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We report on a study of the zero-momentum cyclotron spin-flip excitation in theV=2 quantum Hall regime.
Using the excitonic representation the excitation energy is calculated up to the second-order Coulomb correc-
tions. A considerable negative exchange shift relative to the cyclotron gap is established for cyclotron spin-flip
excitations in the spin-unpolarized electronic system. Under these conditions this type of state presents the
lowest-energyexcitations. For a fixed filling factorsV=2d the energy shift is independent of the magnetic field,
which is in agreement with recent experimental observations.
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It is well known that in a translationally invariant two-
dimensionals2Dd electron system Kohn’s theorem1 prohibits
coupling of a homogeneous external perturbation to collec-
tive excitations of the electrons. As a result, the energy of
cyclotron excitationssCEd at zero momentum has no contri-
bution from Coulomb interaction and the dispersion of CE
starts from the cyclotron gap. In addition to inter-Landau-
level cyclotron excitationssmagnetoplasmasMPd moded
there are two other branches of collective excitations in the
system of 2D electrons: intra-Landau-level spin-flipsSFd ex-
citations sspin wavesd and inter-Landau-level combined cy-
clotron spin-flip excitationssCSFE’sd. In the case of SF ex-
citations, there exists Larmor’s theorem which forbids any
contribution from Coulomb interaction to the excitation en-
ergy at zero momentum in spin rotationally invariant systems
ssee, e.g., Ref. 2d. However, in contrast to the CE and SF
excitations, there are no symmetry reasons for the absence of
many-body corrections to the zero-momentum energy of CS-
FE’s. Moreover, it is well established now both theoretically
and experimentally3 that for the spin-polarized electron sys-
tem sV=1d the energy of cyclotron spin-flip excitations is
strongly shifted to higher values relative to the cyclotron gap
due to the exchange interaction. Therefore, the energy of
combined cyclotron spin-flip excitations is a very convenient
tool to probe many-body effects, for example, in the inelastic
light scattering measurements performed at zero
momentum.3–5

The sensitivity of CSFE energy atq=0 to many-body
effects strongly depends on the spin polarization of the elec-
tron system. For the spin-unpolarized electron systemsV
=2d, theory2 developed within thefirst-orderperturbation ap-
proach in terms of the parameterrC=EC/"vc sEC is the char-
acteristic Coulomb energy,vc is the cyclotron frequencyd
predicts a zero many-body contribution to the zero-
momentum energy of CSFE. We show below that calculation
of the CSFE zero-momentum energy for theV=2 system
performed to within thesecond-orderCoulomb corrections
yields a considerable negative exchange shift relative to the
cyclotron gap.

The studied system is characterized by exact quantum
numbersS, Sz, andq and by a nonexact but “good” quantum
number dn corresponding to the change of the single-
electron energy"vcdn with an excitation. The relevant exci-
tations withq=0 anddn=1 may be presented in the form

K̂S,Sz

† u0l, where u0l is the ground state andK̂S,Sz

† are

“raising” operators: K̂0,0
† =onps

În+1cn+1,p,s
† cn,p,s, K̂1,0

†

=onps
În+1s−1dscn+1,p,s

† cn,p,s, and K̂1,+/−
†

=onp
În+1cn+1,p,↑/↓

† cn,p,↓/↑, fcn,p,s is the Fermi annihilation
operator corresponding to the Landau-gauge statesn,pd and
spin index s= ↑ ,↓g. The commutators with the kinetic-

energy operatorĤ1 are fĤ1,K̂S,Sz

† g;"vcK̂S,Sz

† . sThe total

Hamiltonian is Ĥtot=Ĥ1+Ĥint, where Ĥint is the exact
Coulomb-interaction Hamiltonian.d If u0l is unpolarized, we

have Ŝ2K̂S,Sz

† u0l;SsS+1dK̂S,Sz

† u0l, ŜzK̂S,Sz

† u0l;SzK̂S,Sz

† u0l, and

besides get the identityk0uK̂S,Sz
fĤint ,K̂S,Sz

† gu0l;0 su0l, to de-
scribe the zeroth-order ground stated. The latter determines
the first-order Coulomb corrections vanishing both for the
S=0 MP mode and for theS=1 triplet states corresponding
to the combined spin-cyclotron excitation. At the same time

fĤint ,K̂0,0
† g;01 but fĤint ,K̂1,Sz

† gÞ0, which means that the
MP mode indeed has no exchange energy calculated toany
order in rC, whereas the triplet states have the exchange cor-
rection even in terms ofrC

2.
The second-order correction,DESF,"vcrC

2, does not de-
pend on the magnetic field sinceEC=ae2/«lB. The renormal-
ization factor,a, is determined by the size-quantized wave
function of electrons confined to the quantum wellsQWd. In
the ideal 2D casea=1. However, in experiments with com-
paratively wide QW’s we expect a well-reduced value ofa.
Our analytical calculation of the second-order correction to
the CSFE energy is performed in terms ofrC assumed to be
small.

All three triplet states have certainly the same exchange
energy, and it is sufficient to calculate this, e.g., for the CSFE
with S=1 andSz=−1. The obtained result confirms experi-
mental observations.

In the homogeneous system under integer-quantum-Hall
conditions there are no excitations of quasielectron or quasi-
hole type but all excitations are reduced to excitonlike or
many-exciton states.sE.g., a pair of separated electron and
hole is a particular case of theq→` exciton.2,6d These are
split off from the ground state by energy gaps. In this situa-
tion the adequate approach to the microscopic calculations is
based on theexcitonic representationsERd technique.7–9 The
latter means that instead of single-electron states belonging
to a continuously degenerate Landau levelsLL d we employ
as the basic set the exciton statesQab q

† u0l, wherethe degen-
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eration becomes well lifted. The exciton creation operator is
defined as7–10

Qab q
† =

1
ÎNf

o
p

e−iqxpbp+qy/2
† ap−qy/2. s1d

Nf=A/2plB
2 stands for the number of magnetic-flux quanta,

q=sqx,qyd is the 2D wave vector in units of 1/lB. Binary
indexesa andb present both the LL number and spin index.
fThat is,a=sna,sad, andap in Eq. s1d stands for the corre-
sponding annihilation operator; when exploiting below the
notation a=n or a= n̄ as sublevel indexes, this means that
a=sn, ↑ d or a=sn, ↓ d, respectively.g The annihilation exciton
operator isQab q;Qba −q

† . The commutation rules define a
special Lie algebra,7,9,10

fQcd q1

† ,Qab q2

† g ; Nf
−1/2fe−isq1 3 q2dz/2db,cQad q1+q2

†

− eisq1 3 q2dz/2da,dQcb q1+q2

† g, s2d

where da,b=dna,nb
dsa,sb

is the Kronecker symbol. In theV
=2 case we get the following identity:Nf

−1/2Qaa q
† u0l

;dq,0sda,0+da,0̄du0l.
The advantage of the exciton states lies in the fact that an

essential part of the Coulomb interaction Hamiltonian may
be diagonalized in this basis. In the perturbative approach the

excitonically diagonalized partĤED should be included into

the unperturbed HamiltonianĤ0=Ĥ1+ĤED and only the off-

diagonal part Ĥint=Ĥint−ĤED is considered as a
perturbation.7 Now even within the zero-order approximation

in terms ofĤint there are Coulomb correctionssdepending on
theq modulusd to the energies of basis excitons.11 It is useful

to take into account that all terms of the relevantĤint part
may be presented in the formscf. Ref. 7d

Ĥint =
e2

2«lB
o

q,a,b,c,d
Vsqdfhnanb

sqddsa,sb
Qab q

† g

3fhncnd
s− qddsc,sd

Qcd −q
† g. s3d

Here 2pVsqd is the dimensionless 2D Fourier component of
the averaged Coulomb potentialsin the ideal 2D caseV
=1/qd, and hknsqd=sk! / n!d1/2e−q2/4sq−dn−kLk

n−ksq2/2d are the
ER “building-block” functionssLk

n is the Laguerre polyno-
mial, q±= 7 i /Î2sqx± iqyd; cf. also Refs. 2, 7, and 9d. The
functionshkn satisfy the identity:hkn

* sqd;hnks−qd.
At the V=2 filling the CSFE state calculated to zeroth

order in Ĥint is simply uSFl=Q̂
01̄

† u0l sthe notationQ̂ab 0
†

=Q̂ab
† is employedd. We thus have fĤED,Q

01̄

† gu0l

=k0uQab qfĤint ,Q01̄

† gu0l=0 for any indexesq and ab sone

could check it directly using the ER approach; see also Refs.

2, 7, and 9d. Action of Ĥint on theuSFl state does not gener-
ate one-exciton states but leads to two- and even three-
exciton states. Therefore the excitonic basis should be ex-
tended.

Below we calculateexactlythe second-order correction to
the CSFE energy. Within the Green’s-functions formalism2

this would correspond to summation ofall diagrams contrib-
uting to the spin-density response function up to second or-
der in rC.

It is well known that in a magnetized electron system the
single LL approach inevitably fails if one studies thesecond-
order Coulomb corrections. In other words, the LL mixing
sLLM d, even being small due to therC,1 condition, has to
be properly considered. The LLM is not reduced to an “in-
teraction” of nearest LL’s but the mixing of occupied levels
with all other levels must be taken into account. In terms of
the two-exciton basis this means that atV=2 the lower in-

dexes of appropriate exciton operators are 0 or 0¯ but the
upper ones run over all numbers of higher sublevels. There
are eight different kinds of such two-exciton states. In our
case the relevant ones are those corresponding to spin num-
bers Sz=−1 and Sz=0, namely: un ,1l=Q0n2 −qn

† Q0n̄1 qn

† u0l,
un ,2l=Q

0̄n̄2 −qn

† Q0n̄1 qn

† u0l, un ,3l= 1
2Q0n2 −qn

† Q0n1 qn

† u0l, un ,4l

=Q0n2 −qn

† Q
0̄n̄1 qn

† u0l, and un ,5l= 1
2Q0̄n̄2 −qn

† Q
0̄n̄1 qn

† u0l scer-

tainly only the states with theS=1 momentum should be
consideredd. We have used heren as a composite index cor-
responding to the setsn1,n2,qnd. The two-exciton states of
different types are orthogonal, i.e.,kI ,n um ,Jl=0 if I ÞJ fm is
the set sm1,m2,qmd, below l=sl1, l2,qld , . . .g. However,
within the same type their orthogonalization rules should be
defined in a special way.

First, let us consider a combination

o
n

fnun,Il s4d

ssummation is performed over all components of the com-
posite indexd. However, only a certain transform of the func-
tion fn= fsn1,n2,qnd has a physical meaning. Indeed, actually
only a projection of the sums4d onto a certain two-exciton
stateum ,Jl would be of any sense. With the help of the com-
mutation ruless2d we obtain

o
n

fnkJ,mun,Il ; dI,JhfmjI s5d

scf. Ref. 7d. Here the curly brackets mean the transform

hfnjI = fn − Nf
−1o

l

Fnl
sId fl, if I = 1, 2, or 4; and

hfnjI =
1

2S fn − Nf
−1o

l

Fnl
sId flD, if I = 3 or 5. s6d

The definition of the kernelsFnl
sId fl is also parametrized by

the kind I of the state, namely,

Fnl
s1d = Fnl

s3d = Fnl
s5d ; dn1,l1

dn2,l2
eisqn 3 qldz,

Fnl
s2d ; dn1,l2

dn2,l1
e−isqn 3 qldz, andFnl

s4d ; 0. s7d

Note that the transformh¯jI is to within a factor equivalent
to its double application:hhfjIjI =KIhfjI, whereK1=K2=2 and
K3=K4=K5=1. Therefore, if we replace, e.g.,fn→ fn+KIwn

−hwljI swn is an arbitrary functiond, then this operation does
not affect the combinationss4d and s5d. So, only the “anti-
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symmetrized” parthfnjI contributes to the matrix-element
calculations. The origin of this feature of the two-exciton
states is related to the permutation antisymmetry of the total
wave function describing the electron system studiedscf.,
e.g., Refs. 6 and 7d. There is also a useful identity,

o
n

wsn1,n2dfn
*hgnjI ; o

n

wsn1,n2dhfnjI
*gn, s8d

which is valid for any kinds of the transformsh¯jI if the
function w in Eq. s5d is assumed to be such thatwsn1,n2d
;wsn2,n1d. In particular, Eq.s5d gives the equations

kI,num,Jl ; dI,Jhdnm
sId jI , s9d

where

dnm
s1d = dnm

s2d = dnm
s4d ; dn1,m1

dn2,m2
dqn,qm

and

dnm
s3d = dnm

s5d ;
1

2
sdn1,m1

dn2,m2
dqn,qm

+ dn1,m2
dn2,m1

dqn,−qm
d.

Summation in thehdnm
sId jI transform is performed over the first

index: e.g.,hdnm
s1dj1;dnm

s1d−Fnm
s1d /Nf, and so on.

The first-order correctionssin terms ofĤintd to the CSFE
state are presented as an expansion over the two-exciton
statesun ,Il and three-exciton statesQ

01̄

† un ,Il, namely,

uSFl = Q
01̄

† u0l + o
I=1,2

o
n

Cn
sIdun,Il + o

I=3,4,5
o

n

Cn
sIdQ

01̄

† un,Il s10d

shere the LLM manifests itself by the fact thatn runs overall
unoccupied levels:n1+n2ù2d. A regular application of the
perturbative approach12 leads to the following expression for
the exchange correction to the energy:DESF

=kSFuĤintQ01̄

† u0l. SubstitutinguSFl from Eq.s10d we see that

thecontribution of the two-exciton statesto the energy arises
only due to the terms of Eq.s3d which do not commute with
Q

01̄

†
,

DE1–2= o
I=1,2

o
n

Cn
sId*kI,nufĤint,Q01̄

† gu0l. s11d

The coefficientsCn
sId are determined by the equations

o
m

Cm
sIdkI,num,Il = − kI,nufĤint,Q01̄

† gu0l/Dn s12d

sI =1,2d, whereDn="vcsn1+n2−1d stands for the difference
of the cyclotron energies in the statesun ,Il andQ

01̄

† u0l. Cal-

culating the commutator in Eqs.s11d and s12d femploying
the ruless2dg, and then using the propertiess5d ands8d of the
summation over index, we obtain

DE1–2= − Nf
−1 o

I=1,2
o

n

hFnjIFn
* /sn1 + n2 − 1d s13d

fin units of 2 Ry=se2/«lBd2/"vc=me
*e4/«2"2g, where

Fn = Vsqndfh1n1
sqnd − d1,n1

h00sqndgh0n2
s− qnd. s14d

Now we calculate the contributionDE3–5 which is deter-

mined by thethree-exciton statesfsee Eq.s10dg. This correc-

tion arises from the commuting partswith Q
01̄

† d of Ĥint acting

on the stateQ
01̄

† u0l, i.e.,

DE3–5= o
I=3,4,5

o
n

Cn
sId*kI,nuQ01̄Q01̄

† Ĥintu0l. s15d

The equations for the coefficients are

o
m

Cm
sIdkI,nuQ01̄Q01̄

† um,I = − kI,nuQ01̄Q01̄

† Ĥintu0l/D̃n s16d

sI =3,4,5d, where D̃n="vcsn1+n2dù2. Substituting
Q01̄Q01̄

† ;Nf
−1/2sQ00−Q11d+Q

01̄

†
Q01̄ into Eqs. s15d and s16d

we deduce that the operatorQ
01̄

†
Q01̄ gives no contribution,

whereas action of the remaining terms reduces the convolu-
tions in Eqs.s15d ands16d to the “bra-ket” products of two-
exciton states. In so doing we find a huge contributionseven-
tually ,Nfd into Eq. s15d due to the commuting part of
Nf

−1/2sQ00−Q11d, which is actually nothing else but the
second-order correctionsin terms ofrCd to the ground state,

namely:DE0=on;I=3,4,5Cn
sIdk0uĤintun ,Il. According to Eq.s16d

hCn
sIdjI = − fe2/s«lB"vcdghGnjI/sn1 + n2d s17d

sI =3,4,5d with

Gn = Vsqndh0n1
sqndh0n2

s− qnd. s18d

The noncommuting part determines the corrections to
the bra vectors in Eq.s15d. For the I =3 states we get
Nf

−1/2fQ00−Q11, 1
2Q0n2 −qn

† Q0n1 qn

† gu0l=−2un ,3l /Nf, and atI
=4,5 correspondingly −s1+dn1,1dun ,4l /Nf and
−sdn1,1+dn2,1dun ,5l /Nf fthe identitiess2d have been usedg.
The similar corrections to the bra vectors in Eq.s16d do not
affect the equations17d for Cn

sId.
The desirable exchange shift should be measured from

corrected energy of the ground state. We keep thus in Eq.
s15d only the contribution of the noncommuting partsi.e.,
consideringDE3–5→DE3–5−DE0d. Then by substituting Eq.

s3d for Ĥint into Eq. s15d and using again the summation
rules s5d and s8d we find from Eqs. s15d and s17d the
I =3–5 correction

DE3–5=
1

Nf
o

n

fs2 + dn1,1 + dn2,1dhGnj3

+ s1 + dn1,1dGngGn
* /sn1 + n2d s19d

sin units of 2 Ryd. The combination with Eq.s13d yields

DESF= DE1–2+ DE3–5. s20d

The sum overn in Eqs. s13d and s19d means summation
over n1 andn2 and the integration overqn. This is a routine
procedure and the suitable sequence of operations is as fol-
lows. First we perform the summation over all ofn1ù1 and
n2ù1 keeping the sumnn=n1+n2 fixed. Then we make the
integration overqn. According to the above definition, the
transformshFnjI and hGnjI already contain an integration,
therefore some terms in Eq.s8d present twofold integration
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over 2D vectorsql and qn. Really the latter, with the help
of formula s2pd−2eedq1dq2Usq1,q2dsq1+q2−dme±isq13 q2dz

;2−me0
`e0

`dq1dq2sq1q2dm+1Usq1,q2dJ±msq1q2d sJm is the
Bessel function,U is an arbitrary functiond, is reduced to
integration over absolute valuesql andqn. Finally the sum-
mation overnn is performed.

In so doing, a simplifying circumstance was found: all of
the twofold-integration terms cancel each other in the final
combinations20d. sThis feature is not a general one but only
inherent in our specific case.13d All the rest of the terms result
in the following expression:

DESF= − o
n=2

`
2 − 22−n

nn!sn2 − 1dE0

`

dqq2n+3V2sqde−q2
. s21d

Here, for the ideally 2D system the integration is calculated
analytically. Then the summation is easily performed, yield-

ing DESF=sln 2−1d /2=−0.153 4. . .sin units of 2 Ryd.
So, the exchange interaction lowers thereby the CSFE en-

ergy relative to the singlet MP mode. Another feature of the
found shift is its independence of the magnetic field. Due to
theq=0 condition the studied state is optically active. In the
recent work5 the inelastic light scatteringsILSd was studied
in a single 30-nm AlGaAs/GaAs QW in the situations where
V=2;4. Thetriplet and MP cyclotron excitations are mani-
fested as peaks in the ILS spectra. The measurements were
performed in magnetic fields varied in a wide range, but with
the filling factor kept constant. The central triplet line is
shifted downward from the cyclotron energy by 0.35 meV
independently of theB magnitude. Thus, a qualitative agree-
ment with our calculation is obvious.

Quantitative comparison should be done with taking into
account of finite thickness of a two-dimensional electron gas.
The calculation in Fig. 1 incorporates the effect of the finite
width of the 2D layer. This is carried out by writing the
Coulomb vertex asVsqd=Fsqwd /q, where the form factor
Fsqwd is parametrized by an effective thicknessw. If the
variational envelope function is chosen in the form
ucszdu2,exps−z2/2w2d, thenFsqwd=ew2q2

erfcswqd ssee Ref.
14d. Exactly this form factor is employed in the calculation
based on Eq.s21d. Taking into account the value of
Ry=5.67 meV in GaAs, we find from Fig. 1 that the agree-
ment with the experiment is obtained atw<0.5lB. This is
quite a reasonable value for the 30-nm GaAs structure.

As a concluding remark we notice that the triplet cyclo-
tron excitation in spin-unpolarized electron system seems to
have been observed earlier,4 although in this paper experi-
mental observations were related to the roton minimum and a
different dependence of energy shift on magnetic field was
detected.
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