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The Lifshitz theory of the van der Waals force is extended for the case of an atomsmoleculed interacting
with a plane surface of a uniaxial crystal or with a long solid cylinder or cylindrical shell made of isotropic
material or uniaxial crystal. For a microparticle near a semispace or flat plate made of a uniaxial crystal, the
exact expressions for the free energy of the van der Waals and Casimir-Polder interaction are presented. An
approximate expression for the free energy of microparticle-cylinder interaction is obtained which becomes
precise for microparticle-cylinder separations much smaller than the cylinder radius. The obtained expressions
are used to investigate the van der Waals interaction between hydrogen atomssmoleculesd and graphite plates
or multiwall carbon nanotubes. To accomplish this, the behavior of graphite dielectric permittivities along the
imaginary frequency axis is found using the optical data for the complex refractive index of graphite for the
ordinary and extraordinary rays. It is shown that the position of hydrogen atoms inside multiwall carbon
nanotubes is energetically preferable compared with outside.
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I. INTRODUCTION

The van der Waals interaction between a microparticle
and a macrobody has long been investigated. It is of much
importance for the understanding of a large body of physical
and chemical phenomena connected with atom-surface inter-
action, including adsorption and friction. In a pioneering
work in Ref. 1, the interaction potential between an atom at
a separationa from a plane wall was found in the form
V3sad=−C3/a3. This result is applicable at separations less
than a few nanometers. More recently, a lot of different at-
oms, molecules, and wall materials were studied. In particu-
lar, in Refs. 2 and 3, the values ofC3 were computed for the
interaction of H, H2, He, Ne, Ar, Cr, Xe, and CH4 with the
planar surfaces of insulatorsssapphire, LiF, CaF2, and
boron nitrided. At much greater separations, the atom-wall
interaction is described by the Casimir-Polder potential
V4sad=−C4/a4 sRef. 4d taking relativistic effects into ac-
count. The complete theory of the van der Waals atom-wall
interaction at nonzero temperature is given by the Lifshitz
formula5 in terms of the dynamic polarizability of an atom
smoleculed and the frequency-dependent dielectric permittiv-
ity of wall material. The potentialsV3sad andV4sad, obtained
previously, are the two limiting cases of this formula.

During the past few years, van der Waals forces have
found important new applications in experiments on quan-
tum reflection and diffraction of ultracold atoms on different
surfaces6–9 and in Bose-Einstein condensation.10,11 In con-
nection with this, the detailed examination of different cor-
rections to the Casimir-Polder and van der Waals interac-
tions, including the precise effect of atomic polarizability
and nonideality of wall material, was performed in Refs. 12
and 13. Effectively, this resulted in the investigation of ac-
curate dependences of the coefficientsC3 andC4 on separa-
tion and temperature.

Although the Lifshitz theory presents considerable oppor-
tunity for extensive studies of the van der Waals force,14,15 it

is essentially restricted by macroscopic bodies with plane
boundaries. The use of approximations such as the proximity
force theorem16 permitted one to obtain rather precise results
for a large sphere near a plane plate, a configuration fre-
quently used in recent experiments on measuring the Casimir
force.17–21In most cases, the macrobodies with plane bound-
aries were supposed to be isotropic.

In the present paper, we generalize the Lifshitz formula
for a microparticle situated near the surface of a uniaxial
crystal. Both cases of crystal semispace with plane boundary
and a plane plate of finite thickness are considered. As a next
step, we derive the approximate expression for the free en-
ergy of the van der Waals interaction between a microparticle
and a solid cylinder or cylindrical shell made of a uniaxial
crystal. In the limiting case, this expression is applicable to a
microparticle near a cylinder made of an isotropic material
with frequency-dependent dielectric permittivitysa configu-
ration which also has not been investigated previouslyd. We
apply the obtained results to investigate the van der Waals
interaction between hydrogen atoms or molecules and graph-
ite plates or multiwall carbon nanotubes.

The study of the van der Waals interaction between hy-
drogen atoms and a graphitic surface has become urgent after
the proposal of Ref. 22 to use the single-wall carbon nano-
tubes for hydrogen storage. Since then, many papers have
been published on the use of both single-wall and multiwall
nanotubes for hydrogen storage. These papers contained both
promising and disappointing resultsssee Ref. 23 for reviewd.
The macroscopic theoretical approach leads to a conclusion24

that the carbon nanostructures might absorb hydrogen from
4% to 14% of their weight. However, the microscopic
mechanisms responsible for this absorption are still un-
known. The van der Waals forces acting between hydrogen
atoms or molecules and carbon nanostructures, which might
play an important role in absorption phenomena, are practi-
cally unexplored. Some preliminary results for graphite
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sheets and single-wall nanotubes can be found in Refs.
25–27. The van der Waals interaction of fullerene molecules
and the adsorption of these molecules on graphite were con-
sidered in Ref. 28.

To apply the Lifshitz-type formulas for the van der Waals
free energy, obtained in the paper, to the case of hydrogen
atoms and molecules near a graphite surface, we calculate
the dielectric permittivities of graphite and dynamic polariz-
abilities of a hydrogen atom and molecule along the imagi-
nary frequency axis. To do this, we discuss different sets of
tabulated optical data for the complex refractive index of
graphite and use the most reliable ones to perform the
Kramers-Kronig analysis. The van der Waals interactions be-
tween a hydrogen atom and molecule and graphite semispace
or a plate of finite thickness are calculated. The free energies
of a hydrogen atom inside and outside of a multiwall carbon
nanotube are found as functions of an atom-nanotube sepa-
ration distance and internal and external nanotube radii. The
location of a hydrogen atom inside a multiwall nanotube is
demonstrated to be preferable from an energetic point of
view.

The paper is organized as follows. In Sec. II, we present
the Lifshitz formula for the van der Waalssand Casimir-
Polderd interaction between a microparticle and a plane sur-
face of a uniaxial crystal. Section III contains a derivation of
the general expression for the van der Waals free energy of a
microparticle external to a solid cylinder or a cylindrical
shell made of a uniaxial crystal. In Sec. IV, the dielectric
permittivities of graphite and the atomic and molecular dy-
namic polarizabilities of hydrogen along the imaginary fre-
quency axis are obtained. In Sec. V, calculation results are
presented for the van der Waals interaction between a hydro-
gen atom or molecule and graphite semispace or a plane
plate of finite thickness. In Sec. VI, the same is done for a
hydrogen atom or molecule external to a multiwall carbon
nanotube. Comparison between the free energies of a hydro-
gen atom inside and outside a multiwall nanotube is done in
Sec. VII. Section VIII contains our discussion and conclu-
sions.

II. LIFSHITZ FORMULA FOR THE van der WAALS
INTERACTION BETWEEN A MICROPARTICLE AND A

PLANE SURFACE OF A UNIAXIAL CRYSTAL

First we consider a neutral microparticlesatom or mol-
eculed with a dynamic polarizabilityasvd at separationa
from a plane surface of the isotropic semispace with dielec-
tric permittivity «svd at temperatureT in thermal equilib-
rium. In this case, the free energy of a microparticle-
semispace van der Waals interaction is given by the familiar
Lifshitz formula5 ssee also Refs. 11, 12, and 29–31d

FE
ssa,Td = − kBTo

l=0

`

8asijldE
0

`

k'dk'qle
−2aql

3H2r i
ssjl,k'd +

jl
2

ql
2c2fr'

s sjl,k'd − r i
ssjl,k'dgJ .

s1d

Here jl =2pkBTl /" are the Matsubara frequencies,kB is the

Boltzmann constant,l =0,1,2, . . ., andk' is the magnitude
of a wave-vector component in the plane surface of a semi-
space. The coefficients of reflection for two independent po-
larizations of electromagnetic field are given by

r i
ssjl,k'd =

«lql − kl

«lql + kl
,

r'
s sjl,k'd =

kl − ql

kl + ql
, s2d

where

ql =Îk'
2 +

jl
2

c2, kl =Îk'
2 + «l

jl
2

c2 ,

«l = «sijld, s3d

and the prime near the summation sign in Eq.s1d means that
the term forl =0 has to be multiplied by 1/2.

Equations1d can be readily generalized for the case when
the microparticle is located not near a semispace but near a
flat plate of some finite thicknessd with the same dielectric
permittivity «svd. In this case, the free energy of the van der
Waals interactionFE

psa,Td again is given by Eq.s1d, where,
however, the reflection coefficients from a semispace
r i,'

s sjl ,k'd should be replaced by the reflection coefficients
from a plate of finite thicknessr i,'

p sjl ,k'd. The explicit ex-
pressions for them are obtained from the free energy of the
van der Waals interaction between the layered mediassee,
e.g., Refs. 29, 32, and 33d,

r i
psjl,k'd =

«l
2ql

2 − kl
2

«l
2ql

2 + kl
2 + 2qlkl«l cothskldd

,

r'
p sjl,k'd =

kl
2 − ql

2

kl
2 + ql

2 + 2qlkl cothskldd
. s4d

In the limit d→`, Eq. s4d transforms into Eq.s2d.
Let us now consider a semispace or a plate of finite thick-

ness made of a uniaxial crystalsgraphite, for instanced which
is characterized by two dissimilar dielectric permittivities
«xsvd=«ysvd and«zsvd. Let a microparticle be located near
the uniaxial crystal semispace restricted by the planesx,yd,
with the crystal optical axisz being perpendicular to it. Then
the free energy of the van der Waals interaction is again
given by Eq.s1d, where the coefficients of reflection from the
surface of isotropic semispacer i,'

s sjl ,k'd should be replaced
by their generalization for the case of uniaxial crystal
sgraphited,34

r i;g
s sjl,k'd =

Î«xl«zlql − kzl

Î«xl«zlql + kzl

,

r';g
s sjl,k'd =

kxl − ql

kxl + ql
. s5d

Here the following notations are introduced:
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kxl =Îk'
2 + «xl

jl
2

c2, kzl =Îk'
2 + «zl

jl
2

c2 ,

«xl = «xsijld, «zl = «zsijld. s6d

For isotropic crystal,«x=«z=« and Eq.s5d coincides with
Eq. s2d.

If a microparticle is located near a flat plate of finite thick-
ness made of uniaxial crystalsthe z axis is perpendicular to
the plated, the free energyFE

psa,Td is given again by Eq.s1d,
where the coefficients of reflection from an isotropic plate
r i,'

p sjl ,k'd are replaced by the reflection coefficients from a
plate made of uniaxial crystal,

r i;g
p sjl,k'd =

«xl«zlql
2 − kzl

2

«xl«zlql
2 + kzl

2 + 2Î«xl«zlqlkzl cothskzldd
,

r';g
p sjl,k'd =

kxl
2 − ql

2

kxl
2 + ql

2 + 2qlkxl cothskxldd
. s7d

For the anisotropic plate of infinite thicknesssd→`d, Eq.s7d
transforms into Eq.s5d. On the other hand, in the limit of the
plate made of an isotropic substance, Eq.s7d coincides with
Eq. s4d.

Equations1d with reflection coefficientss5d and s7d are
used in Sec. V for computations of the van der Waals inter-
action between the hydrogen atoms or molecules and the
plane surface of a semispace or a plate made of graphite.

III. FREE ENERGY OF THE van der WAALS
INTERACTION FOR A MICROPARTICLE EXTERNAL TO

A SOLID OR HOLLOW CYLINDER

In this section, we derive the Lifshitz-type formula for the
van der Waals free energy of a microparticle located at a
separationa from the external surface of a solid cylinder or
cylindrical shell made of a uniaxial crystal. It is assumed that
the crystal optical axisz is perpendicular to the cylinder sur-
face of crystalline layers. The outer radius of a cylinder isR
and the thickness of a crystal cylindrical shell isdøR. In the
cased=R, the cylinder is solid. Ifd,R, there is an empty
cylindrical cavity inside of a cylinder. As in the previous
section, the crystalline material of the cylindrical shell is
described by the dielectric permittivities«xsvd and «zsvd.
The derivation presented below is based on the same ap-
proach which was previously used in the literature5,12,29–31to
derive the Lifshitz formula for microparticle-semispace
splated interaction from the Lifshitz formula for a configura-
tion of two parallel semispacessplatesd.

Let us consider an infinite space filled with an isotropic
substance having a dielectric permittivity«svd, containing an
empty cylindrical cavity of radiusR+a. We introduce our
solid cylinder or cylindrical shell of external radiusR made
of a uniaxial crystal inside this cavity so that the cylinder
axis coincides with the axis of the cavityssee Fig. 1d. Then
there is a gap of thicknessa between our cylinder and the
boundary of the cylindrical cavity of radiusR+a restricting
the infinite space with the dielectric permittivity«svd. Each

element of our cylinder experiences an attractive van der
Waals interaction on the source side of the boundary of the
cylindrical cavity restricting the infinite space. With the help
of the proximity force theorem, the free energy of this inter-
action between two cylinders can be approximately repre-
sented in the formssee Ref. 35 for the case of ideal metalsd

FE
c,csa,Td = 2pLÎRsR+ adFE

i,ssa,Td. s8d

HereFE
i,ssa,Td is the free energy per unit area in the configu-

ration either of two semispaces separated by a gap of widtha
fin this casei =s, our cylinder is solid, one semispace is filled
with a uniaxial crystal, and the other is filled with a material
of dielectric permittivity«svdg or of a flat plate of thickness
d and a semispace separated by the same gapfin this case
i =p, and we are dealing with a cylindrical shell having a
longitudinal hole of radiusR−d; the plate is made of a
uniaxial crystal and semispace of material with a dielectric
permittivity «svdg. In Eq. s8d, L is the length of our solid or
hollow cylinder, which is supposed to be much larger than its
radiusR.

As shown in Ref. 35ssee also Ref. 36d, the accuracy of
Eq. s8d is rather high. For example, within the separation
region 0,a,R/2, the results calculated by Eq.s8d coincide
with the exact ones up to 1% in the case of cylinders made of
perfect metalsfor other materials the accuracy may be dif-
ferent for only a fraction of a percentd. This is quite satisfac-
tory for application to multiwall nanotubes withR of about a
few ten nanometers considered below.

The explicit expressions for the free energyFE
i,ssa,Td are

well known,5,29–33

FE
i,ssa,Td =

kBT

2p
o
l=0

`

8E
0

`

k'dk'

3hlnf1 − r i;g
s,psjl,k'dr i

ssjl,k'de−2aqlg

+ lnf1 − r';g
s,p sjl,k'dr'

s sjl,k'de−2aqlgj. s9d

Here the reflection coefficientsr i,';g
s from the semispace of

uniaxial crystal are given by Eq.s5d, the coefficientsr i,';g
p

FIG. 1. Schematic of the cylinder of radiusR made of a uniaxial
crystal and having a longitudinal concentric cavity of radiusR−d.
This cylinder is concentrically placed into a cylindrical cavity of
radiusR+a in the infinite space filled with an isotropic substance.

VAN DER WAALS INTERACTION BETWEEN… PHYSICAL REVIEW B 71, 235401s2005d

235401-3



describing reflection from a flat plate of uniaxial crystal are
given by Eq.s7d, and the coefficientsr i,'

s describing reflec-
tion from isotropic semispace are presented in Eq.s2d. No-
tice that when indexi on the left-hand side of Eq.s9d is equal
to s or p, one should chooses or p on the right-hand side,
respectively.

To continue with our derivation, we now suppose that the
isotropic substance with the dielectric permittivity«svd is
rarefied with the numberN of atoms or molecules per unit
volume. Expanding the quantityFE

c,csa,Td from the left-hand
side of Eq.s8d as a power series inN and using the additivity
of the first-order term, one can write

FE
c,csa,Td = NE

a

`

FE
csz,Td2psR+ zdLdz+ OsN2d, s10d

whereFE
csz,Td is the free energy of the van der Waals inter-

action of a single atom belonging to an isotropic substance
with a solid cylinder or cylindrical shell made of a uniaxial
crystal snote that separationz is measured from the external
surface of the cylinder in the direction perpendicular to itd.

By differentiation of both sides of Eq.s10d with respect to
a, we obtain

−
]FE

c,csa,Td
]a

= 2psR+ adLNFE
csa,Td + OsN2d. s11d

The same derivative can be found when differentiating
both sides of Eq.s8d,

−
]FE

c,csa,Td
]a

= 2pLÎRsR+ ad

3F−
1

2sR+ ad
FE

i,ssa,Td + Fi,ssa,TdG ,

s12d

where

Fi,ssa,Td = −
]FE

i,ssa,Td
]a

s13d

is the van der Waals force per unit area acting between the
semispace made of a uniaxial crystalsi =sd or a flat plate
made of the same material and a semispace with a dielectric
permittivity «. The expression for this force is easily ob-
tained from Eqs.s9d and s13d,

Fi,ssa,Td = −
kBT

p
o
l=0

`

8E
0

`

k'dk'ql

3 F r i;g
s,psjl,k'dr i

ssjl,k'd
e2aql − r i;g

s,psjl,k'dr i
ssjl,k'd

+
r';g

s,p sjl,k'dr'
s sjl,k'd

e2aql − r';g
s,p sjl,k'dr'

s sjl,k'dG . s14d

The dielectric permittivity of a rarefied substance can be
expanded in Taylor series in powers ofN,37

«sijld = 1 + 4pasijldN + OsN2d, s15d

whereasvd is the dynamic polarizability of an atomsmol-
eculed of this substance. Substituting Eq.s15d in Eqs.s2d and
s3d, we obtain

r i
ssjl,k'd = pasijldNS2 −

jl
2

ql
2c2D + OsN2d,

r'
s sjl,k'd = pasijld

Njl
2

ql
2c2 + OsN2d. s16d

Using Eq.s16d, the free energyFE
i,s and the forceFi,s from

Eqs.s9d and s14d can be represented in the form

FE
i,ssa,Td = −

kBTN

2 o
l=0

`

8asijldE
0

`

k'dk'

3FS2 −
jl

2

ql
2c2Dr i;g

s,psjl,k'd

+
jl

2

ql
2c2r';g

s,p sjl,k'dGe−2aql + OsN2d,

Fi,ssa,Td = − kBTNo
l=0

`

8asijldE
0

`

k'dk'qlFS2

−
jl

2

ql
2c2Dr i;g

s,psjl,k'd +
jl

2

ql
2c2r';g

s,p sjl,k'dGe−2aql

+ OsN2d. s17d

Substituting Eq.s17d in Eq. s12d, one finds

−
]FE

c,csa,Td
]a

= − 2pLNkBTÎRsR+ ado
l=0

`

8asijldE
0

`

k'dk'

3Fql −
1

4sR+ adGH2r i;g
s,psjl,k'd

+
jl

2

ql
2c2fr';g

s,p sjl,k'd − r i;g
s,psjl,k'dgJe−2aql

+ OsN2d. s18d

As a final stage of the derivation, we substitute the result
s18d into the left-hand side of Eq.s11d, take the limitN→0,
and arrive at a desired expression for the free energy of van
der Waals interaction between a microparticle and a cylinder
made of uniaxial crystal,

FE
csa,Td = − kBTÎ R

R+ ao
l=0

`

8asijldE
0

`

k'dk'e−2aql

3Fql −
1

4sR+ adGH2r i;g
s,psjl,k'd +

jl
2

ql
2c2fr';g

s,p sjl,k'd

− r i;g
s,psjl,k'dgJ . s19d

In the case of a solid cylinder, the reflection coefficients
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r i,';g
s , given by Eq.s5d, should be chosen on the right-hand

side of Eq.s19d. For a cylindrical shell, coefficientsr i,';g
p

from Eq. s7d should be used. Notice that in the limitR→`,
Eq. s19d coincides with a known results1d for the free energy
of a microparticle near a plane surface of a semispace. The
above derivation is preserved also in the limiting case of a
solid or hollow cylinder made of isotropic material with
«x=«y=«z;«. To obtain the result for an isotropic cylinder,
one should substitute in Eq.s19d the reflection coefficients
s2d and s4d instead ofs5d and s7d.

Equations19d is the approximate one. It is, however, prac-
tically exact ata!R and is of high precisionsthe error is of
about 1%d at all separationsaøR/2. That is why this equa-
tion is reliable for calculations of the van der Waals interac-
tion between a cylinder and microparticles located in its
close proximity.

IV. DIELECTRIC PERMITTIVITIES OF GRAPHITE AND
DYNAMIC POLARIZABILITIES OF A HYDROGEN

ATOM AND MOLECULE ALONG THE IMAGINARY
FREQUENCY AXIS

Below, we use the Lifshitz-type formulas obtained above
to calculate the van der Waals interaction between hydrogen
atoms or molecules and a graphite semispace or flat plate
fEqs. s1d, s5d, and s7dg or a graphite cylinderfEqs. s5d, s7d,
and s19dg. The graphite cylinder models a multiwall carbon
nanotubessee Sec. VId. To attain these ends, one needs the
values of dynamic polarizabilities of a hydrogen atom and
molecule and also both dielectric permittivities of graphite at
all Matsubara frequencies which give non-negligible contri-
bution to the result.

The precise expression for the atomic dynamic polariz-
ability of hydrogen is given by the 10-oscillator formula38

written in atomic units,

asijld = o
j=1

10
gj

vaj
2 + jl

2 , s20d

wheregj are the oscillator strengths andvaj are the eigenfre-
quencies. For the hydrogen atom, the values of these quan-
tities are listed in Table Isnote that 1 a.u. of energy
=4.3597310−18 J=27.11 eVd. Note also that before the sub-
stitution in Eqs.s1d ands19d, the atomic dynamic polarizabil-
ity from Eq. s20d should be expressed in cubic meters includ-
ing the transformation factor for 1 a.u. of polarizability
=1.482310−31 m3.

In addition to the precise representations20d, the atomic
dynamic polarizability of a hydrogen atom can be expressed
in terms of a more simple single oscillator model,

asijld =
ga

va
2 + jl

2 , s21d

where ga=aas0dva
2 is expressed through the static atomic

polarizability aas0d=4.50 a.u. and the characteristic energy
va=11.65 eV.39

Below we will check that after the substitution to the
Lifshitz-type formulas, both expressionss20d and s21d lead

to equal results in the limits of required accuracy. This per-
mits us to use a more simple Eq.s21d in computations.

It is well known that for a hydrogen molecule the single
oscillator model for the dynamic polarizability is more exact
than for the atom. For this reason, it is acceptable to present
the dynamic polarizability of a hydrogen molecule in the
form

asijld =
gm

vm
2 + jl

2 , s22d

where gm=ams0dvm
2 . Here the static polarizability and the

characteristic energy of a hydrogen molecule are equal to
ams0d=5.439 a.u. andvm=14.09 eV, respectively.39

Now let us consider the problem of dielectric permittivi-
ties of graphite«x and«z along the imaginary frequency axis.
Both these quantities can be computed with the help of the
Kramers-Kronig relation

«x,zsijd = 1 +
2

p
E

0

`

dv
v Im «x,zsvd

v2 + j2 . s23d

The imaginary parts of the respective dielectric
permittivities along the real axis, in turn, are equal to
2 Renx,zsvd3 Im nx,zsvd, i.e., are expressed through the real
and imaginary parts of the complex refractive index of
graphite for ordinary and extraordinary rays, respectively.

Reference 40 contains the measurement data for
Renx,zsvd and Imnx,zsvd of graphite obtained by different
authors in the frequency region fromV1=0.02 eV toV2
=40 eV s1 eV=1.51931015 rad/sd. The use of these data to
calculate«x,zsijd by Eq.s23d is, however, complicated by the
two problems. First, the intervalfV1,V2g is too narrow to
calculate«x,zsijd at all Matsubara frequencies contributing to
the van der Waals forcesby comparison, for Au the complex
refractive index is measured from 0.125 eV to 10 000 eVd.
Second, although fornx data by different authors are in
agreement, in the case ofnz there are contradictory data in
the literature atvø15.5 eV.

The first problem can be solved by the use of extrapola-
tion. According to Ref. 40, at high frequenciesvùV2 the

TABLE I. The values of strengths and eigenenergies of oscilla-
tors for a hydrogen atom in the framework of the 10-oscillator
model.

j gj vaj sa.e.d

1 0.41619993 0.37500006

2 0.08803654 0.44533064

3 0.08993244 0.48877611

4 0.10723836 0.56134416

5 0.10489786 0.68364018

6 0.08700329 0.89169023

7 0.06013601 1.2698693

8 0.03259492 2.0478339

9 0.01199044 4.0423429

10 0.00197021 12.194172
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imaginary parts of graphite dielectric permittivities can be
presented analytically in the form

Im «x,z
shdsvd =

Ax,z

v3 . s24d

Here the values of constantsAx=9.603103 eV3 and
Az=3.493104 eV3 are determined from the condition of a
smooth joining with the tabulated data atv=V2.

40

At low frequenciesvøV1, one may approximate Im«x
with the help of the Drude model,30

Im «x
sldsvd =

vp
2g

vsv2 + g2d
, s25d

where the plasma frequencyvp=1.226 eV and the relaxation
parameterg=0.04 eV are determined from the demand of
smooth joining with tabulated data atv=V1.

The extrapolation of tabulated data for Im«z to the region
of low frequencies is connected with the second problem
discussed above, i.e., with the contradictory measurements
by different authors. Thus, the measurement data fornzsvd in
Ref. 41 differ considerably from the same data in Ref. 42 in
the frequency regionvø15.5 eV. According to both Refs.
41 and 42, the imaginary part of«zsvd can be extrapolated to
low frequenciesvøV1 by a constant,

Im «z
sldsvd = «z09 = const. s26d

The values of this constant, however, are found to be differ-
ent:«z09 =3 according to Ref. 42 and«z09 =0 according to Ref.
41.

As a result, the calculation of graphite dielectric permit-
tivities along the imaginary frequency axis by Eq.s23d is
performed as follows:

«x,zsijd = 1 +
2

p
E

0

V1

dv
v Im «x,z

sld

v2 + j2 +
2

p
E

V1

V2

dv
v Im «x,z

std

v2 + j2

+
2

p
E

V2

`

dv
v Im «x,z

shd

v2 + j2 , s27d

where Im«x,z
std is found from the tables and Im«x,z

sh,ld are given
by Eqs. s24d–s26d. Substituting Eqs.s24d–s26d in Eq. s27d,
one finds

«xsijd = 1 +
2

p

j arctan
V1

g
− g arctan

V1

j

jsj2 − g2d
vp

2

+
2

p
E

V1

V2

dv
v Im «x

stdsvd
v2 + j2 +

Ax

j2F 2

pV2

+
1

j
S 2

p
arctan

V2

j
− 1DG ,

«zsijd = 1 +
«z09

p
lnS1 +

V1

j
D +

2

p
E

V1

V2

dv
v Im «z

stdsvd
v2 + j2

+
Ax

j2F 2

pV2
+

1

j
S 2

p
arctan

V2

j
− 1DG . s28d

The calculational results from Eq.s28d, obtained
by the use of the tabulated optical data of Refs. 40–42, are
shown in Figs. 2sad and 2sbd in the frequency range from
j1=2.4731014 rad/s toj2000 at T=300 K. These results al-
low the precise calculation of the van der Waals interaction
by Eqs.s1d ands19d in the separation regionaù3 nm snote
that with the increase of separation, the number of Matsubara
frequencies, giving a non-negligible contribution to the re-
sult, decreasesd. As to the contribution of zero Matsubara
frequencyj0=0, there is the analytical resultr i;g

s,ps0,k'd=1,
which follows from «xsijd→` when j→0 in accordance
with Eq. s28d. Note that at zero frequency, the other reflec-
tion coefficientr';g

s,p s0,k'd does not contribute to the result
due to the multiplej0

2 on the right-hand sides of Eqs.s1d and
s19d.

The dependence of«xsijd on j in Fig. 2sad is typical for
good conductorsscompare with Refs. 32 and 33 for Al and

FIG. 2. Dielectric permittivity of graphite along the imaginary
frequency axis insad the hexagonal layer andsbd perpendicular to it,
as a function of frequency. Solid and dashed lines insbd are ob-
tained with the optical data of Ref. 42 and Ref. 41, respectively.
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Aud. In Fig. 2sbd, the solid line is obtained with the results of
Ref. 42ssee also Ref. 40d with «z09 =3. The dashed line in Fig.
2sbd is obtained by the data of Ref. 41ssee also Ref. 40d
using«z09 =0. It is seen that the dashed line differs markedly
from the solid line in the frequency regionj,1017 rad/s.
The respective differences in the free energy are discussed in
the next section. It is reasonably safe, however, to prefer the
solid line in Fig. 2sbd as giving the correct behavior of«z
along the imaginary frequency axis. In fact, the difference
between the two lines is due to the absence of absorption
bands near the frequencies of 5 eV and 11 eV in the tabu-
lated data of Ref. 41 related to«z snote that in the data for«x
there are absorption bands at these frequencies in both Refs.
41 and 42d. This casts doubts on the measurement data of
Ref. 41 for «z because from the theory of graphite band
structure43 it follows that the respective absorption
bands must be present simultaneously in both sets of data for
«x and«z.

V. CALCULATION OF THE van der WAALS INTERACTION
BETWEEN A HYDROGEN ATOM OR MOLECULE

AND A PLANE SURFACE OF GRAPHITE

We consider the hydrogen atom or molecule at a separa-
tion a from the hexagonal plane surfacesx,yd of a graphite
semispace of a flat graphite plate of thicknessd. Note that
the separation distance between the two plane hexagonal lay-
ers in graphite is approximately 0.336 nm. All calculations
are performed at separationsaù3 nm where one can neglect
the atomic structure of graphite and describe it in terms of
dielectric permittivities«xsvd ,«zsvd, as is done in the Lif-
shitz theory. Bearing in mind applications at short separa-
tions, it is instructive to present Eq.s1d in the form of non-
relativistic van der Waals interactionssee the Introductiond,

FE
s,psa,Td = −

C3
s,psa,Td

a3 , s29d

where the van der Waals coefficientC3
s,p ffor the case of an

atom near a semispacessd or a platespd, respectivelyg is now

a function of both separation and temperature. For the sake
of convenience in numerical computations, we introduce the
nondimensional variables

y = 2aql, zl =
2ajl

c
;

jl

vc
s30d

and express the van der Waals coefficient in terms of these
variables,

C3
s,psa,Td =

kBT

8 H2as0d + o
l=1

`

asizlvcd

3 E
zl

`

dye−yh2y2r i;g
s,pszl,yd + zl

2fr';g
s,p szl,yd

− r i;g
s,pszl,ydgjJ . s31d

Note that for separations up to a few hundred nanometers,
Eq. s31d practically does not depend on temperature.

In terms of the new variabless30d, the coefficients of
reflection from a graphite semispaces5d are rearranged as

r i;g
s szl,yd =

Î«xl«zly − fzsy,zld
Î«xl«zly + fzsy,zld

,

r';g
s szl,yd =

fxsy,zld − y

fxsy,zld + y
, s32d

where

fz
2sy,zld = y2 + zl

2s«zl − 1d,

fx
2sy,zld = y2 + zl

2s«xl − 1d. s33d

In analogy, the reflection coefficientss7d from a flat plate
of thicknessd take the form

r i;g
p szl,yd =

«xl«zly
2 − fz

2sy,zld

«xl«zly
2 + fz

2sy,zld + 2Î«xl«zlyfzsy,zldcothffzsy,zldd/s2adg
,

r';g
p szl,yd =

fx
2sy,zld − y2

y2 + fx
2sy,zld + 2yfxsy,zldcothffxsy,zldd/s2adg

. s34d

Now we substitute the reflection coefficients from a semi-
spaces32d, the precise atomic dynamic polarizabilitys20d,
and data of Fig. 2sad for «x and Fig. 2sbd ssolid lined for «z

into Eq. s31d. The calculational results for the coefficient of
van der Waals interaction between a hydrogen atom and
graphite semispace are presented in Fig. 3sad by the solid
line. For comparison, the dashed line in Fig. 3sad shows the

results obtained with the use of alternative data for«z

fdashed line in Fig. 2sbdg. As is seen from Fig. 3sad, at the
shortest separationa=3 nm the use of the alternative data for
«z leads to a 15% error in the value of the van der Waals
coefficient, which decreases with an increase of separation.

The computation ofC3
s was repeated using the single os-

cillator models21d for the atomic dynamic polarizability in-
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stead of the 10-oscillator models20d. The results were found
to be practically in coincidence with those in Fig. 3sad sthe
maximum deviations are less than 0.2% in the separation
region from 3 nm to 150 nmd. Thus, the single oscillator
model is a sufficient approximation for the atomicsand, con-
sequently, moleculard dynamic polarizability of hydrogen in
computations of the short-range van der Waals interaction
with a graphite surface.

In the same way as above, we calculate the van der Waals
coefficient C3

s for the interaction of a hydrogen molecule
with graphite semispace. The only difference is the use of the
dynamic polarizability of a molecules22d instead of the
atomic one. The results are shown in Fig. 3sbd by the solid
line sthe dashed line is calculated by the less accurate alter-
native data of Ref. 41 for the dielectric permittivity«zd. The
comparison of Figs. 3sad and 3sbd leads to the conclusion that
the magnitudes of the van der Waals coefficient for the hy-
drogen molecule are larger than for the atom.

Now let the hydrogen atom be located at a separationa
from the flat graphite plate of thicknessd. Of interest is the
dependence ond of the van der Waals free energy of atom-
plate interaction. The calculations of the free energy were
performed by Eqs.s29d and s31d with reflection coefficients
s32d sfor a semispaced and s34d sfor a plate of thicknessdd.
The values of dielectric permittivities along the imaginary
frequency axis were taken from Fig. 2ssolid linesd and the
atomic dynamic polarizability from Eq.s21d. In Fig. 4, the

ratios of the free energies are plotted for the case of a plate
and a semispace as a function of plate thickness for a hydro-
gen atom located at different separations from the graphite
surfacesline 1 for a=3 nm, line 2 fora=10 nm, line 3 for
a=20 nm, and line 4 fora=50 nmd. As is seen from Fig. 4,
at a separationa=3 nm the finite thickness of the plate has a
pronounced effect on the free energysmore than 1% changed
only for thicknessesd,8 nm. At separationsa=10 nm,
20 nm, and 50 nm, the finite thickness of the plate leads to a
smaller magnitude of the van der Waals free energy, as com-
pared with a semispace, for more than 1% if the thickness of
a plate is less than 19 nm, 32 nm, and 61 nm, respectively.
Thus, if the separation between an atom and a plate
is a=3 nm, then the plate ofd=8 nm thickness can already
be considered with good accuracy to be a semispace.

VI. CALCULATION OF THE van der WAALS
INTERACTION FOR A HYDROGEN ATOM OR

MOLECULE EXTERNAL TO A MULTIWALL CARBON
NANOTUBE

The multiwall carbon nanotube can be modeled by a
graphite cylindrical shell of some lengthL, external radius
R!L, and thicknessd,R. In doing so, the hexagonal layers
of a graphite crystal lattice form the external surface of a
cylinder and the internal sections concentric to it. The crystal
optical axisz is perpendicular to the surface of the cylinder at
each point. The above-derived Lifshitz-type formulas19d is
applicable to the case of a multiwall carbon nanotube if its
thicknessd is large enoughstypically dù3 nmd, so that the
nanotube contains sufficiently many layers. Then it is pos-
sible to neglect the atomic structure of graphite and to de-
scribe it in terms of dielectric permittivity.

For convenience in numerical computations, we rewrite
Eq. s19d in terms of dimensionless variabless30d, represent-
ing the free energy of the van der Waals interaction with a
cylinder in the form

FE
csa,Td = −

C3
csa,Td
a3 , s35d

where

FIG. 3. Dependence of the van der Waals coefficientC3
s on

separation ofsad a hydrogen atom andsbd a molecule, from graphite
semispace. The solid and dashed lines are obtained with the optical
data of Ref. 42 and Ref. 41, respectively.

FIG. 4. The ratios of the free energies for the van der Waals
atom-plate to atom-semispace interaction as a function of plate
thickness for a hydrogen atom located at different separations from
the graphite surfaceslines 1, 2, 3, and 4 are for separations
a=3 nm, 10 nm, 20 nm, and 50 nm, respectivelyd.
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C3
csa,Td =

kBT

8
Î R

R+ aH 4R+ 3a

2sR+ ad
as0d

+ o
l=1

`

asizlvcdE
zl

`

dyye−yFy −
a

2sR+ adG
3 F2r i;g

s,pszl,yd +
zl

2

y2fr';g
s,p szl,yd − r i;g

s,pszl,ydgGJ .

s36d

The reflection coefficients were defined in Eq.s32d swith
indexs related to the case of a solid cylinderd and in Eq.s34d
swith index p related to the case of a cylindrical shell of
thicknessdd.

Let us first compare the van der Waals interaction be-
tween a hydrogen atom or molecule with a graphite semis-
pace and a solid cylinder. The differences of the interaction
strength with a semispace and a cylinder can be character-
ized by a parameterd=sC3

s−C3
cd /C3

s. A few results for a
graphite cylinder withR=50 nm, calculated by Eqs.s36d,
s31d, s21d, ands22d, and dielectric permittivities given by the
solid lines of Fig. 2, are presented in Table IIscolumns 2–4
and 5–7 are related to the cases of a hydrogen atom and
molecule, respectivelyd. As is seen from Table II, at short
separations of about a few nanometers, there are only minor
differences betweenC3

s andC3
c. With increase ofa, however,

the magnitude ofd quickly increases. This takes place for
both hydrogen atoms and molecules.

It is interesting to follow the dependence of the van der
Waals coefficientC3

c on R for atoms and molecules located at
different separations from the cylinder surface. These com-
putations were performed with Eqs.s36d, s5d, s21d, ands22d
and the same data for graphite dielectric permittivities. The
results are presented in Fig. 5sad sfor a hydrogen atomd and
Fig. 5sbd sfor a hydrogen moleculed where the lines 1, 2, and
3 are pictured for separationsa=3 nm, 5 nm, and 10 nm,
respectively. It is seen that with the increase ofR, the van der
Waals coefficients are also increasing.

Now consider the cylindrical shell of radiusR and thick-
nessd with the longitudinal cavity of a radiusR−d. This is
evidently a better model for a multiwall carbon nanotube. In

Fig. 6, we present the computation results for the interaction
between a hydrogen atom and a cylindrical envelope with
R=20 nm as a function of envelope thicknessd sthe atom is
located at a separationa=5 nm from the external surface of
the cylindrical shelld. The computations were performed by
Eq. s36d using the same procedure as above. The value
d=20 nm corresponds to the case of a solid cylinder. It is
interesting, however, that already atd=11 nm the magnitude
of C3

c is only 1% lower than the one obtained for the solid
cylinder of R=20 nm radius. For less thickness of the cylin-

TABLE II. Magnitudes of the van der Waals coefficientsC3
s andC3

c and their relative differencesd ssee
textd for the interaction of a hydrogen atom or molecule with a graphite semispace or a cylinder with radius
R=50 nm.

a H H2

snmd C3
s sa.u.d C3

c sa.u.d d s%d C3
s sa.u.d C3

c sa.u.d d s%d

3 0.09882 0.09471 4.2 0.1317 0.1262 4.2

5 0.09416 0.08792 6.6 0.1248 0.1166 6.6

10 0.08316 0.07322 12.0 0.1088 0.09584 11.9

20 0.06652 0.05301 20.3 0.08526 0.06801 20.2

30 0.05516 0.04047 26.6 0.06970 0.05118 26.6

40 0.04704 0.03214 31.7 0.05885 0.04025 31.6

50 0.04098 0.02631 35.8 0.05090 0.03270 35.8

FIG. 5. Dependence of the van der Waals coefficientC3
c on the

cylinder radius forsad a hydrogen atom andsbd a molecule, located
at different separations from the graphite cylinderslines 1, 2, and 3
are for separationsa=3 nm, 5 nm, and 10 nm, respectivelyd.
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drical shell, the smaller values of the van der Waals coeffi-
cient are obtainedsthe same is true also for a hydrogen mol-
eculed. Note that we do not extend the line of Fig. 6 for
thicknesses less than 3 nm, where the macroscopic descrip-
tion of graphite in terms of dielectric permittivity may not be
applicable.

VII. COMPARISON BETWEEN THE FREE ENERGIES OF
HYDROGEN ATOMS INSIDE AND OUTSIDE OF

MULTIWALL CARBON NANOTUBES

The above-obtained Lifshitz-type formulass19d and s36d
provide a good approximate description of the van der Waals
interaction when a microparticle is located outside of a cy-
lindrical shell. Let us now consider a microparticle inside of
the same shell. In this case, the van der Waals free energy
can be approximately calculated by the method of pairwise
summation of the interatomic potentials with subsequent nor-
malization of the obtained interaction coefficient using the
known case of a microparticle near a semispace.15,44 For a
microparticle outside of an arbitrary macrobodyv, this
method leads to the expression

FE
vsa,Td < −

6C3
ssa,Td
p

E
v

dv
r6 , s37d

where r is the separation between the microparticle and an
atom smoleculed of the macrobody.

To determine the accuracy of Eq.s37d, let us apply it in
the case of a hydrogen atom outside of a solid graphite cyl-
inder at a separationa fto which Eq.s36d is also applicableg.
Then Eq.s37d is rewritten as

FE
c,ext; FE

csa,Td < −
24C3

ssa,Td
p

3 E
0

um

duE
0

`

dzE
r1sud

r2sud rdr

sr2 + z2d3 , s38d

where sinum=R/ sR+ad, R is the cylinder radius, andr1,2sud
are the two solutions of the equation

r2 + sR+ ad2 − 2rsR+ adcosu = R2. s39d

After the integration overz andr, Eq. s38d takes the form

FE
c,extsa,Td < −

3

2
C3

ssa,TdE
0

um

duF 1

r1
3sud

−
1

r2
3sudG . s40d

The numerical computations by Eq.s40d demonstrate that for
a cylinder withR=50 nm, the results obtained by the method
of additive summation differ by less than 1% from the results
obtained by the Lifshitz-type Eq.s35d, within the separation
rangeaø8 nm. At a=10 nm, the free energies computed by
the two formulas differ for 1.35%, and ata=50 nm by 16%.
Hence the method of additive summation works well at small
separations between an atom and a cylindrical surface. This
makes it reasonable to apply this method for a hydrogen
atom inside of a multiwall carbon nanotube.

We consider a hydrogen atom inside of a nanotube with
thicknessd and internal radiusR0=R−d at a separationa
from the internal surface. In accordance with Eq.s37d, the
free energy of the van der Waals interaction is

FE
c,intsa,Td < −

24C3
ssa,Td
p

E
0

p

duE
0

`

dzE
r̃1sud

r̃2sud rdr

sr2 + z2d3 ,

s41d

where the integration limits are given by

r̃1sud = − sR0 − adcosu + ÎR0
2 − sR0 − ad2 sin2 u,

r̃2sud = − sR0 − adcosu + ÎsR0 + dd2 − sR0 − ad2 sin2 u.

s42d

After the integration overz andr, Eq. s41d leads to

FE
c,intsa,Td < −

3

2
C3

ssa,TdE
0

p

duF 1

r̃1
3sud

−
1

r̃2
3sudG . s43d

In Fig. 7, we present the results of numerical computa-
tions by Eq.s43d for the hydrogen atom inside of the hypo-
thetical nanotube with the internal radiusR0=10 nm and ex-
ternal radius R=50 nm. The free energy of the atom-
nanotube interaction is plotted in Fig. 7 as a function of atom
position between the opposite points of the internal cylindri-
cal surface. The atom positions closer than 3 nm to the in-
ternal surface are not reflected in the figurestheir consider-

FIG. 6. Dependence of the van der Waals coefficientC3
c on

thickness of the cylindrical shell with an external radiusR=20 nm
for a hydrogen atom at a separationa=5 nm from the shell.

FIG. 7. The van der Waals free energy for a hydrogen atom
inside of the carbon nanotube with internal radiusR0=10 nm and
external radiusR=50 nm as a function of the atom position be-
tween the opposite points of the internal cylindrical surface.
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ation would demand a more exact treatment of the atomic
structure of graphited. As is seen from Fig. 7, the free energy
reaches a maximum on the cylinder axis, where the van der
Waals force acting on an atom is equal to zero in accordance
with symmetry considerations. This equilibrium state is,
however, unstable, and under the influence of fluctuations the
hydrogen atom will move to positions with lower free energy
near the internal cylindrical surface of a nanotube.

Now we are in a position to compare the free energies of
hydrogen atoms located outside and inside a multiwall car-
bon nanotube in order to decide which position is preferable
energetically. In Fig. 8, the calculation results for the differ-
ences of free energiesFE

c,ext andFE
c,int are presented as a func-

tion of thickness of the nanotube. In doing so, we consider
both atoms, internal and external, situated at a separationa
=3 nm from the internal and external surfaces of a nanotube,
respectively. The solid line in Fig. 8 is related to the fixed
internal radius of the nanotubeR0=10 nm, and in this case
the external radius increases together with thickness of the
nanotubed. The dashed line is for a fixed external radiusR
=50 nm and decreasing internal radius with the increase of
d. The computations were performed with Eq.s43d for a
position of the atom inside the nanotube and with Eq.s35d
for a position of the atom outside the nanotube.

As is seen from Fig. 8, in all cases the difference between
the external and internal free energies of the van der Waals
interaction is positive. What this means is the position of a
hydrogen atom inside a multiwall carbon nanotube is prefer-
able energetically. Comparing the solid and dashed lines in
Fig. 8, we conclude that for nanotubes of fixed thicknessd
the potential well for the hydrogen atom inside a nanotube is
deeper if the nanotube has a smaller external radiusR. This
is an encouraging result which points to the possibility of
hydrogen storage inside carbon nanostructures.

VIII. CONCLUSIONS AND DISCUSSION

In the above, we have widened the scope of the Lifshitz
theory of the van der Waals force by considering new con-
figurations of much interest which have not been explored

previously. The first to be investigated was the van der Waals
force between an atom or molecule and a plane surface of a
uniaxial crystal perpendicular to the crystal optic axis. For
this configuration, the exact expression for the free energy of
the van der Waals and Casimir-Polder interaction is given by
Eq. s1d with the reflection coefficientss5d sfor the case of a
microparticle near a semispaced or s7d sfor a microparticle
near a plate of finite thicknessd. We next derive the approxi-
mate Lifshitz-type formulas19d for the free energy of the van
der Waals interaction between a microparticle and solid cyl-
inder or a cylindrical shell having a longitudinal concentric
cavity. This cylinder may be made of isotropic material or of
a uniaxial crystal. The accuracy of the obtained formula was
shown to be of about 1% at microparticle-cylinder separa-
tions less than one-half of a cylinder radius.

The above extensions of the Lifshitz formula for
microparticle-wall interaction were applied to the case of a
hydrogen atom or molecule near a graphite surface. For this
purpose, the dielectric permittivities of graphite along the
imaginary frequency axis were found by the use of tabulated
optical data for the complex refractive index. In doing so,
different sets of data were analyzed and necessary extrapo-
lations to high and low frequencies were done. Together with
the use of hydrogen atomic and molecular dynamic polariz-
abilities, this allowed us to calculate the van der Waals inter-
action between a hydrogen atom or molecule and graphite
semispace, a graphite flat plate of finite thickness, or a solid
graphite cylinder and a cylindrical shell. In particular, the
influence of the thickness of the plate on the van der Waals
interaction was investigated.

The calculation results for the atom-cylinder case were
used to model the van der Waals interaction between hydro-
gen atoms or molecules and a multiwall carbon nanotube
with a sufficiently large number of layers. In particular, the
dependence of the van der Waals interaction of the atom-
nanotube case on nanotube thickness was investigated. No-
tice that the developed formalism is not applicable to single-
or two-wall nanotubes where the atomic structure of the wall
should be taken into account. In this case, the van der Waals
force can be computed in the framework of density-
functional theory.45–47

Finally, we have compared the free energies of the van der
Waals interaction between a hydrogen atom and multiwall
carbon nanotube for the cases when the atom is located out-
side or inside of the nanotube. It was shown that atoms situ-
ated inside of a multiwall nanotube possess lower free en-
ergy in a wide region of nanotube thicknesses, i.e., such a
position is energetically preferable. This conclusion is prom-
ising for the possibility of using carbon nanotubes for the
purpose of hydrogen storage.

Many other opportunities for application of the obtained
generalizations of the Lifshitz formula in the physics of dis-
persion forces are possible.
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nanotubes with a fixed internal radiusR0=10 nm and a fixed exter-
nal radiusR=50 nm, respectively.

VAN DER WAALS INTERACTION BETWEEN… PHYSICAL REVIEW B 71, 235401s2005d

235401-11



*Present address: Institute for Theoretical Physics, Leipzig Univer-
sity, Augustusplatz 10/11, 04109, Leipzig, Germany.

1J. E. Lennard-Jones, Trans. Faraday Soc.28, 333 s1932d.
2M. Karimi and G. Vidali, Phys. Rev. B34, 2794s1986d.
3M. Karimi and G. Vidali, Phys. Rev. B39, 3854s1989d.
4H. B. G. Casimir and D. Polder, Phys. Rev.73, 360 s1948d.
5E. M. Lifshitz and L. P. Pitaevskii,Statistical Physics, Part II

sPergamon Press, Oxford, 1980d.
6F. Shimizu, Phys. Rev. Lett.86, 987 s2001d.
7V. Druzhinina and M. DeKieviet, Phys. Rev. Lett.91, 193202

s2003d.
8R. E. Grisenti, W. Schollkopf, J. P. Toennies, G. C. Hegerfeldt,

and T. Kohler, Phys. Rev. Lett.83, 1755s1999d.
9J. D. Perreault, A. D. Cronin, and T. A. Savas, e-print physics/

0312123.
10Y. J. Lin, I. Teper, C. Chin, and V. Vuletić, Phys. Rev. Lett.92,

050404s2004d.
11M. Antezza, L. P. Pitaevskii, and S. Stringari, Phys. Rev. A70,

053619s2004d.
12J. F. Babb, G. L. Klimchitskaya, and V. M. Mostepanenko, Phys.

Rev. A 70, 042901s2004d.
13A. O. Caride, G. L. Klimchitskaya, V. M. Mostepanenko, and S. I.

Zanette, Phys. Rev. A71, 042901s2005d.
14J. Mahanty and B. W. Ninham,Dispersion ForcessAcademic

Press, London, 1976d.
15Yu. S. Barash,van der Waals ForcessNauka, Moscow, 1988d sin

Russiand.
16J. Blocki, J. Randrup, W. J. Swiatecki, and C. F. Tsang, Ann.

Phys.sN.Y.d 105, 427 s1977d.
17S. K. Lamoreaux, Phys. Rev. Lett.78, 5 s1997d.
18U. Mohideen and A. Roy, Phys. Rev. Lett.81, 4549s1998d; G. L.

Klimchitskaya, A. Roy, U. Mohideen, and V. M. Mostepanenko,
Phys. Rev. A60, 3487s1999d.

19B. W. Harris, F. Chen, and U. Mohideen, Phys. Rev. A62,
052109s2000d.

20F. Chen, U. Mohideen, G. L. Klimchitskaya, and V. M.
Mostepanenko, Phys. Rev. Lett.88, 101801s2002d; Phys. Rev.
A 66, 032113s2002d.

21R. S. Decca, E. Fischbach, G. L. Klimchitskaya, D. E. Krause, D.
López, and V. M. Mostepanenko, Phys. Rev. D68, 116003
s2003d.

22A. C. Dillon, K. M. Jones, T. A. Bekkedahl, C. H. Kiang, D. S.
Bethune, and M. J. Heben, NaturesLondond 386, 377 s1997d.

23R. G. Ding, G. Q. Lu, Z. F. Yan, and M. A. Wilson, J. Nanosci.
Nanotechnol.1, 7 s2001d.

24V. Meregalli and M. Parrinello, Appl. Phys. A: Mater. Sci. Pro-

cess.72, 143 s2001d.
25W. A. Diño, H. Nakanishi, and H. Kasai, J. Surf. Sci. Nanotech-

nol. 2, 77 s2004d.
26I. V. Bondarev and Ph. Lambin, Solid State Commun.132, 203

s2004d.
27I. V. Bondarev and Ph. Lambin, e-print cond-mat/0501593.
28Ch. Girard, Ph. Lambin, A. Dereux, and A. A. Lucas, Phys. Rev.

B 49, 11 425s1994d.
29F. Zhou and L. Spruch, Phys. Rev. A52, 297 s1995d.
30J. Schwinger, L. L. DeRaad, Jr., and K. A. Milton, Ann. Phys.

sN.Y.d 115, 1 s1978d.
31P. W. Milonni, The Quantum VacuumsAcademic Press, San Di-

ego, 1994d.
32G. L. Klimchitskaya, U. Mohideen, and V. M. Mostepanenko,

Phys. Rev. A61, 062107s2000d.
33M. Bordag, U. Mohideen, and V. M. Mostepanenko, Phys. Rep.

353, 1 s2001d.
34D. L. Greenaway, G. Harbeke, F. Bassani, and E. Tosatti, Phys.

Rev. 178, 1340s1969d.
35F. D. Mazzitelli, inQuantum Field Theory Under the Influence of

External Conditions, edited by K. A. Milton sRinton Press,
Princeton, 2004d.

36F. D. Mazzitelli, M. J. Sancher, N. N. Scoccola, and J. von
Stecher, Phys. Rev. A67, 013807s2003d.

37L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii,Electrodynam-
ics of Continuous MediasPergamon Press, Oxford, 1984d.

38R. E. Johnson, S. T. Epstein, and W. J. Meath, J. Chem. Phys.47,
1271 s1967d.

39S. Rauber, J. R. Klein, M. W. Cole, and L. W. Bruch, Surf. Sci.
123, 173 s1982d.

40Handbook of Optical Constants of Solids, edited by E. D. Palik
sAcademic, New York, 1991d, pp. 449–460.

41R. Klucker, M. Skilowski, and W. Steinmann, Phys. Status Solidi
B 65, 703 s1974d.

42H. Venghaus, Phys. Status Solidi B71, 609 s1975d.
43L. G. Johnson and G. Dresselhaus, Phys. Rev. B7, 2275s1973d.
44V. M. Mostepanenko and N. N. Trunov,The Casimir Effect and

Its ApplicationssClarendon Press, Oxford, 1997d.
45A. Bogicevic, S. Ovesson, P. Hyldgaard, B. I. Lundqvist, H.

Brune, and D. R. Jennison, Phys. Rev. Lett.85, 1910s2000d.
46E. Hult, P. Hyldgaard, J. Rossmeisl, and B. I. Lundqvist, Phys.

Rev. B 64, 195414s2001d.
47H. Rydberg, M. Dion, N. Jacobson, E. Schröder, P. Hyldgaard, S.

I. Simak, D. C. Langreth, and B. I. Lundqvist, Phys. Rev. Lett.
91, 126402s2003d.

BLAGOV, KLIMCHITSKAYA, AND MOSTEPANENKO PHYSICAL REVIEW B 71, 235401s2005d

235401-12


