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We study the acoustoelectric effect generated by surface acoustic wavessSAWd in a high-mobility two-
dimensional electron gas with isotropic and especially small-angle impurity scattering. In both cases the
acoustoelectric effect exhibits Weiss oscillations periodic inB−1 due to the commensurability of the SAW
period with the size of the cyclotron orbit and resonances at the SAW frequencyv=kvc multiple of the
cyclotron frequency. We describe how oscillations in the acoustoelectric effect are damped in low fields where
vct* &1 swith the time scalet* dependent on the type of scatteringd and find its nonoscillatory part, which
remains finite to the lowest fields.
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Due to a finite wave number carried by surface acoustic
waves sSAWsd their application enables one to access the
properties of low-dimensional electron systems1 that cannot
be studied using the standard microwave absorption tech-
niques. The observation of magneto-oscillations in the shift
of SAW velocity caused by its interaction with the two-
dimensionals2Dd electrons in the vicinity of filling factor
n=1/2 and its comparison with Weiss geometrical osci-
llations2–4 for electrons has enabled Willettet al.5 to establish
the existence of a composite fermion Fermi surface. Also, the
additional length scale in the system permits transitions oth-
erwise forbidden by Kohn’s theorem,6 thus making possible
the detection of cyclotron transitions in a gas of composite
quasiparticles.7,8

In this Communication we extend the analysis of the phe-
nomenon of geometrical commensurability onto the acousto-
electric sAEd sdragd effect,9–12 which has been studied ex-
perimentally in semiconductor structures in various
regimes.13,14 We show that by measuring magneto-
oscillations and studying the frequency dependence of the dc
electric field induced in a two-dimensional electron gas
s2DEGd by a propagating SAW, one can access the same
information about resonant and the Fermi surface effects in a
2DEG in the Boltzman transport regime as was previously
studied in absorption and SAW propagation experiments.1,8

To be able to describe the AE effect in high-mobility hetero-
structures, such as investigated experimentally in Ref. 14, we
develop a theory for two types of structures: with isotropic
and with small-angle impurity scattering.

Here we use an approach recently applied to the studies of
another dc effect produced by a dynamical acoustic wave
field, the SAW-induced magnetoresistance.15 We investigate
the AE effect in the linear order in the SAW power and find
the parametric dependences of the steady-state electric field
EAE generated by the SAW in the direction of its propaga-
tion, EAE= q̂EAE sqRc,vct* ,v /vcd, where q is the SAW
wave vector,Rc and vc the electron cyclotron radius and
frequency, v the SAW frequency, andt* the effective
electron-scattering time crucially dependent on the type of
impurity scattering.17,18 In the high-field limit,vct* @1, we
describe Weiss oscillations of the AE effect as a function of
qRc. In addition, for low-density structures with heavy-mass

carriers we predict resonances inEAE at frequenciesv=kvc.
For a small magnetic fieldsthough large enough to ensure
thatvFB.Evqd, we show that while commensurability oscil-
lations are damped, there is a finite field-independent contri-
bution to the AE drag.

Our theory consists of the analysis of the Boltzmann
equation,

L̂ffsp,x,tdg = Ĉffsp,x,tdg,

L̂ = ]t + vcRc cosw]x + vc]w + eEP̂,

P̂ = v cosw]e −
sinw

p
]w, s1d

where Ĉ is the collision integral, and the momentum-

dependent part inL̂ andP̂ is written in terms of the electron
kinetic energye=p2/2m and anglew, characterizing the di-
rection of electron propagation with respect to the direction
of propagation of the SAW. Here,v is the electron velocity,
andE= lxEeisvt−qxd is the longitudinally polarized SAW field,
screened by the 2DEG.

Using these ,wd parametrization of momentum space, we
expand the distribution functionfsp ,x ,td into

fse,w,x,td = fTsed + o
m

o
VQ

fVQ
m sede−iVt+iQxeimw, s2d

where fTsed is the equilibrium Fermi function andfvq
m char-

acterize the nonequilibrium state caused by the SAW. We
determinegm=e0

`defm, so that g0 would characterize the
electron density andg±1 combine into electric current. We
separate the collision integral

Ĉffse,wdg = Ĉs/hffse,wdg −
f0sed + s]e fTdg0

tin
s3d

into the elastic and inelastic parts. Relaxation of the nonequi-
librium part of the distribution function towards an isotropic

distribution is described by the termĈs/h,
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Ĉhffg =
f0 − f

t
, andĈsffg =

1

t
]w

2 f . s4d

We adopt the subscriptsh for isotropic scattering ands for
small-angle scattering, approximated by diffusion along the
Fermi surface. In Eq.s4d, t−1 is the momentum relaxation
ratesthus,t is the transport time which determines the time-
scale upon which the nonequilibrium harmonicsf±1 decayd.
Energy relaxation, withtin

−1!t−1, is taken into account by
the last term in Eq.s3d using the relaxation time approxima-
tion.

The rectifiedsacoustoelectricd current can be described
using

J = jx − i j y = egE
0

`

devf00
1 sed, s5d

where g is the 2D density of states andf00se ,wd is the
steady-state homogeneous part of the nonequilibrium distri-
bution. Below, we restrict the analysis to effects linear in the
SAW power and perform a perturbative analysis. We assume
that the force from the SAW field is much less than the
Lorentz force,Evq!vFB, whereby electron cyclotron orbits
are not destroyed by the SAW and no channeling of electron
trajectories occurs. To describe the AE effect we relate the
steady-state termf00se ,wd to the SAW field andfvqse ,wd at
the SAW frequency by taking theQ=0, V=0 harmonics of
Eq. s1d,

]wf00se,wd =
Ĉf00se,wd

vc
− o

±vq

eE−v−q

vc
P̂fvqse,wd.

We then evaluate the complex current,J,

J = − o
±vq

e2E−v−q

vc
E

0

`

de
gvct

f1 + ivctg

3 E
0

2p dw

2p
e−iwF2e

m
cosw]e −

sinw

m
]wG fvqse,wd. s6d

Assuming energy independence oft and density of states,g,
we arrive at

J =
e2gt/m

f1 + ivctg o±vq

E−v−qgvq
0 ,

thus reducing the problem to that of finding the ac density
modulationnvq=gFgvq

0 excited by the SAW. The above in-
termediate result is characteristic for the classical Boltzmann
regime of transport. In the above formula forJ, sgvq

0 d*

=g−v−q
0 , while summation over the SAW harmonics satisfies

v=sq, wheres is the SAW velocity.
Since the structure ofJ repeats that of the Drude conduc-

tivity tensor, it is natural to work with the dc acoustoelectric
field generated by the SAW in the direction of its propaga-
tion,

EAE = q̂
2

eF
RehE−v−qgvq

0 j. s7d

The following calculation aims to determine how the quan-
tity of interest, EAE, depends on a particular scattering
mechanismfisotropic shd and small anglessdg.

The dynamical perturbationgvqswd can be found by tak-
ing Fourier harmonics of Eq.s1d at the frequency and wave
number of the SAW,

F]w −
Ĉs/h

vc
− i

v

vc
+ iqRc coswG fvqse,wd

= −
s]efTdgvq

0 + fvq
0 sed

vctin
−

eEvq

vc
P̂ff00se,wd + fTsedg.

Here we neglect the termf00~ uEvqu2 since any resulting cor-
rections infvqse ,wd would be nonlinear in the SAW power.
Assuming a low-temperature regime,kT!vcpF /q, we inte-
grate the above over energy approximating all energy-
dependent parametersssuch asRcd by their respective values
at the Fermi level,]e fT<−dse−eFd, and arrive at

F]w −
Ĉs/h

vc
− i

v

vc
+ iqRc coswGgvqswd =

evFEvq

vc
cosw. s8d

In the limit of qRc@1, the solution to Eq.s8d displays a
fast-oscillating angular dependence,e−iqRc sin w, caused by the
last term in brackets on the left-hand sidesLHSd of Eq. s8d.
To take those fast oscillations into account16,17 we write
gvqswd=hvqswde−iqRc sin w. Using angular Fourier harmonics
of hvqswd, this reads

gvq
h = o

k=−`

`

hvq
k Jk−nsqRcd. s9d

Having multiplied Eq. s8d by eiqRc sin w−ikw and integrated
over anglew, we arrived at the system of coupled equations
for Fourier coefficientshvq

k ,

Sik − i
v

vc
Dhvq

k −
1

vc
keiqRcsinw−ikwĈs/hgvqswdl =

ekEvq

q
JksqRcd,

s10d

where k¯l=e0
2pdw /2p stands for averaging over the angle

w.
The following analysis of Eq.s10d depends on the form of

the collision integral. For isotropic scattering,

keiqRc sin w−ikwĈhgvqswdl =
JksqRcdgvq

0

t
−

hvq
k

t
, s11d

and the elementshvq
k in equation Eq.s10d decouple. One

therefore finds themth angular harmonic ofgvqswd as

gvq
m = o

k=−`

`
JksqRcdJk−msqRcd

ik − i
v

vc
+

1

vct

H gvq
0

vct
+

ekEvq

q
J .

Settingm=0, we find

gvq
0 =

eEvq

q
o

k=−`

`
kJk

2sqRcd

ik − i
v

vc
+

1

vct

1

f1 − Kg
, s12d

J. P. ROBINSON AND V. I. FAL’KO PHYSICAL REVIEW B71, 241301sRd s2005d

RAPID COMMUNICATIONS

241301-2



K =
1

vct
o

k=−`

`
Jk

2sqRcd

ik − i
v

vc
+

1

vct

. s13d

In the limit of qRc@1, then K!1 since Jk
2sqRc@1d

,1/qRc→0. Additionally, the lineark dependence in Eq.
s12d may be manipulated to readk=−isik− iv /vc+1/vctd
+ is−iv /vc+1/vctd—the first term exactly cancels the reso-
nance denominator, and application of the identityokJk

2sxd
=1 yields an approximate form ofgvq

0 ,

gvq
0 <

eEvq

q 51

i
+

v

vc
o

k=−`

`
Jk

2sqRcd

ik − i
v

vc
+

1

vct
6 . s14d

For small-angle scattering the angle average in Eq.s10d
takes the form17,19

keiqRc sin w−ikwĈsgvqswdl = −
sqRcd2

2t
hvq

k −
Gk

t
,

Gk,n = SqRc

2
D2

fhvq
k−2 + hvq

k+2g + k2hvq
k −

qRc

2
fs2k + 1dhvq

k+1

+ s2k − 1dhvq
k−1g. s15d

Coupling between different elementshvq
k in Eqs. s10d and

s15d occurs with multipliers ofsqRcd2/t&vc and kqRc/t
&vc, and is now much weaker than the coupling one would
obtain from a direct Fourier transform of Eq.s8d. This en-
ables us to solve17,18 Eq. s10d perturbatively inGk. Note that
we also attribute the termk2hvq

k to the perturbative correction
Gk, sincek&qRc, and inclusion of this term in the leading
approximation would exceed the chosen accuracy. Thus, we
write

gvq
m =

eEvq

q
o

k=−`

`
kJksqRcdJk−msqRcd

ik − i
v

vc
+

sqRcd2

2vct

− o
k=−`

`
Jk−msqRcd

ik − i
v

vc
+

sqRcd2

2vct

Gk

vct
. s16d

Settingm=0, and solving up to second-order Eqs.s15d and
s16d in Gk we find that in the leading order18 of the param-
etersv /qRcvc=s/vF!1, k/qRc&1 sqRc@1 andqRc!vctd,
the main contribution to the zeroth harmonicgvq

0 is given by

gvq
0 <

eEvq

q 51

i
+

v

vc
o

k=−`

`
Jk

2sqRcd

ik − i
v

vc
+

sqRcd2

2vct
6 . s17d

Using the similarity of Eqs.s14d ands17d, we express the
SAW-induced electric field,EAE= q̂EAE, for both isotropic
and small-angle scattering cases in terms of the effective
scattering ratet*

−1,

EAE =
2esuEvqu2

eF
o

k=−`

`
t*Jk

2sqRcd
t*

2sv − kvcd2 + 1
, s18d

t*
−1 = 5t−1, for isotropic scattering,

sqRcd2

2
t−1, for small-angle scatteringsRef. 18d.6

s19d

Geometrical commensurability manifests itself in Eq.s18d
through the appearance of the Bessel functionJksqRcd. Ad-
ditionally, the presence of a finite wave vector lifts selection
rules for electron transitions, allowing transitions otherwise
forbidden by Kohn’s theorem,6 such as resonances at mul-
tiples of the cyclotron frequency.

The dynamical redistribution of electrons leads to screen-
ing of the external SAW fieldEvq

SAW by the 2DEG. We relate
Evq to the unscreened field by inclusion of the dielectric
function,Evq=Evq

SAW/ksv ,qd. In the Thomas-Fermi approxi-
mation, and in the limit ofqRc.1, we find thatk−1sv ,qd
<ascrq, sRef. 15d, whereascr=x /2pe2g is the donor-related
Bohr radiussx is the background dielectric constantd, and
introduce the dimensionless parameter which is a measure of
the amplitude of the screened SAW field normalized by the
Fermi energy,

E = seascrEvq
SAW/eFd2. s20d

In the limit of vct* @1, we discuss two extreme cases,
vF@s and vF&s, wheres is the SAW speed5 in GaAs, s
=2.83105 cm s−1. At electron densities ne
,1010÷1012 cm−2, vF@s and the relevant frequency regime
in structures with realistic mobility appears to bev /vc
=ss/vFdqRc!1. In this situation, the largest contribution to
the dc field then comes from the term in Eq.s18d with k=0,

EAE <
2EeF

est*

J0
2sqRcd

1 + svt*d−2 . s21d

It is interesting to note that the magnetic-field dependence of
the amplitude of geometrical oscillations described by Eqs.
s21d strongly differs for the two limiting types of scattering
considered above. In the case of isotropicsshort-ranged scat-
terers the oscillation amplitude decreases asN−1 with the
oscillation numberN,qRc/p. In contrast, for low-angle
scattering it is nonmonotonic. It increases linearly inN up to
Ns,Î2vt /p where the oscillations amplitude has a maxi-
mum followed by a gradualN−3 decrease.

The result in Eq.s18d also shows that in a low-density
2DEG such thatvF&s, resonances in the AE effect atv
=kvc become possible. Due to the oscillatory behavior of
Bessel functionsJksqRcd at qRc@1, and since v /vc

=ss/vFdqRc, resonances would appear in the experiment as a
sequence of Lorentzians of apparently random height. Simi-
lar behavior may be expected in a gas of “heavy” composite
fermions,5 though a rigorous analysis should require a self-
consistent Chern-Simons field.

To study the damping of geometrical oscillations at low
magnetic fieldsvct* ,1, we use the method of residues,
transforming the summation in Eq.s18d into the integral

EAE <
EvpF/2pi

evct*
R

C

f1 + sins2qRc − zpdgcotspzddz

Fz−
v

vc
+

i

vct*
GFz−

v

vc
−

i

vct*
G ,
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where for qRc@1, JksqRcd<Î2/pqRc cossqRc−kp /2
−p /4d, and the contourC consists of two parts: in the upper
half-plane,C+=x+ i0 and in the lower half plane,C−=x− i0.
Each contour,C± is then moved away from the real axis,
C±→C±8=x± i uyu, such thate−2uyu!1, when each contour
picks up exactly one residue from the poles atz±
=v /vc± i /vct* shere and below the subscript6 is deter-
mined by the subscript of the contourd. The numerator of the
integrands in the shifted line integralseC±

dz are approxi-
mated using e−2uyu!1, thus yielding cotspzd< 7 i and
sinsqRc−zd< ±e±s2iqRc−izd /2i. After this, each contour is then
moved, C±8→C±9, such that ImC±9→ 7`, passing the real
axis as they approach the opposite extremes of the complex
plane. Thus, we arrive at

EAE =
EvpF

e
H1 + sinS2qRc −

pv

vc
De−p/vct*J .

The latter equation is typical for damped geometrical
oscillations.18 It shows how commensurability oscillations
die away whenp /vct* *1 and that the onset of oscillations
occurs at the magnetic-field value such that

Rc , Rc
* ,Hl/p for isotropic scattering,

lÎ3 2/pslqd2 for small-angle scattering.
J

Together with the result in Eq.s21d, the latter offset condi-
tion shows that the number ofB−1 oscillations,N,qRc

* /p
detectable in a sample with the mean-free pathl =vFt
@2p /q, is larger when its mobility is limited by short-range
scattererssN,Nhd than when scattering is due to smooth
disordersN,Nsd, where

Nh ,
ql

p
, versusNs , minHsqld1/3,Î sql

pvF
J . s22d

In the regime of damped oscillations a finite and appar-
ently field-independent AE effect persists up to the field
vFB.Evq swhen channeling takes it tolld,

EAE < evpFsascrEvq
SAW/eFd2. s23d

The above presented analysis explains why the observed
magnetic-field dependence of the AE effect by Shiltonet
al.14 contained only one pronounced oscillatory feature asso-
ciated with geometrical commensurability before the AE ef-
fect saturated at a finite value in low magnetic fields. This
contrasted a comparison14 made with the SAW absorption
modeled in thet approximation, which suggested that many
sN,3÷10d oscillations should become visible while varying
the SAW wavelength froml,10 mm to l,3 mm against a
mean-free path ofl =30 mm. In structures with low-angle
scatteringNs in Eq. s22d increases very slowly with the in-
crease of SAW wave number and remainsN,1÷2 for all
three SAW sources used in Ref. 14.

In the other AE experiment with surface acoustic waves13

known to us, the mobility of samples was not sufficient to
observe geometrical oscillations for the available range of
the SAW wavelength, though the saturated nonoscillatory
low-field AE was seen, as well as Shoubnikov–de Haas os-
cillations of the AE effect which crosses over into a rich
structure in the quantum Hall effectsQHEd regime. To incor-
parate quantum effects into the drag current analysis, one
would have to take into account the formation of Landau
levels and to replace the classical Boltzmann equation by a
quantum kinetic equation.15,20 We left such an analysis,
which is beyond the scope of this Communication, and refer
an interested reader to earlier works on the AE effect in the
QHE regimesRefs. 12 and 21d. Formation of Landau levels
makes the electron response to SAW field strongly dependent
on the electron Fermi energy, and, therefore, local density of
carriers,ne. The latter feature has been used in Ref. 12 to
relate the drag current in the QHE regime to the density
derivative of 2DEG conductivity,dssned /dne, thus explain-
ing the experimental observations by Esslingenet al.13

In conclusion, we present a microscopic theory of geo-
metrical oscillations of the acousto-electric effect caused by
surface acoustic waves in a high-mobility 2D electron gas
giving its comparative analysis in structures with either iso-
tropic or small-angle impurity scattering.
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