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The modern theory of dispersion forces uses macroscopic dielectric functionsesvd as a central ingredient.
We reexamined the formalism and found that at separation distance,2 nm the full dielectric functionesv ,kd
is needed. The use ofesv ,kd results in as much as 30% reduction of the calculated Hamaker constants reported
in the current literature. At larger distances, the theory reduces to the traditional method, which uses dielectric
functions in the long-wavelength limit. We illustrate the formalism using the example of interaction between
two graphite slabs. This example is of importance for intercalation and exfoliation of graphite and for the use
of exfoliated graphite in composite materials. The formalism can also be extended to study anisotropic van der
Waals interactions.
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I. INTRODUCTION

The most common way to approximate van der Waals
forces is by a pairwise summation over all involved
particles.1 This approach facilitates efficient computation but
neglects many-body effects present in dense media, such as
liquids or solids. A more satisfactory scheme was developed
in the 1950s by Lifshitz2 and Dzyaloshinskiet al.3 This
“modern” theory can be cast in the form of sums over elec-
tromagnetic modes, similar to Planck’s treatment of black-
body radiation. The geometry and dielectric functions of two
macroscopic bodies give rise to a dispersion relation of al-
lowed electromagnetic modes, which then yield the free en-
ergy of the system. The van der Waals force is derived by
differentiation of the free energy with respect to separation.
Both retardation effects and many-body effects are naturally
incorporated in the formalism. Numerical results have been
compared to measurements of van der Waals forces for a
variety of materials.4

A central ingredient of the theory is the dielectric function
of bulk materials at purely imaginary values of the frequency
esijd. By the use of Kramers-Kronig relations, the complex
dielectric function is determined from its imaginary part,
e9svd; Im esvd.5,6 The standard procedure5,6 has been either
to infer Imesvd from the measured absorption spectrum or
to model the dielectric response function by a collection of
Lorentz harmonic oscillators. Only a few fragmentary theo-
retical attempts have been made to utilize the full frequency
v and wave-vectork-dependent dielectric functionesv ,kd7

in the theory of dispersion forces for spatially dispersive me-
dia, such as electrolytes or molecular fluids.8–10 These early
attempts seldom carried out numerical calculations because
of a lack of knowledge ofesv ,kd seither theoretical or ex-
perimentald. In a recent review article by Barash and
Ginzburg,11 the spacial dispersion and nonlocality were taken
into account from the very beginning in their discussion, but
the wave-vector dependence was later neglected before giv-
ing concrete results.

We consider the configuration of two semi-infinite slabs
separated by a thickness, of order of 0.3–10 nmsand thus
ignore retardation effectsd. In a pairwise summation theory
that uses attractive potentials proportional tor−6, wherer is
the distance between two particles, it can be shown that the
interaction energy between two slabs is proportional to,−2. It
is therefore customary to write the interaction energy per unit
area between two slabs as

F = −
A

12p,2 ,

where A is the Hamaker constant. Similarly, in Lifshitz’s
theory of dispersion forces, if one assumes the long-
wavelength limit of dielectric functions,esvd;esv ,k →0d,
A is again a constant with respect to the separation,. The
most important contribution to the van der Waals interaction
comes from electromagnetic modes with wave vectorsk
,1/,. Because the first Brillouin zone of a crystalline solid
is of the order of 10 nm−1, it is common to use the dielectric
function esvd in the long-wavelength limit. The usual ratio-
nale is that “provided we are concerned with radiation of
wavelength much larger than intermolecular spacingssv
,1018 rad s−1d, the effect of the medium can be described by
the dielectric response functionesvd of the medium.”6 How-
ever, when the separation between two slabs is of the order
of 1 nm, electromagnetic modes of wavelength comparable
to interatomic spacings become important and it becomes
necessary to consider the full dielectric function over the first
Brillouin zone.

In this paper, we show that at distances of,2 nm, the full
dielectric function over a wide range of frequencies and
wave vectors has to be incorporated into the dispersion force
theory. We first examine the formalism in a simple geometry
stwo half slabsd, and then illustrate with a numerical example
how the use of full dielectric functionsesv ,kd changes the
values of Hamaker constants. When two slabs are separated
by a short distancese.g., ,1 nm, which is still larger than
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distances of appreciable charge overlapd, the difference be-
tween resulting Hamaker constants using the macroscopic
dielectric functionesvd and the full esv ,kd is as much as
30%. Our interest in these short separation distances stems
from a need to determine forces necessary to exfoliate graph-
ite into individual graphene sheets and to determine the col-
loidal interactions between stacks of graphene sheets.12,13We
also point out that the full wave-vector-dependent dielectric
function can give rise to anisotropic van der Waals forces.

II. THEORY

The extension of the theory of dispersion forces to wave-
vector-dependent dielectric functions amounts to replacing
esvd with the appropriateesv ,kd. Otherwise, our derivation
largely follows the standard treatment5,6,14 of the force be-
tween two macroscopic bodies. Throughout the discussion,
the retardation effect will be neglected.

A. Free energy

If v j is the frequency of an electromagneticsEMd mode,
the free energy corresponding to the modev j is

Fj = − kBT ln Zj = kBT lnF2 sinhS "v j

2kBT
DG . s1d

Summing over all the allowed frequencies, the free-energy
contribution from the EM field is

F = kBTo
j

lnF2 sinhS "v j

2kBT
DG . s2d

To emphasize that frequencyv depends on wave vectork,
we write the free energy of the EM field of wave vectork as

Fk = kBTo
j

lnF2 sinhS"v jskd
2kBT

DG . s3d

Finally, the total free energy is given by

F = o
k

Fk . s4d

B. Dispersion relationD„v…

We consider the simple geometry of two semi-infinite
slabs separated by distance,, as shown in Fig. 1.

The dielectric displacementD satisfies

Dsv,r d =E esv,r ,r 8dEsv,r 8dd3r 8.

We assume the dielectric function is homogeneous parallel to
the slabs, and furthermore, it is local for the direction per-
pendicular to the slabs:esv ,r ,r 8d=esv ,x−x8 ,y−y8 ,zd
ssome justification is given in Sec. II Cd. We take Fourier
transforms and obtain

Dsv,k,zd = esv,k,zdEsv,k,zd, s5d

where k is a two-dimensional, transverse wave vector
skx,kyd. From now on we will refer tok as a two-dimensional

wave vector unless otherwise noted. Depending on the value
of the position variablez, one can use the slab indexs ss
=L ,m,Rd to denote the left slab, medium, or right slab. The
dielectric function can be diagonalized in the principal axes
as a tensorial quantity

ei j
s sv,kd = 1ex

ssv,kd 0 0

0 ey
ssv,kd 0

0 0 ez
ssv,kd

2 . s6d

Let fs be the spatial part of the scalar potential
fssx,y,zdexps−ivtd of the electric fieldE. By setting E=
−¹f sneglecting retardation effectsd, fs satisfies Laplace’s
equation in charge-free space

¹ ·D = ikxDx + ikyDy + ]Dz/]z s7d

=fkx
2ex

ssv,kd + ky
2ey

ssv,kdgfs

− ez
ssv,kd]2fs/]z2 = 0. s8d

In Eq. s8d, we assume thates is homogeneous in each slab,
which amounts to neglecting¹es·¹fs. The inhomogeneity
at the interface regions is also neglected.sIn the long-
wavelength limit,¹es vanishes inside bulk materials.d After
inserting a solution of the form,

fssx,y,zd = fsszdexpfiskxx + kyydg,

we obtain

ez
sskx,kydfs9szd − fex

sskx,kydkx
2 + ey

sskx,kydky
2gfsszd = 0.

Let

bs
2 =

ex
sskx,kyd

ez
sskx,kyd

kx
2 +

ey
sskx,kyd

ez
sskx,kyd

ky
2, s9d

and we obtain a simplified equation

fs9szd − bs
2fsszd = 0. s10d

In a homogeneous material,ex
s=ey

s=ez
s, bs becomes the mag-

nitude of the wave vectork in the xy plane. The boundary
conditions are that bothfs and Dz=−ez

sskx,kyd]fs/]z are
continuous at the interface. After imposing the boundary

FIG. 1. Two semi-infinite slabs separated by distance,. The two
slabs can be made of different materials and have different orienta-
tions srepresented by different shadingsd.
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conditions, we find thatDsv ,kd=0 has to be satisfied

Dsv,kd = 1 −Sa − 1

a + 1
DSb − 1

b + 1
De−2bm, = 0, s11d

where

a =
ez

Lsv,kdbL

ez
msv,kdbm

, b =
ez

Rsv,kdbR

ez
msv,kdbm

. s12d

C. Interaction energy

Now we can evaluate the summation over all allowed
frequencies in Eq.s3d

Fk = kBTo
j

lnF2 sinhS"v jskd
2kBT

DG = kBTo
n=0

`

8 ln Dsijn,kd,

where jn=2pnkBT/". The prime in the second summation
above indicates that then=0 term is to be multiplied by 1/2.
The second equality results from Cauchy’s theorem of com-
plex variables.14

Thus far, two major approximations were made. One is
the neglect of retardation effects due to the finite speed of
light. As a result, the slab separation, is restricted to be
smaller thanc/vp, wherec is the speed of light andvp is a
characteristic collective mode frequencysin graphite,"vp is
12.6 eV, therefore,, should be,10 nmd. The second ap-
proximation is our simplification of the dielectric functions
near the interfaces. The approximation of an abrupt change
in the dielectric function at the interface is valid for a quasi-
two-dimensional material, such as graphite. If there is rear-
rangement of surface atoms or dangling bonds, a transition
region of roughly the width of an atomic layer should be
considered, as was done in Ref. 15. When the surface layer is
much shorter than the slab separation,, the inhomogeneity
at surfaces can be neglected. The lack of periodicity in the
direction perpendicular to the surfacesthez directiond further
complicates the study of dielectric response at interfaces. Al-
though retardation effects can be readily incorporated,14 a
full treatment of dielectric functions at crystal surfaces in-
volves local-field effects and other complications, which we
will not consider here.16

To includeall possible values of the transverse wave vec-
tor k, we perform the integration

F = kBTo
n=0

`

8E
−`

` dkx

2p
E

−`

` dky

2p
ln Dsijn,kx,kyd s13d

=
kBT

4p2o
n=0

`

8E
−`

`

dkxdky lnF1 −Sa − 1

a + 1
D

3Sb − 1

b + 1
De−2bm,G . s14d

The interaction free energy can be written as

F = −
As,d

12p,2 , s15d

whereAs,d is

As,d = −
3,2kBT

p
o
n=0

`

8E
−`

`

dkxdky lnF1 −Sa − 1

a + 1
D

3Sb − 1

b + 1
De−2bm,G . s16d

D. van der Waals force and Hamaker constants

When , is much larger than the lattice constant of the
slabs, the exponential factor exps−2bm,d will single out the
long-wavelength component in Eq.s16d, and we may use the
limit of Eq. s12d

ã =
ez

LsijndbL

ez
msijndbm

, b̃ =
ez

RsijndbR

ez
msijndbm

. s17d

In a homogeneous cubic system,bm=k=Îkx
2+ky

2. By a
change of variablessx=2bm,d, we obtain the classical result
for the Hamaker constantA

A = −
3kBT

2 o
n=0

`

8E
0

`

xdx lnF1 −S ã − 1

ã + 1
DS b̃ − 1

b̃ + 1
De−xG ,

s18d

=
3kBT

2 o
m=1

`

o
n=0

`

8E
0

`

xe−mx1

m
S ã − 1

ã + 1
DS b̃ − 1

b̃ + 1
Ddx. s19d

Usually the first few terms in the expansion of the logarithm
suffice to obtain a converged result. The weight function in
Eq. s19d, x exps−mxd, is centered atx=1/m or k=s2m,d−1.
The condition that, is much larger than the lattice constant
allows us to setk=s2m,d−1→0 in Eq.s12d. The nonretarded
Hamaker functionAs,d approaches a constantonly in the
above limit. When we use the more general formfEq. s12dg,
the Hamaker function actually depends on the separation,.
As , decreases, the effective screening is reduced and the
Hamaker functionAs,d decreases.

Only the long-wavelength limit of dielectric function,
esvd=esv ,k →0d, has been extensively used.5,6 This ap-
proximation becomes valid only for, much larger than the
interatomic separation, which is typically about 0.2 nm. For
a broad range of separationssup to 2 nm for graphited, the
theory requires the use of the complete dielectric function
esv ,kd, contrary to common practice. In Sec. III, we will
demonstrate this by a numerical example.

There is no orientational dependence of the van der Waals
interaction when the macroscopicslong-wavelength limitd
dielectric functionesvd is isotropic. However, anisotropy can
arise from the directional dependence ofesv ,kd at nonzero
k. The current approach can be extended to compute aniso-
tropic van der Waals forces resulting from the directional
dependence of the wave vectork in esv ,kd. The anisotropic
van der Waals force may provide the driving force for orien-
tational adsorption on crystal surfaces.17,18 The formalism
and numerical calculation have been carried out recently and
will be published elsewhere.19
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III. NUMERICAL EXAMPLE: GRAPHITE

We illustrate the use of full wave-vector-dependent di-
electric functions in two physical systems: graphite-air-
graphite and graphite-water-graphite. Graphite is a quasi-
two-dimensional crystal. Owing to the large interlayer
distance and weak interlayer interaction, the dielectric func-
tion perpendicular to the basal planesextraordinaryz axisd
has only a weak wave-vector dependencefezsvd is close to 1
for all frequencies; see Fig. 2g. Therefore it suffices to treat
ezsvd by the oscillator model,20 and most of the computa-
tional effort will be focused on the calculation of the in-plane
dielectric function. Within the random-phase approximation,
the in-plane dielectric functionesv ,kd of a two-dimensional
graphite layer is given by

esv,kd = 1 −
4pe2

k
o
n,n8
E

1st BZ

d2q

s2pd2ukn8,q + k ueik·r un,qlu2

3
fsEn8,q+kd − fsEn,qd

En8,q+k − En,q − s"v + iGd
, s20d

wheref is the Fermi distribution function. The summation of
n,n8 is over valence and conduction bands,G represents
broadening in the absorption spectrum, and the integration is
over crystal momentumq within the first Brillouin zone. The
calculation can be carried out either for a tight-binding
model21 or with a first-principles method.22 In the present
work, we adopt the tight-binding approach, which is more
computationally efficient. For materials for which tight-
binding parameters are not available, the full dielectric func-
tion can be computed by first-principles calculations. Figure
3 shows the measurede9svd23,24 together with results from a
first-principles calculation22 and from the tight-binding
method. Another method to obtain the dielectric function is
by the oscillator model, which was fitted to experimental

data.20 In Fig. 2, the agreement between the tight-binding
method and the oscillator model is excellent for the in-plane
dielectric function. We plote9sv ,kd andesij ,kd of graphite
at several wave vectorsk in Fig. 4. As can be expected from
Eq. s20d, the magnitude ofesij ,kd decreases with the in-
creasing wave vectoruk u. The reduced dielectric screening at
finite wave vectors gives rise to a separation-dependent Ha-
maker function in Eq.s15d seven within the nonretarded
limit d.

FIG. 2. Comparison of the real part of the dielectric function
esij ,k →0d at imaginary frequencyj from the oscillator model20

and from the tight-binding methodswave vectoruk u=0.8 nm−1d.
The in-plane dielectric functionesijd from the oscillator model
sdotted lined and the tight-binding methodssolid lined are in excel-
lent agreement. The dielectric function perpendicular to the basal
plane sshown as a dotted-dashed lined ezsijd is smaller than the
in-plane dielectric function and has only weak wave-vector
dependence.

FIG. 3. e9sv ,k =0d obtained using the tight-binding method
sthick lined in the present work. The inset shows the dielectric func-
tion e9sv ,k =0d of graphite from optical measurementssdotted
line23 and dashed line24d and first-principles calculationssolid
lined.22

FIG. 4. sad The dielectric functione9sv ,kxd of graphite from a
tight-binding calculation. Results are shown for wave vectors atk
=kx̂=0.8, 4.7, and 10.4 nm−1. sbd The dielectric functionesij ,kxd
plotted vs imaginary frequencyj.
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In Table I, we give values of the Hamaker function of two
configurations, graphite-air-graphite and graphite-water-
graphite. In general, using the full dielectric functionesij ,kd
results in a smaller Hamaker function. This is because at
larger wave vectors, the screening is not as effective as it is
in the k →0, long-wavelength limit. Figure 5 shows the de-
pendence of the Hamaker function on the separation, in a
graphite-air-graphite geometry. Our results for Hamaker con-
stants in the long-wavelength limit are similar to those of
previous calculations.25 On the other hand, the experimen-
tally measured values shown in Table I span a large range. In
addition to the difficulty of precision measurement and of
sample qualityssamples of carbon black were usedd, this
spread of values may reflect the separation dependence of the
Hamaker function, as indicated in Fig. 5.

An interesting application of the above results is to a slab
made of intercalated or exfoliated graphite. We model this
system as a composite semi-infinite slab composed alterna-
tively of a graphene sheet and a layer of water, as shown in
Fig. 6. In intercalated graphite, thed spacings between two
graphene sheets are increased from 0.34 nmsthe spacing for
thermodynamically stable graphited to the thickness of one or
several monolayers of water. Since the relevant wavelength
of the EM mode is at least,3 nm scorresponding to the
ultraviolet cutoff frequencyd, both intercalated water layers
and graphene sheets have to be accounted for in setting up
the boundary conditions, Eqs.s9d–s11d. In general, the di-
electric constant ise=1+4px, wherex is the susceptibility.
In a first-order approximation,x is the sum of the polariz-
abilities of the constituent subsystems. Experimentally,
graphite has to be oxidized in order to facilitate intercalation
and the entry of water in between the layers. For simplicity,

we assume no chemical reactions between intercalated water
and graphene; then the electronic polarizability of layered
materials is additive among its constituent layers. Thus, the
dielectric tensorec of composite slabs can be written as

ecsv,kdin-plane− 1 = rg · fegsv,kdin-plane− 1g + rw · fewsvd − 1g,

s21d

ecsv,kdz − 1 = rg · fegsv,kdz − 1g + rw · fewsvd − 1g,

s22d

whererg srwd is the volume ratio of grapheneswaterd in the
composite slab andegsv ,kd fewsvdg is the dielectric tensor of
graphiteswaterd.28 Figure 7 shows the Hamaker constants of
two semi-infinite intercalated graphite slabs with one or two
monolayers of water. For the intercalated graphite with one
monolayer of water, the Hamaker constant is 0.5310−19 J,
smaller than the similar graphite-water-graphite configura-
tion s2.2310−19 Jd. We remark that the reduction of the Ha-
maker function at short separationss,1 nmd is quite signifi-
cant for intercalated graphites,30% at 0.5 nm separationd.
Thus, when dispersing stacks of exfoliated graphene sheets
colloidally, the magnitude of van der Waals interactions
should be lower than that predicted by the conventional ap-
proach.

TABLE I. Comparison between the experimental and theoretical Hamaker “constants”As,d sunit:
10−19 Jd. In the present work, the frequency-mode summation is done up to an ultraviolet cutoffs1017 rad Hzd
and the temperature is set to room temperature 300 K.

Full esij ,kd
s,=0.5 nmd

Full esij ,kd
s,=1.0 nmd

esij ,k →0d
s,→`d Experiments

Other theoretical
results25

graphite-water-graphite 0.72 0.87 0.99 0.5-1.026 1.15

graphite-air-graphite 1.82 2.03 2.20 2.1-5.927 2.53

FIG. 5. The Hamaker functionAs,d for the graphite-air-graphite
configuration. As the separation, increases, the Hamaker function
approaches its long-wavelength limit.

FIG. 6. Two semi-infinite identical composite slabssintercalated
graphited separated by distance, filled with water. The composite
slab is composed alternatively of a graphene sheet and a layer of
water. The centerline of the graphene layer indicates the position of
carbon atoms.
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IV. SUMMARY

To summarize, we have extended the use of dielectric
functions in dispersion-force theory to include the wave-
vector dependence of the dielectric. The Hamaker function
As,d between two semi-infinite slabs is defined as

F = −
As,d

12p,2 .

Previous calculations showed thatAs,d is a constant within
the nonretarded region.fAs,d decreases when, extends into
the retarded region.g Our analysis reveals that this traditional
description is valid only when, is much larger than the
interatomic separation. The use of full dielectric functions
reveals a separation-dependent Hamaker function in the non-
retarded region. For example, the Hamaker function between
two graphite slabs diminishes significantly when the separa-
tion is less than about 2 nm. We explicitly show how to
apply the formalism to compute the interaction energy be-
tween two graphite slabs and intercalated or exfoliated
graphite slabs. The treatment can also be extended to study
more general cases when the dielectric function is aniso-
tropic because of the directional dependence of the wave
vectork in esv ,kd. We hope the present work will encourage
additional experiments and analysis to resolve the remaining
discrepancies between theory and experiment.
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