concluding remark we notice that the friplet cyclo-

inherent in our specific cad®. All the rest of the terms result (O €xcitation in spin-unpolarized electron system seems to

0.16

0.10F

0.05

Shift |AE,] in units of 2Ry

in the following expression: have been observed earlfealthough in this paper experi-
. mental observations were related to the roton minimum and a
2-27" (% 2 different dependence of energy shift on magnetic field was
ABgr=-2, nnt(n? - 1)f dad™VA@e ™. (21 getected.
n=2 . 0
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