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Use of dielectric functions in the theory of dispersion forces
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The modern theory of dispersion forces uses macroscopic dielectric funetiohss a central ingredient.
We reexamined the formalism and found that at separation dista@aem the full dielectric functiore(w,k)
is needed. The use efw,k) results in as much as 30% reduction of the calculated Hamaker constants reported
in the current literature. At larger distances, the theory reduces to the traditional method, which uses dielectric
functions in the long-wavelength limit. We illustrate the formalism using the example of interaction between
two graphite slabs. This example is of importance for intercalation and exfoliation of graphite and for the use
of exfoliated graphite in composite materials. The formalism can also be extended to study anisotropic van der
Waals interactions.
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[. INTRODUCTION We consider the configuration of two semi-infinite slabs
separated by a thicknegsof order of 0.3—10 nntand thus
The most common way to approximate van der Waal§gnore retardation effectsin a pairwise summation theory
forces is by a pairwise summation over all involved that uses attractive potentials proportionatt, wherer is
particlest This approach facilitates efficient computation butthe distance between two particles, it can be shown that the
neglects many-body effects present in dense media, such gferaction energy between two slabs is proportiondlo It

liquids or solids. A more satisfactory scheme was developeg therefore customary to write the interaction energy per unit
in the 1950s by Lifshitz and Dzyaloshinskiet al® This  area between two slabs as

“modern” theory can be cast in the form of sums over elec-

tromagnetic modes, similar to Planck’s treatment of black- _ A

body radiation. The geometry and dielectric functions of two F=- 1202’

macroscopic bodies give rise to a dispersion relation of al-

lowed electromagnetic modes, which then yield the free enwhere A is the Hamaker constant. Similarly, in Lifshitz's

ergy of the system. The van der Waals force is derived byheory of dispersion forces, if one assumes the long-

differentiation of the free energy with respect to separationwavelength limit of dielectric functionss(w)= e(w,k —0),

Both retardation effects and many-body effects are naturallA is again a constant with respect to the separafiomhe

incorporated in the formalism. Numerical results have beemost important contribution to the van der Waals interaction

compared to measurements of van der Waals forces for @mes from electromagnetic modes with wave vectors

variety of materials. ~1/¢. Because the first Brillouin zone of a crystalline solid
A central ingredient of the theory is the dielectric function is of the order of 10 nit, it is common to use the dielectric

of bulk materials at purely imaginary values of the frequencyfunction e(w) in the long-wavelength limit. The usual ratio-

€(i¢). By the use of Kramers-Kronig relations, the complexnale is that provided we are concerned with radiation of

dielectric function is determined from its imaginary part, wavelength much larger than intermolecular spacings

€'(w)=Im €(w).>8 The standard procedr®has been either <10'® rads™), the effect of the medium can be described by

to infer Im e(w) from the measured absorption spectrum orthe dielectric response functiasiw) of the mediuni® How-

to model the dielectric response function by a collection ofever, when the separation between two slabs is of the order

Lorentz harmonic oscillators. Only a few fragmentary theo-of 1 nm, electromagnetic modes of wavelength comparable

retical attempts have been made to utilize the full frequencyo interatomic spacings become important and it becomes

o and wave-vectok-dependent dielectric functioa(w,k)’ necessary to consider the full dielectric function over the first

in the theory of dispersion forces for spatially dispersive me-Brillouin zone.

dia, such as electrolytes or molecular flufd¥ These early In this paper, we show that at distancesd® nm, the full

attempts seldom carried out numerical calculations becausdielectric function over a wide range of frequencies and

of a lack of knowledge ok(w,k) (either theoretical or ex- wave vectors has to be incorporated into the dispersion force

perimental. In a recent review article by Barash and theory. We first examine the formalism in a simple geometry

Ginzburg!! the spacial dispersion and nonlocality were taken(two half slab$, and then illustrate with a numerical example

into account from the very beginning in their discussion, buthow the use of full dielectric functions(w,k) changes the

the wave-vector dependence was later neglected before givalues of Hamaker constants. When two slabs are separated

ing concrete results. by a short distancée.g., ~1 nm, which is still larger than
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distances of appreciable charge oveylape difference be-
tween resulting Hamaker constants using the macroscopic
dielectric functione(w) and the full (w,k) is as much as
30%. Our interest in these short separation distances stems
from a need to determine forces necessary to exfoliate graph-
ite into individual graphene sheets and to determine the col-
loidal interactions between stacks of graphene sHéé#\ve

also point out that the full wave-vector-dependent dielectric
function can give rise to anisotropic van der Waals forces.

Il. THEORY
The extension of the theory of dispersion forces to wave- l(w, k) €™w, k)  ef(w,k)
vector-dependent dielectric functions amounts to replacing o .
e(w) with the appropriate(w, k). Otherwise, our derivation FIG. 1. Two semi-infinite slabs separated by distaficEhe two

slabs can be made of different materials and have different orienta-

largely follows the standard treatmeft of the force be-
gely r{ions (represented by different shadings

tween two macroscopic bodies. Throughout the discussio

the retardation effect will be neglected.
wave vector unless otherwise noted. Depending on the value

A. Free energy of the position variablez, one can use the slab index(s
=L,m,R) to denote the left slab, medium, or right slab. The
dielectric function can be diagonalized in the principal axes
as a tensorial quantity

If w; is the frequency of an electromagnetieM) mode,
the free energy corresponding to the mages

hw:
Fi=-kgTIn zj:kBTln[z sin f}r” (1) (k) 0 0
® gk=l 0 &wk 0 | (6)
Summing over all the allowed frequencies, the free-energy 0 0 S(w,K)
Z ’

contribution from the EM field is

) dX,y,z)exp(—iwt) of the electric fieldE. By setting E=
-V ¢ (neglecting retardation effegis¢, satisfies Laplace’s
equation in charge-free space

)} Let ¢s be the spatial part of the scalar potential

o
F=kgT>, In| 2 sinH —%
8 ; [ 2ksT

To emphasize that frequeney depends on wave vectd,

we write the free energy of the EM field of wave veckoas V -D=ik,Dy+ik,D, + 9D,z (7)
fo;(k
Fo=keTS In{Z sin 7“&%)} . 3) =[IKCes(,k) + KeS(,k) b
i | o ’ —- &(w,k)Ppdiz? = 0. (8)
Finally, the total free energy s given by In Eq. (8), we assume thad® is homogeneous in each slab,
F=> F. (4) ~ Which amounts to neglectin§e>- V ¢. The inhomogeneity
K at the interface regions is also neglectéth the long-

wavelength limit,Ve® vanishes inside bulk materialAfter
inserting a solution of the form,

P(%,y,2) = f(Z)exdi(kx + kyY)]a

B. Dispersion relation D(w)

We consider the simple geometry of two semi-infinite
slabs separated by distan€eas shown in Fig. 1. we obtain

The dielectric displacemem satisfies "
P &k k)f2(2) — [k kK + (K, kK ]f(2) = 0.
D(w,r):fe(w,r,r’)E(w,r’)d3r’. Let

. . o 2_ &lkaky) o €kaky) 5
We assume the dielectric function is homogeneous parallel to Bs = Sk k )kx+ Skok) S 9
the slabs, and furthermore, it is local for the direction per- 2Ty S
pendicular to the slabs:e(w,r,r’)=e(w,x-x",y=-y',2)  and we obtain a simplified equation
(some justification is given in Sec. I)CWe take Fourier Wen o2 _
transforms and obtain fs(2) = Bsfs(2) = 0. (10
_ In a homogeneous materiag=€,=€;, B becomes the mag-
D(wk.2) = elwk 2E(wk.2), ®) nitude of the wave vectdk in the xy plane. The boundary
where k is a two-dimensional, transverse wave vectorconditions are that bothps and D,=—-€;(k,k))dps/ z are
(ky,ky). From now on we will refer td as a two-dimensional continuous at the interface. After imposing the boundary
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conditions, we find thaD(w,k)=0 has to be satisfied T a-1
oS gl -(251)
D(w,K) = 1—(—)(—)@% =0, (11 =0
a+1l/\b+1 b-1
g PR MY
where X(b N l)e ] : (16)
_ €|z_(w1k)BL _ E§(ka):8R (12
€'(w,K) B’ €'(0,K)Bm’ D. van der Waals force and Hamaker constants
] When ¢ is much larger than the lattice constant of the
C. Interaction energy slabs, the exponential factor €x28,,¢) will single out the
Now we can evaluate the summation over all allowedlong-wavelength component in E.6), and we may use the
frequencies in Eq(3) limit of Eq. (12
h ) k * , L. ~ R/:
Fe=ksT> In{z sini‘(—l—w( )ﬂ =kgTY, IND(i&,k), a:—ez(!g")’g'-, b:—ez(fg")’BR, (17)
j 2kgT =0 & &) Brm & &) B

where &,=2mnkgT/%. The prime in the second summation |n a homogeneous cubic systeng,=k= \y’k)z(+k§, By a
above indicates that the=0 term is to be multiplied by 1/2.  change of variableéx=28,,), we obtain the classical result
The second equality results from Cauchy’s theorem of comsg, the Hamaker constamt

plex variables?

Thus far, two major approximations were made. One is SkBTi’fm | In[l (5— 1)(5_ 1)6_)(]
xdx -\ z— :
n=0 J0 a+1

the neglect of retardation effects due to the finite speed of A=-

light. As a result, the slab separatidnis restricted to be 2 b+1

smaller thanc/ w,, wherec is the speed of light and, is a (18)
characteristic collective mode frequen@y graphite fiwy, is

12.6 eV, thereforef should be<<10 nm. The second ap- o w _ -~

proximation is our simplification of the dielectric functions _3k_BTE S wxe_mxl<a;1) b-1 dx. (19
near the interfaces. The approximation of an abrupt change ~ 2 i to m\a+1/\p+1 '

in the dielectric function at the interface is valid for a quasi-

two-dimensional material, such as graphite. If there is rearysually the first few terms in the expansion of the logarithm
rangement of surface atoms or dangling bonds, a transitioguffice to obtain a converged result. The weight function in
region of roughly the width of an atomic layer should be Eq. (19), xexp(-mX), is centered ak=1/m or k=(2m¢)™L.
considered, as was done in Ref. 15. When the surface layer e condition that’ is much larger than the lattice constant
much shorter than the slab separatigrthe inhomogeneity allows us to sek=(2m¢)—0 in Eq.(12). The nonretarded
at surfaces can be neglected. The lack of periodicity in theyamaker functionA(¢) approaches a constantly in the
direction perpendicular to the surfagtbe z direction further  gpgve limit. When we use the more general fdifg. (12)],
complicates the study of dielectric response at interfaces. Akhe Hamaker function actually depends on the separdtion

though retardation effects can be readily incorporated, As ¢ decreases, the effective screening is reduced and the
full treatment of dielectric functions at crystal surfaces in-yamaker functiom(¢) decreases.

volves local-field effects and other complications, which we  opy the long-wavelength limit of dielectric function

will not consider heré? e(w)=e(w,k—0), has been extensively use.This ap-

To includeall possible values of the transverse wave Vec'proximation becomes valid only faf much larger than the

tor k, we perform the integration interatomic separation, which is typically about 0.2 nm. For
© o dk, [~ dk, a broad range of separatiofigp to 2 nm for graphite the
F=kgT>Y —f In D(i &, Ky Ky) (13)  theory requires the use of the complete dielectric function
n=0 J = 27 J o 2 e(w,k), contrary to common practice. In Sec. Ill, we will

demonstrate this by a numerical example.
KeT < a-1 There is no orientational dependence of the van der Waals
:PZ dkdkyIn| 1 - a+1 interaction when the macroscopitong-wavelength limit
n=0 7 dielectric functione(w) is isotropic. However, anisotropy can
b-1 o8¢ arise from the directional dependenceeti, k) at nonzero
X b+1 e~ (14) k. The current approach can be extended to compute aniso-
) ] ) tropic van der Waals forces resulting from the directional
The interaction free energy can be written as dependence of the wave vectoin e(w,k). The anisotropic
A(0) van der Waals fc_Jrce may provide the driving force for_ orien-
=T o2’ (15  tational adsorption on crystal surfacés® The formalism
and numerical calculation have been carried out recently and
whereA(f) is will be published elsewheré.

o e}
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FIG. 2. Comparison of the real part of the dielectric function  FIG. 3. €'(w,k=0) obtained using the tight-binding method
e(i&,k—0) at imaginary frequency from the oscillator modé? (thick line) in the present work. The inset shows the dielectric func-
and from the tight-binding metho@vave vector|k|=0.8 nni?). tion €’(w,k=0) of graphite from optical measurementdotted
The in-plane dielectric functiore(i¢) from the oscillator model line®® and dashed lirfé) and first-principles calculatior(solid
(dotted ling and the tight-binding methotbolid line) are in excel-  line).??
lent agreement. The dielectric function perpendicular to the basal
plane (shown as a dotted-dashed ling(i¢) is smaller than the 441520 |y Fig. 2, the agreement between the tight-binding
:;;pf:;en(i':'ecmc function and has only weak wave-vector ,ihqq and the oscillator model is excellent for the in-plane

P : dielectric function. We plo¥”’(w,k) and €(i¢,k) of graphite
at several wave vectoksin Fig. 4. As can be expected from
Eqg. (20), the magnitude ofe(ié,k) decreases with the in-

We illustrate the use of full wave-vector-dependent di-creasing wave vectdk|. The reduced dielectric screening at
electric functions in two physical systems: graphite-air-finite wave vectors gives rise to a separation-dependent Ha-
graphite and graphite-water-graphite. Graphite is a quasinaker function in Eq.(15) (even within the nonretarded
two-dimensional crystal. Owing to the large interlayer limit).
distance and weak interlayer interaction, the dielectric func-

Ill. NUMERICAL EXAMPLE: GRAPHITE

tion perpendicular to the basal plafextraordinaryz axis) (a)'® T . - Ta
has only a weak wave-vector dependefgéw) is close to 1 16 e
for all frequencies; see Fig.]2Therefore it suffices to treat ~__ 14 o

€,(w) by the oscillator model® and most of the computa- & 12
tional effort will be focused on the calculation of the in-plane 3 49
dielectric function. Within the random-phase approximation, =~

1
I
1
1
[
'
1
H
[
]
]
]
1
1)
T
1
[
1
1
LY
LY

-
R
I

8 -
the in-plane dielectric functioa(w,k) of a two-dimensional * 6l ]
graphite layer is given by Nl |

4e? d? _ 2l I R A e §
dok=1-"=3 | L qrkle na)p oldes SN
k o J1st Bz (2m) 0 5 10 15 20 25
, _ ‘b 18 T T _
(B = fEng) 0o =08 — |
En’,q+k - En,q - (ﬁ(l) + |F) k=10.4 «oveeees

z)

wheref is the Fermi distribution function. The summation of & '
n,n’ is over valence and conduction bands,represents
broadening in the absorption spectrum, and the integration is 8
over crystal momenturg within the first Brillouin zone. The 6
calculation can be carried out either for a tight-binding 4
2
0

ur

e

e
W

modeP! or with a first-principles methotf. In the present
work, we adopt the tight-binding approach, which is more
computationally efficient. For materials for which tight- 0 § 10 18 20 25 30 3B 40
binding parameters are not available, the full dielectric func-
tion can be computed by first-principles calculations. Figure
3 shows the measured(w)?*?*together with results from a FIG. 4. (a) The dielectric functione’(w,k,) of graphite from a
first-principles calculatioff and from the tight-binding tight-binding calculation. Results are shown for wave vectors at
method. Another method to obtain the dielectric function is=kx=0.8, 4.7, and 10.4 nth. (b) The dielectric functione(i£,k,)
by the oscillator model, which was fitted to experimentalplotted vs imaginary frequenc

frequency [eV]
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TABLE |. Comparison between the experimental and theoretical Hamaker “constatts” (unit:
10719 ). In the present work, the frequency-mode summation is done up to an ultraviolet(@@dffad H2)
and the temperature is set to room temperature 300 K.

Full e(ié k) Full e(ié k) e(ié,k—0) Other theoretical
(¢=05nm (¢=1.0 nm (£ — ) Experiments resultg®
graphite-water-graphite 0.72 0.87 0.99 0.5%4.0 1.15
graphite-air-graphite 1.82 2.03 2.20 2189 2.53

In Table |, we give values of the Hamaker function of two we assume no chemical reactions between intercalated water
configurations, graphite-air-graphite and graphite-waterand graphene; then the electronic polarizability of layered
graphite. In general, using the full dielectric functief¢, k) materials is additive among its constituent layers. Thus, the
results in a smaller Hamaker function. This is because atlielectric tensof, of composite slabs can be written as
larger wave vectors, the screening is not as effective as it is
in the k — 0, long-wavelength limit. Figure 5 shows the de- e(@,K)ir. —1=r,-[eyw,K)i. —1]+ry, - [e®) - 1]
pendence of the Hamaker function on the separatioma ~ ° 'Pame g Lo Vin-plane s ’
graphite-air-graphite geometry. Our results for Hamaker con- (21)
stants in the long-wavelength limit are similar to those of
previous calculation$? On the other hand, the experimen-
tally measured values shown in Table | span a large range. In ec(@,K)z = 1=rg-[eg@,k), = 1+ 1y - [en(w) = 1,
addition to the difficulty of precision measurement and of (22
sample quality(samples of carbon black were ugethis
spread of values may reflect the separation dependence of tlm\ererg (r,) is the volume ratio of graphen@vatey in the
Hamaker function, as indicated in Fig. S. _ composite slab and,(w k) [€,(w)] is the dielectric tensor of

An interesting application o_f the above_results istoa Sla_bgraphite(water).zs Figure 7 shows the Hamaker constants of
made of intercalated or exfoliated graphite. We model thig,,o semi.infinite intercalated graphite slabs with one or two

system as a composite semi-infinite slab composed alterng;onoiayers of water. For the intercalated graphite with one
tively of a graphene sheet and a layer of water, as shown Ithonolayer of water, the Hamaker constant is 0B 10 J

Fig. 6. In intercalated_graphite, thkspacings betwe_en WO smaller than the similar graphite-water-graphite configura-
graphene she_ets are increased _from 0.34_1(lhm spacing for (2.2x 107 J). We remark that the reduction of the Ha-
thermodynamically stable graphjte the thickness of one or aker function at short separatiofis1 nm is quite signifi-

several monolayers of water. Since the relevant wavelengt ant for intercalated graphite-30% at 0.5 nm separatign

S]Ictrz]\?iollzell/l cﬂg?fefrlz irlii(s{t:(ir?ﬁtgszgﬁggnv?/gtgert?aﬂ:s Thus, when dispersing stacks of exfoliated graphene sheets
4 Y colloidally, the magnitude of van der Waals interactions

and graphene sheets have to be accounted for in setting : : )
the boundary conditions, Eq#9)—(11). In general, the di- Would be lower than that predicted by the conventional ap

electric constant ig=1+4my, wherey is the susceptibility. proach.

In a first-order approximationy is the sum of the polariz-

abilities of the constituent subsystems. Experimentally, graphene sheet
graphite has to be oxidized in order to facilitate intercalation /

I e n

and the entry of water in between the layers. For simplicity,

24 T T T T T T z T
wavevector dependent calculation =

_. 23 long wavelength limit ------- .
=
@ 22 14
2 21
[ =
s 2
2
3 19
S 18
£
5 17
L Ll L L

16 | . AN

15 L ! ! ! ! ! ! intercalated water

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 S ' . .
separation [nm] FIG. 6. Two semi-infinite identical composite slalistercalated

graphite separated by distandgefilled with water. The composite
FIG. 5. The Hamaker functioA(¢) for the graphite-air-graphite slab is composed alternatively of a graphene sheet and a layer of
configuration. As the separatidhincreases, the Hamaker function water. The centerline of the graphene layer indicates the position of
approaches its long-wavelength limit. carbon atoms.
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06 I I ' !o'ng wavelel-ngth IimitI -------- _ A(f)
0.55 - 1 water layer - b == 2-
S 2 waterayers - | 12mt
A I i Previous calculations showed that¢) is a constant within
S o4l e - the nonretarded regiofA(¢) decreases whef extends into
g gaede™ ] the retarded regiohOur analysis reveals that this traditional
:aj 0.8 [FreERR s PR description is valid only wherf is much larger than the
£ 025 L _'_..,_,_._.-----------'"“""’ ] interatomic separation. The use of full dielectric functions
T '02 b ] reveals a separation-dependent Hamaker function in the non-
' retarded region. For example, the Hamaker function between
B — e s . i 12 18 1s  two graphite slabs diminishes significantly when the separa-
separation [nm] tion is less than about 2 nm. We explicitly show how to

apply the formalism to compute the interaction energy be-
FIG. 7. The Hamaker functiorA(¢) for the intercalated tween two graphite slabs and intercalated or exfoliated
graphite-water-intercalated graphite configuration. We used the volgraphite slabs. The treatment can also be extended to study
ume ratiory=0.45 when there is one monolayer of water betweenmore general cases when the dielectric function is aniso-
two graphene sheets, ang=0.62 when there are two monolayers tropjic because of the directional dependence of the wave
of water in-b_et\_/veen. The Hamaker function approaches its longyectork in e(w,k). We hope the present work will encourage
wavelength limit at large separatigr-1.8 nm). additional experiments and analysis to resolve the remaining
discrepancies between theory and experiment.
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