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Van der Waals interaction between microparticle and uniaxial crystal with application to
hydrogen atoms and multiwall carbon nanotubes
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The Lifshitz theory of the van der Waals force is extended for the case of an(atofacule interacting
with a plane surface of a uniaxial crystal or with a long solid cylinder or cylindrical shell made of isotropic
material or uniaxial crystal. For a microparticle near a semispace or flat plate made of a uniaxial crystal, the
exact expressions for the free energy of the van der Waals and Casimir-Polder interaction are presented. An
approximate expression for the free energy of microparticle-cylinder interaction is obtained which becomes
precise for microparticle-cylinder separations much smaller than the cylinder radius. The obtained expressions
are used to investigate the van der Waals interaction between hydrogen(atolasule$ and graphite plates
or multiwall carbon nanotubes. To accomplish this, the behavior of graphite dielectric permittivities along the
imaginary frequency axis is found using the optical data for the complex refractive index of graphite for the
ordinary and extraordinary rays. It is shown that the position of hydrogen atoms inside multiwall carbon
nanotubes is energetically preferable compared with outside.
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I. INTRODUCTION is essentially restricted by macroscopic bodies with plane

The van der Waals interaction between a microparticld’oundaries. The use of approximations such as the proximity
and a macrobody has long been investigated. It is of mucferee theorert permitted one to obtain rather precise (esults
importance for the understanding of a large body of physical®’ @ large sphere near a plane plate, a configuration fre-
and chemical phenomena connected with atom-surface intefluently used in recent experiments on measuring the Casimir
action, including adsorption and friction. In a pioneering force:’~*!In most cases, the macrobodies with plane bound-
work in Ref. 1, the interaction potential between an atom afie€s were supposed to be isotropic.

a separatiora from a plane wall was found in the form  In the present paper, we generalize the Lifshitz formula
V,(a)=-C,/a%. This result is applicable at separations lessfor a microparticle situated near the surface of a uniaxial
than a few nanometers. More recently, a lot of different atCrystal. Both cases of crystal semispace with plane boundary
oms, molecules, and wall materials were studied. In particuand a plane plate of finite thickness are considered. As a next
lar, in Refs. 2 and 3, the values 6f were computed for the step, we derive the approximate expression for the free en-
interaction of H, H, He, Ne, Ar, Cr, Xe, and ClHwith the  ergy of the van der Waals interaction between a microparticle
planar surfaces of insulatorésapphire, LiF, Caj and and a solid cylinder or cylindrical shell made of a uniaxial
boron nitridg. At much greater separations, the atom-wallcrystal. In the limiting case, this expression is applicable to a
interaction is described by the Casimir-Polder potentiaimicroparticle near a cylinder made of an isotropic material
V,(@)=-C4/a* (Ref. 4 taking relativistic effects into ac- with frequency-dependent dielectric permittivitgt configu-
count. The complete theory of the van der Waals atom-walfation which also has not been investigated previgushe
interaction at nonzero temperature is given by the Lifshitzapply the obtained results to investigate the van der Waals
formule® in terms of the dynamic polarizability of an atom interaction between hydrogen atoms or molecules and graph-
(moleculg and the frequency-dependent dielectric permittiv-ite plates or multiwall carbon nanotubes.

ity of wall material. The potential¥;(a) andV,(a), obtained The study of the van der Waals interaction between hy-
previously, are the two limiting cases of this formula. drogen atoms and a graphitic surface has become urgent after

During the past few years, van der Waals forces havéhe proposal of Ref. 22 to use the single-wall carbon nano-
found important new applications in experiments on quaniubes for hydrogen storage. Since then, many papers have
tum reflection and diffraction of ultracold atoms on different been published on the use of both single-wall and multiwall
surface®® and in Bose-Einstein condensatifi! In con-  nanotubes for hydrogen storage. These papers contained both
nection with this, the detailed examination of different cor- promising and disappointing resulisee Ref. 23 for revieyw
rections to the Casimir-Polder and van der Waals interacThe macroscopic theoretical approach leads to a conchfsion
tions, including the precise effect of atomic polarizability that the carbon nanostructures might absorb hydrogen from
and nonideality of wall material, was performed in Refs. 124% to 14% of their weight. However, the microscopic
and 13. Effectively, this resulted in the investigation of ac-mechanisms responsible for this absorption are still un-
curate dependences of the coefficie@tsandC, on separa- known. The van der Waals forces acting between hydrogen
tion and temperature. atoms or molecules and carbon nanostructures, which might

Although the Lifshitz theory presents considerable opporplay an important role in absorption phenomena, are practi-
tunity for extensive studies of the van der Waals fort®,it cally unexplored. Some preliminary results for graphite
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sheets and single-wall nanotubes can be found in Refd8oltzmann constant,=0,1,2,..., and, is the magnitude

25-27. The van der Waals interaction of fullerene molecule®f a wave-vector component in the plane surface of a semi-

and the adsorption of these molecules on graphite were cospace. The coefficients of reflection for two independent po-

sidered in Ref. 28. larizations of electromagnetic field are given by
To apply the Lifshitz-type formulas for the van der Waals

free energy, obtained in the paper, to the case of hydrogen rS(&.k,) = a0~k

atoms and molecules near a graphite surface, we calculate IReh L gq +k’

the dielectric permittivities of graphite and dynamic polariz-

abilities of a hydrogen atom and molecule along the imagi- k —q

nary frequency axis. To do this, we discuss different sets of ri(&k) = PP

tabulated optical data for the complex refractive index of ki+a

graphite and use the most reliable ones to perform thevhere

Kramers-Kronig analysis. The van der Waals interactions be-

tween a hydrogen atom and molecule and graphite semispace _ 2 |2 _ 2 §|2

or a plate of finite thickness are calculated. The free energies 9=\ ki+ 2 k= ki+ g2

of a hydrogen atom inside and outside of a multiwall carbon

nanotube are found as functions of an atom-nanotube sepa- ) 3)

ration distance and internal and external nanotube radii. The : 7

location of a hydrogen atom inside a multiwall nanotube isand the prime near the summation sign in Eig.means that

demonstrated to be preferable from an energetic point ofhe term forl=0 has to be multiplied by 1/2.

view. Equation(1) can be readily generalized for the case when
The paper is organized as follows. In Sec. Il, we presenthe microparticle is located not near a semispace but near a

the Lifshitz formula for the van der Waal@nd Casimir- flat plate of some finite thicknesswith the same dielectric

Poldey interaction between a microparticle and a plane surpermittivity e(w). In this case, the free energy of the van der

face of a uniaxial crystal. Section Ill contains a derivation ofwaals interactior2(a, T) again is given by Eq(1), where,

the general expression for the van der Waals free energy ofigowever, the reflection coefficients from a semispace

microparticle external to a solid cylinder or a cylindrical r? (& k,) should be replaced by the reflection coefficients

shell made of a uniaxial crystal. In Sec. IV, the dielectricfrom a plate of finite thicknesg’ | (& ,k,). The explicit ex-

permittivities of graphite and the atomic and molecular dy-pressions for them are obtained from the free energy of the

namic polarizabilities of hydrogen along the imaginary fre-\,an der Waals interaction between the layered méske,
quency axis are obtained. In Sec. V, calculation results arg g Refs. 29, 32, and 33

presented for the van der Waals interaction between a hydro-
gen atom or molecule and graphite semispace or a plane ] elg? - k?

plate of finite thickness. In Sec. VI, the same is done for a ri(é.k,) = 27 + k2 + 2k s, coth(kd)’
hydrogen atom or molecule external to a multiwall carbon e I '
nanotube. Comparison between the free energies of a hydro-

2)

gen atom inside and outside a multiwall nanotube is done in P (g,k,) = klz_ qlz . (4)
Sec. VII. Section VIII contains our discussion and conclu- FEPTTT 2+ P + 21k cothikd)
SIons. In the limit d— <, Eq. (4) transforms into Eq(2).
Il. LIFSHITZ FORMULA FOR THE van der WAALS Let us now consider a semispace or a plate of finite thick-
INTERACTION BETWEEN A MICROPARTICLE AND A ness made of a uniaxial cryst@raphite, for instangewhich
PLANE SURFACE OF A UNIAXIAL CRYSTAL is characterized by two dissimilar dielectric permittivities

First we consider a neutral microparticlatom or mol- ew)=¢y(w) ande,(w). Let a microparticle be located near
the uniaxial crystal semispace restricted by the plang),

ecule with a dynamic polarizabilitya(w) at separatiora ith the crvstal optical axig beina peroendicular to it. Then
from a plane surface of the isotropic semispace with dielect”’ Y Pl X Ing perpendicu -

tric permittivity e(w) at temperaturel in thermal equilib- the free energy of the van dgr .Waals Interaction is again
dum. In this case, the free energy of a microparticle-glven by Eq.(1), where the coefficients of reflection from the

semispace van der Waals interaction is given by the familiaSuncace of isotropic semlspac%i(g,ki) shouild be replaced

Lifshitz formula® (see also Refs. 11, 12, and 29331 [)y their generalization for the case of uniaxial crystal
T (graphite,34

FSE(a-T) == kBTE 'a(iﬁ)f kJ.dkJ_C]Ie_zaq| [ (&k,)= \"’8X|SZ|Q| - ky
=0 0 ) ligh=le L Veeat + Ky
><{2rf(§|,kﬁ - ol 6k - rf(f..ku]}. _—
| s T
o k)= A (5)

Here §=2wkgTI/% are the Matsubara frequencidg, is the  Here the following notations are introduced:
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] &
K = ki +8x|?v Ky = k +SZ|C2!
eq=8i&), ex=gfi§). (6)
For isotropic crystalg,=¢,=¢ and Eq.(5) coincides with

Eqg. (2).

If a microparticle is located near a flat plate of finite thick-
ness made of uniaxial crystéhe z axis is perpendicular to
the plate, the free energyR(a,T) is given again by Eq(1),
where the coefficients of reflection from an isotropic plate
r . (§.,k,) are replaced by the reflection coefficients from a
plate made of uniaxial crystal,

8x|8z|Q|2 - kil

8><I8zlql2 + k§| + 2\““"‘J‘xl<‘3zIQIkzl coth(k,d) ,

r\?;g(glikj_) =

-
K +qf + ZQ| i cothlkd)

ri g(§|1 L) (7)
For the anisotropic plate of infinite thicknegs— =), Eq.(7)
transforms into Eq(5). On the other hand, in the limit of the
plate made of an isotropic substance, Ef}.coincides with
Eq. (4).

Equation(1) with reflection coefficientd5) and (7) are

used in Sec. V for computations of the van der Waals inter-
action between the hydrogen atoms or molecules and the

plane surface of a semispace or a plate made of graphite.

Ill. FREE ENERGY OF THE van der WAALS
INTERACTION FOR A MICROPARTICLE EXTERNAL TO
A SOLID OR HOLLOW CYLINDER

In this section, we derive the Lifshitz-type formula for the
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isotropic
substance

uniaxial
crystal

R |R+a

-
N

FIG. 1. Schematic of the cylinder of radismade of a uniaxial
crystal and having a longitudinal concentric cavity of radrtsd.
This cylinder is concentrically placed into a cylindrical cavity of
radiusR+a in the infinite space filled with an isotropic substance.

element of our cylinder experiences an attractive van der
Waals interaction on the source side of the boundary of the
cylindrical cavity restricting the infinite space. With the help
of the proximity force theorem, the free energy of this inter-
action between two cylinders can be approximately repre-
sented in the forngsee Ref. 35 for the case of ideal me}als

(8)

HereFg(a,T) is the free energy per unit area in the configu-
ration either of two semispaces separated by a gap of width
[in this case =s, our cylinder is solid, one semispace is filled
with a uniaxial crystal, and the other is filled with a material
of dielectric permittivitye(w)] or of a flat plate of thickness
d and a semispace separated by the same[igathis case
i=p, and we are dealing with a cylindrical shell having a

FS%a,T) = 27LVR(R+ a)F5(a, T).

van der Waals free energy of a microparticle located at dongitudinal hole of radiusR-d; the plate is made of a

separatiora from the external surface of a solid cylinder or

uniaxial crystal and semispace of material with a dielectric

cylindrical shell made of a uniaxial crystal. It is assumed thatPermittivity e(w)]. In Eq. (8), L is the length of our solid or

the crystal optical axig is perpendicular to the cylinder sur-
face of crystalline layers. The outer radius of a cylindeRis
and the thickness of a crystal cylindrical sheltlis R. In the
cased=R, the cylinder is solid. Ifd<R, there is an empty
cylindrical cavity inside of a cylinder. As in the previous
section, the crystalline material of the cylindrical shell is
described by the dielectric permittivities(w) and e,(w).
The derivation presented below is based on the same a
proach which was previously used in the literadfe?®-3%o
derive the Lifshitz formula for microparticle-semispace
(plate interaction from the Lifshitz formula for a configura-
tion of two parallel semispacdplates.

Let us consider an infinite space filled with an isotropic
substance having a dielectric permittivitfw), containing an
empty cylindrical cavity of radiufR+a. We introduce our
solid cylinder or cylindrical shell of external radi&made
of a uniaxial crystal inside this cavity so that the cylinder
axis coincides with the axis of the cavitgee Fig. 1 Then
there is a gap of thickness between our cylinder and the
boundary of the cylindrical cavity of radiu’+a restricting
the infinite space with the dielectric permittivigf w). Each

23540

hollow cylinder, which is supposed to be much larger than its
radiusR.

As shown in Ref. 35see also Ref. 36the accuracy of
Eq. (8) is rather high. For example, within the separation
region 0<a<R/2, the results calculated by E@®) coincide
with the exact ones up to 1% in the case of cylinders made of
perfect metal(for other materials the accuracy may be dif-
ferent for only a fraction of a percenfThis is quite satisfac-
tory for application to multiwall nanotubes witR of about a
few ten nanometers considered below.

The explicit expressions for the free ener@y(a T) are
well known229-33

T

2715

X{In[1 -y S(flikﬂr (&.k,)e®q]
P& k)re (&,k e (9)

Here the reflection coefﬁmentﬁ 1.g from the semispace of
uniaxial crystal are given by Ed5), the coefficients} . 9

F S@T) = dekL

+In[1-r3!

1-3
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describing reflection from a flat plate of uniaxial crystal are e(i&) =1+ 4ma(ig)N+O(N?), (15)
given by Eq.(7), and the coefficients; , describing reflec- . ) o
tion from isotropic semispace are presented in @y No- ~ Whereéa(w) is the dynamic polarizability of an atoifmol-
tice that when indek on the left-hand side of Eq9) is equal ~ €cul® of this substance. Substituting H45) in Egs.(2) and
to s or p, one should choosg or p on the right-hand side, (3, we obtain
respectively.

To continue with our derivation, we now suppose that the ri(&.ky) = 7Ta(i§|)N<2
isotropic substance with the dielectric permittivityw) is
rarefied with the numbeN of atoms or molecules per unit
volume. Expanding the quantif§g“(a, T) from the left-hand
side of Eq.(8) as a power series iN and using the additivity
of the first-order term, one can write

fl ) + O(NZ)
C

s A NE L e
"% (6.k) = malig) o 5+ OIN?). (16
I

Using Eq.(16), the free energfy° and the forcé"S from

o Egs.(9) and(14) can be represented in the form
Fe%aT) =N f FE(z, T)2m(R+2Ldz+ O(N?), (10) .
a . ke TN .
Fe@T)=-- "a(i§) J k dk,
whereFg(z,T) is the free energy of the van der Waals inter- 2 =0 0
action of a single atom belonging to an isotropic substance £
with a solid cylinder or cylindrical shell made of a uniaxial (2 ——)r” (& k)
crystal (note that separationis measured from the external qI c?

surface of the cylinder in the direction perpendicular jo it §| o2 )
By differentiation of both sides of E¢10) with respect to + 2—2M Po(&.k,) |79 + O(N?),
a, we obtain arc
IFE%(a,T) ) is
—T—ZW(R+ a)LNFi(a,T) +O(N?).  (11) FiS(a, T)_—kBTNE a(ig) kldkiq|
The same derivative can be found when differentiating §| §| o2
both sides of Eq(8), e 5 gk ) + 2—er P&k, (e
|
IFE%(a, T 2
-FEBD o RRYa * O, an

Substituting Eq(17) in Eq. (12), one finds

- Fe@T) +F%aT) |, JFE(a,T
2(R+a) e(@T) @m & - 27LNksTYR(R + a)E a(lﬁ)f k,dk,
(12
1
where X [CM - m]{?s{g(ﬁ,kﬂ
i IF(a,T)
FaT)=- oa (13 [I’ §|, k) - M g(flv k)] e 2
is the van der Waals force per unit area acting between the + O(NZ)- (18)

semispace made of a uniaxial crystaks) or a flat plate
made of the same material and a semispace with a dielectrj
permittivity . The expression for this force is easily ob-
tained from Eqs(9) and (13),

As a final stage of the derivation, we substitute the result
tiS) into the left-hand side of Eq11), take the limitN— 0,
and arrive at a desired expression for the free energy of van
der Waals interaction between a microparticle and a cylinder
made of uniaxial crystal,

; kBT
Fis@aT)=-—2>" dequ. — = B
o g@T) :—kBT\/mE ’a(ig.)f k, dk, e 22
x [ rﬁ-"’(a.kur%a,ku =0 0
ag _ SP 1
29 - rpB(&,k)ri(é.k ) x| g - ———[{ 2rih(&.k,) + [fsﬂ;’g(é,kﬂ
4(R+a)
ri;g(flyki)U(flyki) :| (14)
e2an - rj:‘;)g(ghkL)ri(fhkL) — rﬁ:g(ﬁ,ki)] . (19)
The dielectric permittivity of a rarefied substance can be
expanded in Taylor series in powers £’ In the case of a solid cylinder, the reflection coefficients
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rﬁyl;g, given by Eq.(5), should be chosen on the right-hand  TABLE I. The values of strengths and eigenenergies of oscilla-
side of Eq.(19). For a cylindrical shell, coefficients! Ly @ lors for a hydrogen atom in the framework of the 10-oscillator
from Eq. (7) should be used. Notice that in the linft—o,  model.

Eq. (19 coincides with a known resu(t) for the free energy

of a microparticle near a plane surface of a semispace. The j 9 w,j (a.e)
abgve derivation |s_preserved aIso_ln the 'I|m|t|ng case lof a 1 041619993 0.37500006
solid or hollow cylinder made of isotropic material with
ex=&y=¢,=g. To obtain the result for an isotropic cylinder, 2 0.08803654 044533064
one should substitute in E419) the reflection coefficients 3 0.08993244 0.48877611
(2) and (4) instead of(5) and (7). 4 0.10723836 0.56134416

Equation(19) is the approximate one. It is, however, prac- 5 0.10489786 0.68364018
tically exact ata<R and is of high precisiofithe error is of 6 0.08700329 0.89169023
about 1% at all separationa<R/2. That is why this equa- 7 0.06013601 1.2698693
tion is reliable for cz_ilculatlons of _the van der Waals interac- 8 0.03259492 20478339
tion betwgeq a cylinder and microparticles located in its 9 0.01199044 4.0423429
close proximity.

10 0.00197021 12.194172

IV. DIELECTRIC PERMITTIVITIES OF GRAPHITE AND
DYNAMIC POLARIZABILITIES OF A HYDROGEN
ATOM AND MOLECULE ALONG THE IMAGINARY

FREQUENCY AXIS

to equal results in the limits of required accuracy. This per-
mits us to use a more simple E@1) in computations.
It is well known that for a hydrogen molecule the single
oscillator model for the dynamic polarizability is more exact
Below, we use the Lifshitz-type formulas obtained abovethan for the atom. For this reason, it is acceptable to present
to calculate the van der Waals interaction between hydrogetiie dynamic polarizability of a hydrogen molecule in the
atoms or molecules and a graphite semispace or flat plaferm
[Egs. (1), (5), and(7)] or a graphite cylindefEgs. (5), (7),
and(19)]. The graphite cylinder models a multiwall carbon alig) = ng , (22
nanotube(see Sec. VI To attain these ends, one needs the ot §
values of dynamic polarizabilities of a hydrogen atom anc\N

- 2 ; i ahili
molecule and also both dielectric permittivities of graphite at here G’ a_m(O) o Here the static polarizability and the
. . . . . characteristic energy of a hydrogen molecule are equal to
all Matsubara frequencies which give non-negligible contri- _ _ ;
bution o the result a(0)=5.439 a.u. and,,;=14.09 eV, respectivef?

The precise expression for the atomic dynamic polariz—t.esl’\lg;'v :Zt ﬁi;ogiger;:)en p;ﬁgl.er?aofni'releffg'cepnecrm:t'.vs"
ability of hydrogen is given by the 10-oscillator forméfla é h tr? ph xt't' G t:? : ?Id y'th t?]u h ?’ X]! fh
Written in atomic units, 0 ese quantities can be computed wi e help of the

Kramers-Kronig relation

10
Sy gj 2 (" | %7
alig) = JEl _J_wij el (20) Blif) =1+ fo dw% (23)

whereg; are the oscillator strengths aag; are the eigenfre-
quencies. For the hydrogen atom, the values of these qua
tities are listed in Table I(note that 1 a.u. of energy
=4.3597x 10718 J=27.11 eV. Note also that before the sub-
stitution in Eqs(1) and(19), the atomic dynamic polarizabil-
ity from Eqg. (20) should be expressed in cubic meters inclu
ing the transformation factor for 1 a.u. of polarizability

— 31 13
=1.482< 107 m*. authors in the frequency region frof2,=0.02 eV toQ},

In addmon to th_‘? precise representatiu), the atomic =40 eV (1 eV=1.519< 10'° rad/9. The use of these data to
dynamic polarizability of a hydrogen atom can be expressed

. ; ; . Calculates, (i) by Eq.(23) is, however, complicated by the
in terms of a more simple single oscillator model, two problems. First, the intervdk);,Q,] is too narrow to
calculates, ,(i¢) at all Matsubara frequencies contributing to
the van der Waals forc@oy comparison, for Au the complex
refractive index is measured from 0.125 eV to 10 000.eV
where g,=a,(0)w? is expressed through the static atomic Second, although fon, data by different authors are in
polarizability «,(0)=4.50 a.u. and the characteristic energyagreement, in the case of there are contradictory data in
0,=11.65 eV3® the literature atw<15.5 eV.
Below we will check that after the substitution to the  The first problem can be solved by the use of extrapola-

Lifshitz-type formulas, both expressioii20) and (21) lead  tion. According to Ref. 40, at high frequencies=(), the

The imaginary parts of the respective dielectric

Bermittivities along the real axis, in turn, are equal to

2 Ren, (w) XImn, (w), i.e., are expressed through the real

and imaginary parts of the complex refractive index of
graphite for ordinary and extraordinary rays, respectively.

d- Reference 40 contains the measurement data for

Ren, (w) and Imn, (w) of graphite obtained by different

Ja
Wi+ &

a(ig) = (21
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imaginary parts of graphite dielectric permittivities can be
presented analytically in the form

Im 8 (w) = (24
Here the values of constant#,=9.60x 10° eV® and
A,=3.49x 10" e\® are determined from the condition of a
smooth joining with the tabulated data @t (),.4°

At low frequenciesw<{);, one may approximate la
with the help of the Drude modé?,

_p7_

w(w?+ )’

where the plasma frequenay,=1.226 eV and the relaxation
parametery=0.04 eV are determined from the demand of
smooth joining with tabulated data at=();.

The extrapolation of tabulated data for kmto the region

Im sf(')(w) (25)

PHYSICAL REVIEW B 71, 235401(2005

logyg Sx(@f)
2
1.75¢

1.5}
1.25¢}
1t
0.75}
0.5¢
0.25¢}

14.5 15 15.5 16 16.5 17 17.5

log;[¢ (rad/s)]

(a)

of low frequencies is connected with the second problen & ,(i)

discussed above, i.e., with the contradictory measuremen
by different authors. Thus, the measurement datafes) in

Ref. 41 differ considerably from the same data in Ref. 42 in

the frequency regiom=<15.5 eV. According to both Refs.
41 and 42, the imaginary part ef(w) can be extrapolated to
low frequenciesw <), by a constant,

Im &\(w) = &2, = const. (26)

The values of this constant, however, are found to be differ3

ent: e,=3 according to Ref. 42 anel;=0 according to Ref.
41.

As a result, the calculation of graphite dielectric permit-
tivities along the imaginary frequency axis by EH@3) is
performed as follows:

2 (™ wimel, 2% wlmsl,
P (ig):1+—f do—s—22 —f do——22
%z ar 0 w +§2 au Q‘l w +§2
2 (7 Im &
+—f dw%, (27)
mla, W t&

where Im:-;XZ is found from the tables and |B§<Z are given
by Egs.(24)—(26). Substituting Eqs(24)—(26) in Eq. (27),
one finds

Q4 04
¢arctan— — yarctan—
Y £ 5

sx(if):l+7—7 5(52—)/2) ),
+Ej“2d MLW+&[L
mJao, P &L,
{2t
+—| —arctan—-1] |,
é\m ¢

1 2 uiIm s(zt)(w)

Q 2
>+_j do—>"5
& TJa, W t§

sz(ig):1+@|n<1+—
s

42 arn' -1
+—| —arctan— -1 .
E\m 3

|

2
'7792

A

7t

[

5t

4t

2

1¢F

16.5 17 17.5

log;[¢ (rad/s)]

(b)

FIG. 2. Dielectric permittivity of graphite along the imaginary
frequency axis infa) the hexagonal layer ari®) perpendicular to it,
as a function of frequency. Solid and dashed lineghnare ob-
tained with the optical data of Ref. 42 and Ref. 41, respectively.

The calculational results from EQ(28), obtained
by the use of the tabulated optical data of Refs. 40-42, are
shown in Figs. 2a) and 2Zb) in the frequency range from
£=2.47x 10" rad/s to&,000 at T=300 K. These results al-
low the precise calculation of the van der Waals interaction
by Egs.(1) and(19) in the separation regioa=3 nm (note
that with the increase of separation, the number of Matsubara
frequencies, giving a non-negligible contribution to the re-
sult, decreas@sAs to the contribution of zero Matsubara
frequency&,=0, there is the analytical resuﬁ; (0,k,)=1,
which follows from g,(i£) —c when ¢£€—0 in accordance
with Eq. (28). Note that at zero frequency, the other reflec-
tion coeff|C|entrSp (0 k,) does not contribute to the result
due to the multlplgf0 on the right-hand sides of Eqd) and
(19.

The dependence af(i¢) on & in Fig. 2(a) is typical for
good conductorgcompare with Refs. 32 and 33 for Al and
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Au). In Fig. 2b), the solid line is obtained with the results of a function of both separation and temperature. For the sake
Ref. 42(see also Ref. 4Qwith £},=3. The dashed line in Fig. of convenience in numerical computations, we introduce the
2(b) is obtained by the data of Ref. 45ee also Ref. 40 nondimensional variables

usinge,=0. It is seen that the dashed line differs markedly

from the solid line in the frequency regiofi 10*’ rad/s. _ _2ag _ g

The respective differences in the free energy are discussed in y=2aq, {= ¢ o (30

the next section. It is reasonably safe, however, to prefer the

solid line in Fig. Zb) as giving the correct behavior @f,  and express the van der Waals coefficient in terms of these
along the imaginary frequency axis. In fact, the differencevariables,

between the two lines is due to the absence of absorption
bands near the frequencies of 5 eV and 11 eV in the tabu-
lated data of Ref. 41 related &9 (note that in the data fas,

there are absorption bands at these frequencies in both Refs.
41 and 42 This casts doubts on the measurement data of y fo
Ref. 41 for ¢, because from the theory of graphite band

structuré® it follows that the respective absorption

bands must be present simultaneously in both sets of data for sp
Ey and &5 - r\\;’g(gliy)]} . (31)

V. CALCULATION OF THE van der WAALS INTERACTION

CSP(aT) = "B?T 20(0) + S alifwo)
1=1

dye—y{zyzrﬁ’g(gl ’ Y) + glz[rsi?g(gl ’ Y)

1

BETWEEN A HYDROGEN ATOM OR MOLECULE Eot((astlr;at fort'selpl)argmons utpdto a Lew htundred ?anometers,
AND A PLANE SURFACE OF GRAPHITE q. (o1 practically does not depend on temperature.
_ In terms of the new variable§30), the coefficients of
We consider the hydrogen atom or molecule at a separaeflection from a graphite semispa¢® are rearranged as
tion a from the hexagonal plane surfatey) of a graphite ’
semispace of a flat graphite plate of thicknéssNote that s Vexeay — fAY. &)
. . : r (gl,y):,_—,
the separation distance between the two plane hexagonal lay 9 +f
B R . . Veey + Ty, 4)
ers in graphite is approximately 0.336 nm. All calculations
are performed at separatioas 3 nm where one can neglect
the atomic structure of graphite and describe it in terms of 1S (Gyy) = ) -y (32)
dielectric permittivitiese,(w),e(w), as is done in the Lif- 9 f(y,{) +y
shitz theory. Bearing in mind applications at short separa- h
tions, it is instructive to present E¢L) in the form of non- where

relativistic van der Waals interactidisee the Introduction fg(y, 0=y + §|2(8z|— 1,
C3P(a,T)
FeP(a,T)=- =2, 29
c@m="T (29 2(y,6) = y2 + eu - 1). 33
where the van der Waals coefficie@P [for the case of an In analogy, the reflection coefficientg) from a flat plate

atom near a semispa¢® or a plate(p), respectivelyis now  of thicknessd take the form

8><I8zly2 B fg(ya &)

p =
"ig(6Y) sy’ + TAY,0) + e ey Ay, ) coth f(y, )d/(2a)]”
f2 , _\2
rg;g(gl,y) — X(y évl) y (34)

y2+ £y, £) + 2yTly, &)cot f,(y, ) d/(2a)]

Now we substitute the reflection coefficients from a semi-results obtained with the use of alternative data for
space(32), the precise atomic dynamic polarizabili¢20), [dashed line in Fig. @)]. As is seen from Fig. @), at the
and data of Fig. @) for &, and Fig. Zb) (solid line) for e,  shortest separaticer=3 nm the use of the alternative data for
into Eq. (31). The calculational results for the coefficient of ¢, leads to a 15% error in the value of the van der Waals
van der Waals interaction between a hydrogen atom andoefficient, which decreases with an increase of separation.
graphite semispace are presented in Fig) By the solid The computation of25 was repeated using the single os-
line. For comparison, the dashed line in Figa)3shows the cillator model(21) for the atomic dynamic polarizability in-
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FIG. 4. The ratios of the free energies for the van der Waals
atom-plate to atom-semispace interaction as a function of plate
thickness for a hydrogen atom located at different separations from
the graphite surfacdlines 1, 2, 3, and 4 are for separations
a=3 nm, 10 nm, 20 nm, and 50 nm, respectiyely

ratios of the free energies are plotted for the case of a plate
and a semispace as a function of plate thickness for a hydro-
gen atom located at different separations from the graphite
surface(line 1 fora=3 nm, line 2 fora=10 nm, line 3 for
a=20 nm, and line 4 foa=50 nm. As is seen from Fig. 4,
at a separatioa=3 nm the finite thickness of the plate has a
20 40 60 80 100 120 140 pronounced effect on the free energyore than 1% change
(b) a (nm) only for thicknessesd<8 nm. At separationsa=10 nm,
20 nm, and 50 nm, the finite thickness of the plate leads to a
FIG. 3. Dependence of the van der Waals coeffici€ton  smaller magnitude of the van der Waals free energy, as com-
separation ofa) a hydrogen atom ani) a molecule, from graphite pared with a semispace, for more than 1% if the thickness of
semispace. The solid and dashed lines are obtained with the opticg| plate is less than 19 nm, 32 nm, and 61 nm, respectively.
data of Ref. 42 and Ref. 41, respectively. Thus, if the separation between an atom and a plate

stead of the 10-oscillator modé20). The results were found Il:? a=3 n(rjn, thden .t?]e plactje a=8 nm th|bckness can already
to be practically in coincidence with those in FigaB(the P& considered with good accuracy to be a semispace.
maximum deviations are less than 0.2% in the Separation VI]. CALCULATION OF THE van der WAALS

region from 3 nm to 150 nin Thus, the Single oscillator INTERACTION EOR A HYDROGEN ATOM OR

model is a sufficient apprOXimation for the ator(liimd, con- MOLECULE EXTERNAL TO A MULTIWALL CARBON
sequently, moleculardynamic polarizability of hydrogen in NANOTUBE

computations of the short-range van der Waals interaction i

with a graphite surface. The multiwall carbon nanotube can be modeled by a

In the same way as above, we calculate the van der Waa@@phite cylindrical shell of some length external radius
coefficient C§ for the interaction of a hydrogen molecule R<L, and thicknessl<R. In doing so, the hexagonal layers
with graphite semispace. The only difference is the use of th@f @ graphite crystal lattice form the external surface of a
dynamic polarizability of a moleculé22) instead of the cylinder and the internal sections concentric to it. The crystal
atomic one. The results are shown in Figb)3by the solid optical axisz is perpendicular to the surface of the cylinder at
line (the dashed line is calculated by the less accurate altef2Ch point. The above-derived Lifshitz-type formdd®) is
native data of Ref. 41 for the dielectric permittivity). The apphcable to the case of a m_ult|wall carbon nanotube if its
comparison of Figs. (&) and 3b) leads to the conclusion that thicknessd is large enouglitypically d=3 nm), so that the
the magnitudes of the van der Waals coefficient for the hynanotube contains sufficiently many layers. Then it is pos-

drogen molecule are larger than for the atom. sible to neglect the atomic structure of graphite and to de-
Now let the hydrogen atom be located at a separagion SCTiP€ itin terms of dielectric permittivity. _
from the flat graphite plate of thicknests Of interest is the For convenience in numerical computations, we rewrite

dependence od of the van der Waals free energy of atom- Ed- (19) in terms of dimensionless variable30), represent-
plate interaction. The calculations of the free energy werd"d the free energy of the van der Waals interaction with a
performed by Eqs(29) and (31) with reflection coefficients cYlinder in the form

(32) (for a semispageand (34) (for a plate of thicknessl). @)

The values of dielectric permittivities along the imaginary Fe@T)=- 2 (39)
frequency axis were taken from Fig.(8olid lineg and the

atomic dynamic polarizability from Eq21). In Fig. 4, the  where
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TABLE Il. Magnitudes of the van der Waals coefficiel@§ and C5 and their relative differences (see
text) for the interaction of a hydrogen atom or molecule with a graphite semispace or a cylinder with radius

R=50 nm.
a H H,
(nm) C; (au) Cs (au) S (%) C; (au) Cs (a.u) 8 (%)
3 0.09882 0.09471 4.2 0.1317 0.1262 4.2
5 0.09416 0.08792 6.6 0.1248 0.1166 6.6
10 0.08316 0.07322 12.0 0.1088 0.09584 11.9
20 0.06652 0.05301 20.3 0.08526 0.06801 20.2
30 0.05516 0.04047 26.6 0.06970 0.05118 26.6
40 0.04704 0.03214 31.7 0.05885 0.04025 31.6
50 0.04098 0.02631 35.8 0.05090 0.03270 35.8
kBT R | 4R+3a Fig. 6, we present the computation results for the interaction
s@T)= R >R a(0) between a hydrogen atom and a cylindrical envelope with
+a| 2(R+a) R=20 nm as a function of envelope thickneséthe atom is
o a located at a separatiaa=5 nm from the external surface of
+2 a(igwe) dyye y[y_ —] the cylindrical she). The computations were performed by
2(R+a) Eqg. (36) using the same procedure as above. The value
52 d=20 nm corresponds to the case of a solid cylinder. It is
2U5P(Zy) + ZL[rSP (7, rSP(Z, } mtere;tmg, however, that alreadydat 11 nm the magmtude'
[ ia(41Y) yz[ Tig(6Y) = Tiig(ény)] of C§ is only 1% lower than the one obtained for the solid

(36) cylinder of R=20 nm radius. For less thickness of the cylin-

The reflection coefficients were defined in E§2) (with
indexs related to the case of a solid cylindand in Eq.(34)

(with index p related to the case of a cylindrical shell of 0.09 1/_/’——‘
thicknessd). —
Let us first compare the van der Waals interaction be- 5 ©-0%
tween a hydrogen atom or molecule with a graphite semis- %«a 2
pace and a solid cylinder. The differences of the interaction = ©.07
strength with a semispace and a cylinder can be charactel
ized by a parametef=(C5-C5)/C3. A few results for a 0.06
graphite cylinder withR=50 nm, calculated by Eq<36), 3
(32), (21), and(22), and dielectric permittivities given by the
solid lines of Fig. 2, are presented in Tablg(¢blumns 2—4 10 20 30 40 >0
and 5-7 are related to the cases of a hydrogen atom an® R (nm)
molecule, respectively As is seen from Table II, at short 0.13
separations of about a few nanometers, there are only mino
differences betwee@3 and CS. With increase of, however, 0.12
the magnitude ofs quickly increases. This takes place for _0.11 !
both hydrogen atoms and molecules. =]
It is interesting to follow the dependence of the van derv 0.1 2
Waals coefficienCj on R for atoms and molecules located at &
different separatlons from the cylinder surface. These com- 09
putations were performed with Eq®6), (5), (21), and(22) 0.08
and the same data for graphite dielectric permittivities. The 3
results are presented in Fig(ap (for a hydrogen atopand 0.07
Fig. Xb) (for a hydrogen molecujevhere the lines 1, 2, and 10 20 30 40 50

3 are pictured for separatiorss=3 nm, 5 nm, and 10 nm,
respectively. It is seen that with the increasé&rpthe van der

Waals coefficients are also increasing. FIG. 5. Dependence of the van der Waals coeffic&hbn the
Now consider the cylindrical shell of radii&and thick-  cylinder radius for(@) a hydrogen atom antbh) a molecule, located

nessd with the longitudinal cavity of a radiuR—d. This is  at different separations from the graphite cylinderes 1, 2, and 3

evidently a better model for a multiwall carbon nanotube. Inare for separationa=3 nm, 5 nm, and 10 nm, respectively

(o) R (um)
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FIG. 6. Dependence of the van der Waals coeffici€jton
thickness of the cylindrical shell with an external radRrs20 nm
for a hydrogen atom at a separatian5 nm from the shell.
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FIG. 7. The van der Waals free energy for a hydrogen atom
inside of the carbon nanotube with internal radRys=10 nm and
external radiusR=50 nm as a function of the atom position be-
tween the opposite points of the internal cylindrical surface.

drical shell, the smaller values of the van der Waals coeffi-
cient are obtainethe same is true also for a hydrogen mol- 3 Om
eculd. Note that we do not extend the line of Fig. 6 for Fe™a,T) =~ -5C§(a,T)f d0[3—0-3—0
thicknesses less than 3 nm, where the macroscopic descrip- 0 Pi(0)  p2(0)
tion of graphite in terms of dielectric permittivity may not be The numerical computations by E@0) demonstrate that for
applicable. a cylinder withR=50 nm, the results obtained by the method
of additive summation differ by less than 1% from the results
obtained by the Lifshitz-type Ed35), within the separation
rangea<8 nm. Ata=10 nm, the free energies computed by
MULTIWALL CARBON NANOTUBES the two formulas differ for 1.35%, and at50 nm by 16%.
The above-obtained Lifshitz-type formulé&k9) and (36) Hence t_he method of additive summation_ Wo_rks well at smal!
provide a good approximate description of the van der WaalSeparations between an atom an(_j a cylindrical surface. This
interaction when a microparticle is located outside of a cy-Makes it reasonable to apply this method for a hydrogen
lindrical shell. Let us now consider a microparticle inside of 10 inside of a multiwall carbon nanotube. _
the same shell. In this case, the van der Waals free energy W€ consider a hydrogen atom inside of a nanotube with

can be approximately calculated by the method of pairwisé/icknessd and internal radiu,=R-d at a separatiom

summation of the interatomic potentials with subsequent norlfom the internal surface. In accordance with E§7), the

free energy of the van der Waals interaction is

malization of the obtained interaction coefficient using the
known case of a microparticle near a semispadéFor a it 24C5(a,T) (™ % Do(6) pdp
Fe"a=-————|[ do| dz| ——53,
™ 0 0 o (p +7%)

microparticle outside of an arbitrary macrobody this
(41)

= } . (40)

VIl. COMPARISON BETWEEN THE FREE ENERGIES OF
HYDROGEN ATOMS INSIDE AND OUTSIDE OF

method leads to the expression pa(

; _ 6C3(a,T) ([ dv
e@T) ~- - . 16 (37) where the integration limits are given by

P1(6) = = (Ry— a)cosd + VRS — (Ry— @)? sir 0,

wherer is the separation between the microparticle and an
atom (moleculg of the macrobody.

To determine the accuracy of E(7), let us apply it in P2(6) = = (Ry— a)cosd + \(Ry + d)? = (Ry — @) sir? 6.
the case of a hydrogen atom outside of a solid graphite cyl- (42)
inder at a separatioa [to which Eq.(36) is also applicablg
Then Eq.(37) is rewritten as

After the integration over andp, Eq. (41) leads to
24C5(a,T)

FeX'=Fg(a,T) =~ -

_ 3 g 1 1
_ Fe'(a,T) = —Ecg(a,T) L da{— } (43
Om * po(6) d
xf def dzf P 3y
0 0 p1(0) (p*+2)

20 P

In Fig. 7, we present the results of numerical computa-
tions by Eq.(43) for the hydrogen atom inside of the hypo-
thetical nanotube with the internal radiRg=10 nm and ex-

where sing,,=R/(R+a), Ris the cylinder radius, ang (6)
are the two solutions of the equation

p?+ (R+a)?- 2p(R+a)cosd=Re. (39)
After the integration over andp, Eq. (38) takes the form

ternal radius R=50 nm. The free energy of the atom-
nanotube interaction is plotted in Fig. 7 as a function of atom
position between the opposite points of the internal cylindri-
cal surface. The atom positions closer than 3 nm to the in-
ternal surface are not reflected in the fig(tieeir consider-
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. \ previously. The first to be investigated was the van der Waals

force between an atom or molecule and a plane surface of a
uniaxial crystal perpendicular to the crystal optic axis. For
this configuration, the exact expression for the free energy of
the van der Waals and Casimir-Polder interaction is given by
Eq. (1) with the reflection coefficient€s) (for the case of a
2 microparticle near a semispacer (7) (for a microparticle
---------------- near a plate of finite thickness/Ne next derive the approxi-
1 mate Lifshitz-type formuld19) for the free energy of the van
der Waals interaction between a microparticle and solid cyl-
inder or a cylindrical shell having a longitudinal concentric
d(nm) cavity. This cylinder may be made of isotropic material or of
a uniaxial crystal. The accuracy of the obtained formula was
FIG. 8. Difference of the free energies of hydrogen atoms situshown to be of about 1% at microparticle-cylinder separa-
ated outside and inside of the multiwall carbon nanotube as a fundions less than one-half of a cylinder radius.
tion of nanotube thickness. The solid and dashed lines are for the The above extensions of the Lifshitz formula for
nanotubes with a fixed internal radif=10 nm and a fixed exter- mjcroparticle-wall interaction were applied to the case of a
nal radiusR=50 nm, respectively. hydrogen atom or molecule near a graphite surface. For this
purpose, the dielectric permittivities of graphite along the
ation would demand a more exact treatment of the atomiémaginary frequency axis were found by the use of tabulated
structure of graphite As is seen from Fig. 7, the free energy optical data for the complex refractive index. In doing so,
reaches a maximum on the cylinder axis, where the van datifferent sets of data were analyzed and necessary extrapo-
Waals force acting on an atom is equal to zero in accordandations to high and low frequencies were done. Together with
with symmetry considerations. This equilibrium state is,the use of hydrogen atomic and molecular dynamic polariz-
however, unstable, and under the influence of fluctuations thabilities, this allowed us to calculate the van der Waals inter-
hydrogen atom will move to positions with lower free energyaction between a hydrogen atom or molecule and graphite
near the internal cylindrical surface of a nanotube. semispace, a graphite flat plate of finite thickness, or a solid
Now we are in a position to compare the free energies ofjraphite cylinder and a cylindrical shell. In particular, the
hydrogen atoms located outside and inside a multiwall carinfluence of the thickness of the plate on the van der Waals
bon nanotube in order to decide which position is preferablénteraction was investigated.
energetically. In Fig. 8, the calculation results for the differ- The calculation results for the atom-cylinder case were
ences of free energid:*'andFg™ are presented as a func- used to model the van der Waals interaction between hydro-
tion of thickness of the nanotube. In doing so, we considegen atoms or molecules and a multiwall carbon nanotube
both atoms, internal and external, situated at a separationwith a sufficiently large number of layers. In particular, the
=3 nm from the internal and external surfaces of a nanotubejependence of the van der Waals interaction of the atom-
respectively. The solid line in Fig. 8 is related to the fixed nanotube case on nanotube thickness was investigated. No-
internal radius of the nanotuld&=10 nm, and in this case tice that the developed formalism is not applicable to single-
the external radius increases together with thickness of ther two-wall nanotubes where the atomic structure of the wall
nanotubed. The dashed line is for a fixed external radRis should be taken into account. In this case, the van der Waals
=50 nm and decreasing internal radius with the increase dbrce can be computed in the framework of density-
d. The computations were performed with Eg3) for a  functional theory/>—4’
position of the atom inside the nanotube and with Ef) Finally, we have compared the free energies of the van der
for a position of the atom outside the nanotube. Waals interaction between a hydrogen atom and multiwall
As is seen from Fig. 8, in all cases the difference betweerarbon nanotube for the cases when the atom is located out-
the external and internal free energies of the van der Waalside or inside of the nanotube. It was shown that atoms situ-
interaction is positive. What this means is the position of aated inside of a multiwall nanotube possess lower free en-
hydrogen atom inside a multiwall carbon nanotube is preferergy in a wide region of nanotube thicknesses, i.e., such a
able energetically. Comparing the solid and dashed lines iposition is energetically preferable. This conclusion is prom-
Fig. 8, we conclude that for nanotubes of fixed thickngss ising for the possibility of using carbon nanotubes for the
the potential well for the hydrogen atom inside a nanotube igurpose of hydrogen storage.

deeper if the nanotube has a smaller external raRiubhis Many other opportunities for application of the obtained
is an encouraging result which points to the possibility ofgeneralizations of the Lifshitz formula in the physics of dis-
hydrogen storage inside carbon nanostructures. persion forces are possible.
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