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Optical properties of one-dimensional photonic crystals based
on multiple-quantum-well structures
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A general approach to the analysis of optical properties of photonic crystals based on multiple-quantum-well
structures is developed. The effect of the polarization state and a nonperpendicular incidence of the electro-
magnetic wave is taken into account by introduction of an effective excitonic susceptibility and an effective
optical width of the quantum wells. This approach is applied to consideration of optical properties of structures
with a pre-engineered break of the translational symmetry. It is shown, in particular, that a layer with different
exciton frequency placed at the middle of an MQW structure leads to appearance of a resonance suppression

of the reflection.

DOI: 10.1103/PhysRevB.71.235335

I. INTRODUCTION

Structures with spatially modulated dielectric properties
(photonic crystals) attract an ever-growing interest since the
early papers where they were considered.’> This interest is
caused by unique opportunities that such structures provide,
to affect, in a controllable way, fundamental microscopic
processes of light-matter interaction through a modification
of macroscopic geometric characteristics of the structures.
This makes such structures of obvious interest not only for
fundamental physics but also for applications. Most of the
works devoted to photonic crystals considered structures
made of materials with a frequency-independent dielectric
constant.>* Recently, however, a class of structures, which
can be described as resonant or optically active photonic
crystals, has attracted particular attention.!3 In these struc-
tures periodic modulation of the dielectric constant is accom-
panied by the presence of internal excitations of constituent
materials resonantly interacting with light within a certain
frequency region and resulting in a strong frequency disper-
sion of constituent dielectric constants. Extreme cases of
such structures are so-called optical lattices, in which well-
localized resonant elements are periodically distributed
through the medium with a uniform dielectric constant.
Originally, the concept of optical lattices referred to struc-
tures formed by cold atoms,'* but it was also applied to a
special kind of multiple-quantum-well structure (MQW),
which was considered as a semiconductor analog of a one-
dimensional optical lattice."

MQW is a periodic multilayer structure built of two semi-
conductor materials, for instance, GaAs and Al,Ga;_ As, in
which electrons and holes are confined in narrower layers of
a material with a smaller band gap (quantum wells) separated
by wide layers of a semiconductor with larger band gap (bar-
riers). In this case, the role of dipole active resonant excita-
tions is played by excitons confined to respective quantum
wells, and if the width of the barriers is large enough, exci-
tons from different quantum wells do not interact directly.
They, however, still can interact through their common ra-
diation field, and in this sense they are similar to atomic
optical lattices. This analogy is exact only if one can neglect
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a difference in refractive indexes of wells and barriers. This
approximation was widely used in most papers devoted to
long-period MQW structures, in which the period of the
structure is comparable to the wavelength of exciton
radiation.'®!7 Of special interest are so-called Bragg struc-
tures, in which the excitonic wavelength is in Bragg reso-
nance with the periodicity and which are characterized by a
significantly enhanced radiative coupling between quantum-
well excitons. As a result of this coupling, light propagates
through such a structure in the form exciton polaritons,
whose dispersion law is characterized by two branches with
a band gap between them.'®!7 The width of this stop band is
significantly enhanced compared to off-Bragg structures, and
this is what makes such structures of particular interest for
applications.

In realistic MQW structures, however, dielectric constants
of the wells and barriers are not equal to each other, and the
presence of resonant optical excitations is accompanied by a
periodic modulation of the background dielectric constant.
These structures, therefore, represent a special case of one-
dimensional resonant photonic crystals, optical properties of
which are characterized by an interplay between interface
reflections and resonant light-exciton interaction. The effects
of the refractive index contrast on the optical properties of
MQW structures have not been overlooked, of course, in
previous studies. In particular, a modification of the Bragg
condition and reflection spectra at normal incidence of Bragg
MQWs in the presence of the contrast have been discussed in
Refs. 18 and 19. The effects of the dielectric mismatch on
optical properties of single quantum wells’*?! or a MQW
structure embedded in a dielectric environment?>?* was also
taken into account. In principle, optical spectra of any given
MQW-based structure can be easily obtained numerically.
Numerical calculations, however, do not provide a real
physical insight into relations between structure and optical
properties of the systems under consideration. At the same
time, such an insight is crucial for understanding fundamen-
tal physics of these materials, as well as for efficient design
of structures with predetermined optical properties, which is
a key element in utilizing these structures for optoelectronic
applications. In order to achieve such a qualitative under-
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standing of optical properties of these materials, one needs a
unified analytical framework, which has not yet been devel-
oped. The main difficulty of this task is the presence of a
large number of experimental parameters, such as an angle of
incidence, a polarization state, indices of refraction, widths
of the barriers, the quantum wells, etc., which are in a com-
plicated way related to spectral characteristics of a structure.
The problem becomes even more difficult if one needs to
consider complex systems, such as periodic MQW structures
with several wells in an elementary cell'® or with intention-
ally introduced “defects.”?*2¢ In order to resolve these dif-
ficulties, one needs a general effective analytical approach
that would facilitate establishing relationships between ma-
terial parameters and spectral properties of MQW-based
structures for an arbitrary angle of incidence and polarization
state of incoming light.

Developing such a method is the main objective of the
present paper. The method is based on the transfer matrix
approach and consists of two steps. In the first step, we show
that a quantum well embedded in a dielectric environment
can be described in exactly the same way as a quantum well
in vacuum by introducing an effective excitonic susceptibil-
ity and an effective optical width of the quantum-well layer.
In the second step, we establish relations between these ef-
fective quantum-well characteristics and parameters of the
total transfer matrix describing propagation of light through-
out the entire structure. The method is rather general and can
be applied to a great variety of different MQW structures
with light of an arbitrary polarization, incident at an arbitrary
angle. In order to demonstrate the power of our approach, we
consider reflection spectra of a MQW structure in which a
central well is replaced with a well having a different reso-
nant frequency. Such structures have been considered previ-
ously in a number of papers?*~2° in the optical lattice ap-
proximation. Here we show how such a structure can be
effectively described even in the presence of the refractive
index contrast and that its presence does not destroy the re-
markable reflection properties of such structures, confirming,
therefore, their potential for optoelectronic applications.

II. A SINGLE QUANTUM WELL IN A DIELECTRIC
ENVIRONMENT

Propagation of the electromagnetic wave in structures un-
der discussion is governed by the Maxwell equation

2
VXV XE="2[eE+4mP], (1)
&

with modulated background dielectric permeability e.(z),
which is assumed to take values ni and ni in the barriers and
the quantum wells materials, respectively. For the sake of
concreteness we assume hereafter that n,,>n,, unless other-
wise explicitly specified. P.,. is the excitonic contribution to
the polarization and is defined by

P = x(w) f D(2)P(z")E(")dz’, (2)

where ®(z) is the exciton envelope function. Here we have
restricted ourselves by taking into account 1s heavy-hole ex-
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citons only and have neglected the in-plane dispersion of the
excitons. The frequency dependence of the excitonic suscep-
tibility is described by

X(w) = (3)

wy—w—iy
where w, is the exciton resonance frequency, vy is the nonra-
diative decay rate of the exciton, a=ebwLTa§w§/ 4c?, wpr is
the exciton longitudinal-transverse (LT) splitting, and ay is
the bulk exciton Bohr’s radius.

Because of the absence of an overlap of the exciton wave
functions localized in different quantum wells and the linear-
ity of the Maxwell equations, the propagation of the electro-
magnetic wave along the structure can be effectively de-
scribed by a transfer matrix. Using the usual Maxwell
boundary conditions, the transfer matrix through one period
of the structure in the basis of incoming and outgoing plane
waves can be written in the form

T= Tlly/zwa’I—Vv\/’l—'wbrl-'l/2 > (4)

where

i
1n_ €
T _< 0 e-"ff’b/z) ©)

is the transfer matrix through the halves of the barriers sur-
rounding the quantum well. Here ¢,=wn,d,cos 6),/c with d,
being the width of the barrier and 6, being an angle between
the wave vector k inside the barrier and the direction of the
z axis, €,.

The scattering of the electromagnetic wave at the inter-
face between the quantum well and the barrier caused by the
mismatch of the indices of refraction of their materials is
described by

1 1 (1 p
TbW=T;b=Tp(P)=rp o 1) (6)

where p is the Fresnel reflection coefficient. The interface
scattering depends upon both the angle of incidence of the
wave and its polarization state. These effects are effectively
described by Fresnel coefficients (see, e.g., Ref. 27) p,
and p,

n,cos 6, —n,cos 6,

py= :
* n,cos 6, +n,cos 6,

n,,cos ), —n,cos 6,

Pp= n,,cos 0, + n,cos 6, @
for s[E L (k,é.)] and p[Ell(k,é€,)] polarizations, respectively.
The angular dependence of these coefficients on the angle of
incidence measured inside the barrier is schematically shown
in Fig. 1.

Finally,

T =

w

(ei¢W'(1 —iS) —iS ) .
iS e (1 +iS) ®

is the transfer matrix through the quantum well. Here ¢,
=wn,d,cos 6,/c, where d,, is the width of the quantum well
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FIG. 1. A scheme of the angular dependence of the Fresnel
coefficients p; and p, on the angle 6,, is shown on the complex
plane. At normal incidence the coefficients have values shown by
small filled circles (the same for both polarizations). When the
angle of incidence increases, the coefficients follow the arrows on
the lines. p, passes through zero at the Brewster’s angle, both co-
efficients reach the unit circle at the angle of total internal reflec-
tion. When the angle increases further, the Fresnel coefficients be-
come complex with the unit modulus and increasing argument.

and 6, is the angle between Kk inside the quantum well and
€.. The excitonic contribution to the scattering of the light is
described by the function

1_‘O
S= . b
w—wy+iy

)

which we will call the excitonic susceptibility in what fol-
lows. The radiative decay rate I'; at normal incidence is de-
termined by

| 2
Ty= Eﬂ'kwLTaé(f D(z)cos kz dz) . (10)

For oblique incidence the radiative decay rates are renor-
malized in different ways for different polarizations. For p
polarization in addition to this renormalization it is also nec-
essary to take into account a possible splitting of Z- and
L-exciton modes,>*-32 which gives rise to a two-pole form of
S. However, in materials with the zinc-blende structure, the Z
mode of the heavy-hole excitons is optically inactive and one
can describe angle dependencies of the radiative decay rate
for s and p polarizations, respectively, by simple expressions

1"85) =TI"y/cos 6, ng) =T"ycos 6,,. (11)

Thus, propagation of light in the structures under consid-
eration depends on a number of natural parameters (such as
Fresnel coefficients, exciton frequencies, and radiative decay
rate) and optical widths, which (with the exception of w)
depend on the angle of incidence of the wave and its polar-
ization state.

Our next step will be to simplify the presentation of the
total transfer matrix through the period of the structure in
such a way that makes the relations between the elements of
the transfer matrix and the natural parameters of the structure
more apparent. The most complicated part of the transfer
matrix is the product 7}, T,,T,, which describes the reflec-
tion of the wave from the interface and its interaction with
quantum-well excitons. We simplify it by noting that this

product can be presented as 7,,T,,T,,,= TW, where TW has the
same form as T,,, Eq. (8), but with renormalized parameters
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(1 = iS) _iS

Tw = waTwwa = ~ it
iS e (1 +iS)

(12)

where the effective excitonic susceptibility S and the phase
shift ¢,, are defined as

sin ¢,,
1-p*°

~  1+p>-2pcos ¢,
Sos p1 P ¢ +2p
-p

ei((};w_qsw) = (1 3)

Here p denotes the Fresnel coefficient for the wave of a
respective polarization. Taking into account the diagonal
form of the transfer matrix through the barrier 7}, one can
see that the total transfer matrix through the period of the
structure again has the form of a single-quantum-well trans-
fer matrix and is determined by Eq. (8), where the phase ¢,
is replaced by a total phase ¢= ¢+,

Thus, we have shown that the propagation of the wave in
MQW-based photonic crystals can be described in terms of
properties of a respective optical lattice with renormalized
parameters. The renormalization of the phase is the simplest

one: the expression for ¢,, can be rewritten as

Bo= bl (14)
I-p
provided that the change of phase ¢,, across the well is much
smaller than 27, which is usually true for long-period MQW
structures. Hence, one of the effects of the index-of-
refraction contrast is reduced to a simple renormalization of
the optical width of the quantum well.

The effective susceptibility S consists of two terms. One
of them has a singularity at the exciton frequency, whereas
the second varies slowly in a wide frequency region. The
relation between these terms essentially depends on the fre-
quency, and near the exciton resonance the second term is
negligibly small. The frequency region where the nonsingu-
lar addition is negligible can be found from Eq. (13) and is
determined by

~ A} 1+p*—2pcos ¢,
min 2APC *

Here Ap=v2Iyw,/ 1 is the half-width of the forbidden gap in
a Bragg MQW without a mismatch of the indices of refrac-
tion, and Apc=2w,p sin[ ¢, (wy)]/m(1-p?) is the half-width
of the forbidden gap in a nonresonant (passive) photonic
crystal with the same mismatch calculated in the limit Ap.
<w,, where w, is the central frequency of the gap. In the
presence of broadening (both homogeneous and inhomoge-
neous), there is an additional restriction on this frequency
interval: |wy— w| > 7, and for sufficiently large vy it may cease
to exist. This will mean that the exciton resonances play a
very small role in the system, which, in this case, can be
considered as a regular photonic crystal. In real
GaAs/GaAlAs systems, this happens when vy exceeds the
value of about 10 meV, which is significantly larger than

(15)

|a)—w0|<w 1—p2
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1.6 -

FIG. 2. Change of the effective radiative decay rates I' (solid
line) and I, (dotted line) with the angle of incidence for a single
quantum well.

inhomogeneous broadening in most QW structures, and cor-
responds to room temperatures for homogeneous broadening.
Thus, in good quality samples and at sufficiently low tem-
peratures there always exists a frequency region determined
by Eq. (15), where the nonsingular addition to the effective
susceptibility [Eq. (13)] is negligible regardless of how
strong the mismatch between refractive indexes is. Depend-
ing on the strength of the mismatch, this region, however,
can cover all or only part of the spectral interval affected by
excitons. In the case of a single QW or of a MQW with a
small number of periods, the frequency region of interest is
of the order of T'y, which is typically much smaller than w,,
in Eq. (15). In this case the refractive-index mismatch can be
described in the resonant approximation with only the first
term in Eq. (13) for the effective susceptibility retained. In
this approximation, the effects of the mismatch of the indices
of refraction, nonperpendicular incidence, and polarization
are reduced to a renormalization of the radiative decay rate.
This means that these effects can be taken into account by
using standard expressions obtained for normal incidence in
the absence of the mismatch with the radiative decay rate
replaced with its effective value

_ ) 1+ p*—2pcos ¢,
0 .

s,p

r (16)

1-p?
Depending on the value of the Fresnel coefficient one can
observe either an enhancement (when p<<0) or a reduction
(when p>0) of the exciton radiative recombination. Since
usually n,,>n,, the Fresnel coefficient for the normal inci-
dence is positive and therefore the oscillator strength is di-
minished compared to the case of the absence of the contrast.
When the angle of incidence increases, in addition to differ-
ent dependencies of the Fresnel coefficients corresponding to
different polarization states following from Egs. (7), it is
necessary to take into account direct modification of the os-
cillator strength given by Egs. (11). Figure 2 shows the de-
pendence of the factor modifying the radiative decay rate on
the angle of incidence.

III. OPTICAL PROPERTIES OF MQW STRUCTURES

In the previous section of the paper we showed that in-
corporating the mismatch in the refractive indexes of the
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wells and barriers into the description of the optical proper-
ties of MQW structures can be reduced to replacing exciton
susceptibility and photon optical width with the respective
effective parameters given by Eq. (13). It was also shown
that for the single-QW case the effective susceptibility can be
described in the resonant approximation, in which the role of
the refractive-index mismatch is reduced to the renormaliza-
tion of exciton radiative rate [Eq. (16)]. We start this section
with ascertaining conditions when the same resonant ap-
proximation can be applied to Bragg MQW structures. The
main difference between this case and the one considered in
Sec. II is the width of the spectral interval of interest. In the
case of Bragg MQW with a large number of periods we are
interested in the region of the polariton stop band with width
equal to Ap. The resonant approximation is valid for this
entire part of the spectrum if | @, — wo| = Ar. It follows from
Eq. (15) that this inequality is satisfied when

Ar > 2Ape. (17)

In real MQW structures based on III-V compounds the
Fresnel coefficient at normal incidence,? p,, are <0.03 and
¢,.(wy) ~0.17 can be considered as typical, so both quanti-
ties Ap and Ap- are of the same order of magnitude
~1072 eV. Therefore, both signs of the inequality (17) are
possible, depending on details of the composition of the
structures. The condition of Eq. (17) is, for instance, fulfilled
for InGaAs/GaAs samples used in experiments of Ref. 35.
In GaAs/Al,Ga,_,As structures with values of x of the order
of 0.3 the opposite situation can take place. Therefore, in the
remainder of the paper we will use an exact form of the
effective susceptibility taking into account both resonant and
nonresonant contributions.

Keeping in mind subsequent application to more compli-
cated structures, it is convenient to introduce a special formal
representation for a transfer matrix

cos 6—isin fcosh 8

—isin fsinh B )
i sin @sinh B ’

cos 0+ 1isin 6 cosh 8
(18)

where the parameters of the representation, # and 3, are re-
lated to the “material” parameters S and ¢, entering the
transfer matrix by

cos 0=Tr T/2 =cos ¢+ S sin ¢,

coth B=cos ¢— S 'sin ¢b. (19)

This representation is valid for an arbitrary system that pos-
sesses a mirror symmetry with respect to a plane passing
through the middle of the structure. It can be easily derived
taking into account the equality of the determinant of the
matrix to one and the circumstance that the mirror symmetry
requires off-diagonal elements to be imaginary. Because of
the general character of the representations (18), the material
parameters entering Eq. (19) can be either the parameters of

a single quantum well [Eq. (8)] or the effective parameters S

and ¢ [Eqgs. (12) and (13)] of a barrier-well sandwich or even
parameters characterizing the entire MQW structure as long
as the latter possess the mirror symmetry.
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Using this representation we can introduce the following
transformation rule for transfer matrices

Tu(WT(0, BT (¥) =T(6,8+2), (20)

where matrix Ty describes a hyperbolic rotation with a dila-
tion and has the form of

cosh ¢

—sinh ¢
—sinh ¢ ) @)

Ty(h) = €¢< cosh i

This transformation rule can be used, for instance, for diago-
nalization of transfer matrices, which can be achieved by
choosing parameter ¢y=—(/2. Matrix Ty can be turned into
matrix Ty, [Eq. (6)], which describes propagation of waves
through interface between two media with different refrac-
tion coefficients by using the following relation between ¢
and the Fresnel parameter p: p=—tanh(¢) (a detailed discus-
sion of a relation between interface scattering and the hyper-
bolic rotation can be found in Ref. 34). This means that the
transformation [Eq. (20)] can be either used to describe the
interface between two different structures or in order to
present any type of nondiagonality of the transfer matrix as
resulting from some effective interface. With the help of Eq.
(20), any symmetric multilayer structure can be replaced by a
uniform slab with the width given by € and the index of
refraction determined by . Therefore, it can be used to de-
scribe structures that are more complicated than a simple
three-layer barrier-well sandwich considered in Sec. II. For
instance, using Eq. (20) we can immediately derive an ex-
pression for the transfer matrix Ty of a sequence of identical
blocks described by T(6, B)

Ty=T(0,8)"=T(N6,B). (22)

Because the reflection from the structure described by the
transfer matrix 7 given in the basis of incoming and outgoing
waves is

r=- T21/T22, (23)
for a structure containing N blocks we have

=SB (24)
cot N@+icosh 8

The reflection coefficient written in terms of the parameters 6
and B does not depend on the specific form of the transfer
matrix and therefore Eq. (24) can be applied to a variety of
different structures. In the case of I'y=0, Eq. (24) can be
easily shown to reproduce the result well known for a pas-

sive multilayer structure.*?%2
To find a relation between the quantities entering this ex-
pression and the elements of the transfer matrix through the
period of the structure it is convenient to multiply both the
numerator and denominator by sin # and to use Eq. (19). If

each block is characterized by an effective susceptibility S

and the phase ¢=d,+,,, then we obtain for the reflection
coefficient an exact expression

~ is
cot(N@)sin 6+ i(S cos ¢ — sin ¢) .

(25)

'n
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FIG. 3. Dependence of the amplitude reflection coefficient |ry|?
on the frequency. The main plot shows the reflection of structure
satisfying the modified Bragg condition with p=0.005, the radiative
decay rate 1'g=67 ueV, the exciton frequency wy=1.491 eV, the
homogeneous broadening y=500 weV and the length N=10, 25,
100 (dotted, dashed, solid lines, respectively). On the inset reflec-
tion spectra of structures that satisfy the standard Bragg condition
are shown. To make the correspondence with the results of Ref. 35
clearer we chose p=-0.005.

Below we analyze the reflection coefficient for Bragg and
slightly off-Bragg structures. For frequencies close to w, we
can use #=m+i\, where \ is a complex number with a small
modulus. Moreover, in most applications of MQW structures
it is naturally to assume that structures are not too long, that
is N<N.=(Re \)"!. In this approximation, coth(N\)sinh \
~ N and the reflection can be written directly in terms of the
material parameters

~ iNS
1 +iN(S cos ¢ — sin ¢).

(26)

'n

The amplitude of reflection |r|? has the typical form shown in
Fig. 3. It is characterized by a strong reflection band around
the exciton frequency, which is a manifestation of the strong
resonant exciton-light interaction. The reflection has an
asymmetric form since it is a sum of two terms: one of them
is even with respect to the frequency wy and the second is
odd. The latter is due to nonzero mismatch and in the ap-
proximation used above does not vanish at infinity. Both
these terms have a typical width

__ NTl-preos 4,
~ (1= pH*+N(sin ¢, — p’sin ¢)*’

where ¢, =¢,+ ¢, It should be noted that the actual optical
width of the quantum well determined by ¢,, enters the defi-

nition of ¢,, rather than the modified ¢,. We are interested
in maximizing exciton-related effects in the reflection spectra
of our structures, which means designing structures with as
large a width & as possible. One can see from Eq. (27) that
the width demonstrates essentially nonmonotonous depen-
dence on the number of quantum wells in the structure: it
grows linearly for small N, but starts decreasing as N? for
larger N. If the coefficient in front of N? in the denominator
of Eq. (27) vanishes, then the linear growth of & would go
unchecked as long as N does not exceed N,. Thus, the con-

27
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dition for maximizing the excitonic effects in the reflection
spectrum can be formulated as

p* =sin ¢, (wy)/sin ¢_(wy). (28)

If one neglects the mismatch of the indices of refraction, this
equation takes a well-known form of a condition for the
Bragg resonance between the period of the structure and the
exciton radiation.'® One can consider Eq. (28) as an equation
for the period of the structure, d, for a given p. Then for the
case of small p it gives approximately the same results as
that obtained from

p=cos(¢p,/2)/cos(p_/2), (29)

which coincides with a modified Bragg condition introduced
in Ref. 19. This condition actually requires that the exciton
frequency is equal to the low-frequency boundary of the pas-
sive (without excitons) photonic crystals’ stop band. This
consideration shows that the most prominent effect of the
light-exciton interaction on the optical properties of long
MQW structures with a mismatch of the indices of refraction
occurs when the modified Bragg condition is met.

To establish the relation between the modified Bragg con-
dition and the reflection spectrum of the structure, it is con-
venient to obtain the dispersion equation from the transfer

matrix written in terms of S and &, [Eq. (12)]. Using the
relation cos Kd=Tr T/2, where K is the Bloch wave number,
d is the period of the structure, one obtains the dispersion
equation in the standard form

cos Kd =cos ¢+ S sin ¢, (30)

where the change of the phase on the period of the structure
¢ is determined by the modified optical width of the quan-
tum well, i.e., ¢=¢,+ b, The Bragg resonance condition is
written in a usual form ¢(w,)= 7 that can be shown to coin-
cide with the modified Bragg condition from Ref. 19.

Thus, for Bragg MQWs the expression for the reflection
coefficient [Eq. (25)] is essentially simplified and can be ap-
proximated as

iNS
rN_

= —. (31)
1+iINS

This expression gives a generalization of a well-known result
about the linear dependence of the width of the exciton-
polariton reflection band on the number of quantum wells in
Bragg MQW structures. !’

When the system is detuned from the Bragg resonance,
the transparency window appears in the band gap. It shows
up in the form of a dip near the exciton frequency in the
reflection spectrum (see inset in Fig. 3). For example, in Ref.
35 the reflection was measured for MQW structures that sat-
isfied the Bragg condition for structures without the mis-
match. In other words, the period of those structures was
made to coincide with the half-wavelength at the exciton
frequency calculated without taking into account photonic
crystal modification of light dispersion. These effects, how-
ever, significantly modify the wavelength of light resulting in
a detuning of the structures studied in Ref. 35 from actual
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FIG. 4. The change of the reflection spectrum with the angle of
incidence. The parameters of the structure are the same as those
used in Fig. 3 except y=25 peV, p=0.01. The dotted line shows
the reflection at normal incidence. The solid and dashed lines show
the reflection at 6,=/18 of s- and p-polarized waves, respectively.
The main plot corresponds to the structure that is tuned to the Bragg
resonance at normal incidence. The inset shows the reflection of a
structure that is tuned to the Bragg resonance at 6,=/18.

Bragg resonance. As a result, spectra observed in that paper
demonstrate features specific for slightly off-resonance struc-
tures (see Fig. 3).

The general results presented in this section allows one to
qualitatively analyze modifications in spectra of MQW struc-
tures caused by changes of the angle of incidence or polar-
ization state of the wave. Indeed, using Eq. (14) we can write
an expression for the renormalized phase ¢ in the form

® 1+p
¢=—\ nyd,cos 0), + nwdwl—cos 0, . (32)
¢ -p

This expression shows that the dependence of the Bragg con-
dition on the angle of incidence differs significantly from the
intuitive assumption that it can be accounted for by a simple
replacement of the wave number k with k cos 6, which was
suggested in some earlier works.® Although the latter as-
sumption is true in the optical lattice approximation, the
presence of the refractive-index contrast makes this depen-
dence more complicated. Equation (32) also describes de-
pendence of the Bragg condition on polarization.

Figure 4 demonstrates changes in the reflection spectrum
for the structure tuned to the Bragg resonance for the normal
incidence with the change of the angle. First, the spectrum
for the oblique incidence looks as a typical spectrum for
slightly off-Bragg structures. On the other hand, if a structure
has a period that is bigger than what is required by the Bragg
condition for normal incidence [i.e., ¢(wy, 6=0)> 7], then it
can be tuned to the resonance by increasing the angle of
incidence (see inset in Fig. 4). An interesting result apparent
from these figures is that tuning the structure to the Bragg
resonance by changing the angle preserves, to a great extent,
the shape of the spectrum. This fact opens a possibility for
shifting the position of the reflection band of these structures
by changing the exciton frequency with the help of, for in-
stance, the quantum confined Stark effect®® with consecutive
tuning of the structure back to the Bragg resonance by ad-
justing the angle of incidence. Estimates show that for the
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Reflection

0.04

FIG. 5. The reflection spectrum of s- and p-polarized waves
(solid and dashed lines, respectively) of a structure that is tuned to
the Bragg resonance at 6,=m/4. The Bragg condition is met for
s-polarized waves.

available Stark shifts of the exciton frequencies required
changes in the angle do not exceed 10—15°, which is similar
to the angles used in Fig. 4.

The difference between reflection spectra of waves with s
and p polarizations remains rather insignificant for angles
used in Fig. 4. In order to observe it one has to consider
much larger angles. Figure 5 shows the reflection spectra of
a structure that is tuned to the Bragg resonance at the angle
0,=m/4. The difference between the two polarizations oc-
curs because of two circumstances. First is the different
renormalization of the optical width of the quantum wells for
different polarizations [Eq. (14)]. As a result, the angle at
which the structure is tuned to the Bragg resonance depends
on polarization. In Fig. 5 the Bragg condition is met for s
polarization. Therefore, one has a typical Bragg profile for
the reflection spectrum of the s-polarized wave and off-
Bragg profile for the p-polarized wave. The second circum-
stance is the difference between the effective radiative decay
rates [see Eq. (16)] for different polarizations. Therefore, the
exciton related feature on the reflection spectrum of the
p-polarized wave is weaker compared to the s polarization.

It should be noted, however, that such big angles of
propagation inside the barriers are not accessible for a usual
experimental setup when the wave is emitted and detected
outside the structure. The reason is a high contrast of the
indices of refraction of the vacuum and the barriers. How-
ever, such angles become relevant when the problem of lu-
minescence is considered.

Another prominent effect caused by the refractive index
mismatch consists of vanishing of the reflection coefficient
Iryl? at @=wy—wy, [see Eq. (15)] where S=0. This is the
consequence of an interference of two channels of scattering
of light—by the excitons and by the barrier-well interfaces.
For Bragg MQW structures, ry can be written in a form that
explicitly expresses the Fano-like profile of the reflection

W — W)+ O
ry=ry) ——— "0 (33)
w — W + a)minrN

where
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0 _
.+ INTAp

N (34)
is the reflection in a vicinity of the photonic band gap of a
passive, I'y=0, N-layer structure, which is not too long com-
pared to the penetration length. When the mismatch of the
indices of refraction vanishes, w,,;, turns to infinity and the
reflection restores the Wigner-like form with the width «NT".
This is similar to what one has in the standard Fano reso-
nance case when the Fano parameter tends to infinity.3” In
the other limiting case, I'y=0, the reflection turns to what
one has for a purely passive multilayer structure.

As discussed above, because of the relation between dif-
ferent contributions to the scattering of light in regular MQW
structures, this resonant drop of reflection occurs at the tail of
the excitonic susceptibility where the general smallness of
the reflectivity masks this effect. In Sec. IV we consider a
situation where vanishing of the reflectivity has a much more
profound effect on the spectrum.

IV. MQW STRUCTURES WITH DEFECTS

The results obtained in the previous sections are quite
general and can be applied directly to more complicated situ-
ations. As an example, in this section we consider a reflec-
tion spectrum of a system in which one of the barrier-well-
barrier elements has properties different from those of all
other elements of the structure. These structures can be de-
scribed as MQW structures with a “defect.” In infinite sys-
tems such a defect results in the appearance of a local state,
which arises in a band gap of the host structure. Then the
transmission of light through finite but sufficiently long
structures can be conveniently described in terms of resonant
tunneling via such a state. This effect was studied in regular
passive one-dimensional photonic crystals®®~*? and in Bragg
MQWs in the optical lattice approximation.?**} In shorter
systems, however, which are the main object of study in this
paper, the concept of the resonant tunneling via a local state
becomes ill defined, and therefore, we will interpret results
of our calculations without resorting to this concept.

We will consider a structure in which the defect is placed
in its center; such an arrangement is known to result in stron-
gest modifications of the optical spectra.’* In this case, the
system demonstrates the mirror symmetry, and the results of
the previous sections can be used. Indeed, for a structure
ABA built of blocks A and B described by the transfer ma-
trices (18) with parameters 6, 5 and B, p, one has

T(04,84)T(65.85)T(64,84) =T(6,P). (35)

That is, the whole structure can also be described by the
matrix (18) with

cos 0= cosg,cosh’8B — cosg_sinh? 5,
sing_

sin @ysinh(25B)°
(36)

coth(B - B,) = cos(26,)coth 68 +

where ¢,=260,+ 0z and 58=(Bz—B4)/2. Applying now rela-
tions (19) one can express the result in terms of parameters S
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and ¢ and use the results for reflection described above.

In some particular cases, however, the problem of scatter-
ing of light can be solved without resorting to the transfor-
mation rule (36). Let us consider a situation when the block
B is a single-quantum well surrounded by barriers so it can
be described by the matrix similar to that given by Eq. (12)
with parameters S; and ¢, Let the block A be a MQW
structure described by # and S. Thus, the transfer matrix
through the whole structure is

T=T(6.ATp)T(Ss. AT, (p)T(6,8), (37)

where T,(p) takes into account a possible mismatch of the
indices of refraction of the defect layer and the host and p is
the corresponding Fresnel coefficient.

The transfer matrix (37) can be simplified in several steps.
First, as has been described before, we can treat 8 as an
addition to the mismatch noting that

T (BI)T,(p) = T,(p), (38)
where p=(p+p’)/(1+pp’) and p’ =tanh(B/2). Then, similar
to Eq. (12) we can introduce effective quantities S and &

1+p>—2pcos ¢ 2~sin¢)

S:Sd 1_52 + Pl_ﬁz,
- _ 5,mih
i(p-) ! P~€ . (39)
1 - pe'?

The next step is a multiplication of 7(S, ) by the diagonal
matrices 7(6,0), which leads to a simple shift of the phase,
(S, p+26). Finally, the terminating matrices T(B/2) and
T, (B/2) are taken into account by modifying S and ¢. Thus
the resultant transfer matrix 7 takes the form (12), i.e., T
=T7(S, $), with

= ~1+p'?+2p'cos(P+260) ,sin(<7>+ 20)
_S 1 12 _2p 12
-p 1-p

s

oi(P-3-26) _ 1+pe™™ ,~¢>-2,9. (40)
1 + p'ei+2i0
These expressions together with Eq. (24) give a complete
solution of the problem of propagation of light through the
MQW structure with an arbitrary defect in the middle.

One can consider several particular types of defects. An
example is a well with the exciton frequency different from
the frequencies of all other wells, an () defect. Another pos-
sible example could be a defect element with the width of the
barriers different from the rest of the structure. It is interest-
ing to note that a standard optical microcavity with a quan-

tum well at its center can also be considered within the same

formalism. For example, after substitution of S from (39)
into Eq. (40) one obtains an expression that contains a sin-
gular term (proportional to S;) and regular terms. Choosing
such widths of the barriers surrounding the quantum well so
that the regular terms vanish in the vicinity of the exciton
frequency one has the reflection determined by the exciton
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susceptibility with renormalized oscillator strength. The ex-
citonic contribution to the scattering in such a structure will
not be obscured by the interface scattering.

We demonstrate the application of the results obtained
above by a detailed consideration of an () defect. This type
of defect was analyzed in Refs. 24-26 in the scalar model for
the electromagnetic wave in MQW structures without a mis-
match of the indices of refraction. It has been shown there
that in the presence of homogeneous and inhomogeneous
broadening of excitons, the effect of the defect is prominent
when the frequency of the exciton resonance in the defect
layer w, is close to the boundary of the forbidden gap in the
host system and the length of the system is not too big. The
reflection spectrum in this case has the characteristic Fano-
like dependence with a minimum followed by a closely lo-
cated maximum. Such a spectrum makes this structure a po-
tential candidate for such devices as optical switches or
modulators.2>20 Tt is interesting, therefore, to find out how
the refractive-index mismatch affects spectral properties of
such a structure.

For the frequencies within the polariton stop band of the
host structure one has =M (7 +i\), where M is the number
of quantum wells in the parts of the structures surrounding
the defect and M\ <1. The description becomes much sim-
pler if we assume that the width of the defect layer is tuned
to the Bragg resonance at the frequency w,; that is, if
¢(w,)=. That makes the second term in the expression for

S [Eq. (39)] negligible in a wide region of frequencies and
the expression for S takes a very simple form

= 1+ _
§= Sdl—p +2MS,, (41)
-p

where S, is the effective excitonic susceptibility of the host,
given by an expression similar to Eq. (13) with the exciton
frequency wy=w,. In derivation of Eq. (41) we have ne-

glected the small term OCSd:S: » The reflection coefficient can
be obtained by substituting this expression into Eq. (24) with
N=1. The reflection has peculiarities near the exciton fre-
quencies of the host and the defect, and in the absence of

broadening becomes zero at the frequency where $=0. Gen-
erally, this equation is suitable for finding the resonance fre-
quency for any value of the photonic band gap Ap., which is
not much bigger than the excitonic forbidden gap Ar. Here,
however, we only consider the perturbation of the spectrum
analyzed in Ref. 25 because of small contrast in the refrac-
tive indexes. Therefore we assume here that Ap-<<Ar. In this
approximation the resonant frequency wy is

A, M*AZApc
2M +1 AF2M +1)%

wp = w;— (42)
where A, =w,;—w, is the difference between the defect and
the host exciton frequencies, and we assume for concreteness
that w,> w,.

Setting the mismatch of the indices of refraction in this
expression to zero we reproduce the expression for wg ob-
tained in Ref. 25. The fact that the contrast does not preclude
the reflection coefficient from going to zero at a certain point
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is not at all obvious because it might have been expected that
the interface reflection would set a limit on the decrease of
the reflection. However, as seen from Eq. (42), the mismatch
leads only to an additional shift of the zero point away from
the defect exciton frequency. We would also like to comment
on the dependence of the resonance frequency on the angle
of incidence and the polarization of the electromagnetic
wave. These characteristics enter Eq. (42) through the
Fresnel coefficients [Eq. (7)], which determine the photonic
band gap, Apcp/(1-p?). Therefore angular and polariza-
tion dependencies of the zero point of reflection follow the
behavior of Ap.. The obtained expression for the reflection
coefficient also allows for analyzing the position of the maxi-
mum of reflection, and its maximum magnitude, but the re-
sulting expressions turn out to be too cumbersome and we do
not present them here.

The formalism presented in this paper allows one to take
into account effects of homogeneous and inhomogeneous
broadenings because the main results obtained do not use a
particular form of the excitonic susceptibility. For example,
the reflection coefficient of a structure with an inhomoge-
neous broadening can be obtained in the effective medium

approximation by using Eq. (24) with S instead of S and with
inhomogeneously broadened S, , in Eq. (42)

r
Sha= f dwofh,d(wo)—o, (43)

w—wy+iy

where f) , are the distribution functions of the exciton fre-
quencies in the host and defect layers, respectively.>>#+4
However, as it has been discussed in Ref. 25, if wg is far
enough from w, (i.., |wg—w,| > A), where A is the inhomo-
geneous broadening, the effect of the latter is negligible and
the magnitude of the reflection is determined by

_ my(2M +1)

S|~ A22M +1)2 + 16M(2M = 1)A A, ].
| |m1n 4deAz) [ F( ) ( ) PC w]

(44)

The reflection is small provided the smallness of the homo-
geneous broadening, y<wy, and A, = Ar=Ap.

There is a certain analogy between this effect of the reso-
nant drop of reflection and turning the reflection to zero con-
sidered in Sec. III. In the case of a defect MQW structure,
the Fano-like profile of the reflection, in a narrow vicinity of
wy, can be understood as an interference of the scattering of
light by the host structure and by the defect. Comparing Eq.
(41) to Eq. (13) one can see that the second term in Eq. (41)
plays the role of a background on which the exciton suscep-
tibility of the defect quantum well appears. This is exactly

the role played by the second term in Eq. (13). Expanding S
near wy the reflection can be represented in a form similar to
Eq. (33). There is an essential quantitative difference be-
tween these two cases, however. In a defect MQW structure
the drop of the reflection occurs not far away from the exci-
ton frequency; therefore, this effect becomes more notice-
able. A typical form of the reflection, transmission and ab-
sorption near wyp is shown in Fig. 6.
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FIG. 6. The reflection (dotted line, right scale), transmission and
absorption (solid and dashed lines, respectively, left scale) are
shown in a vicinity of wp for a Bragg 5-1-5 structure. The param-
eters of the quantum wells are the same as those used in Fig. 3
except y=25 peV, w,=1.491 eV, and w,;=1.495 eV. To emphasize
the resonant character of the change of the reflection it is plotted in
the log scale. It should be noted that because of the large (in com-
parison with ) separation between wy and w, the drop of the re-
flection is not accompanied with a resonant absorption.

It should be noted that if a regular term in the effective
susceptibility of the defect layer is taken into account, then

Eq. (41) for S becomes valid not only in an immediate vi-
cinity of wg but in a much wider region, including for ex-
ample wj,. In this region, the reflection can be seen to re-
semble the Fano profile in the case of two metastable states
interacting with continuum.*® As a result, the reflection has
two resonances: near w, and w, The first resonance is 2N
times wider than the second one. The reflection reaches zero
between these resonances at wg.

To conclude this consideration we would like to note that
for multiple defect structures composed of several blocks,
ABA considered above the reflection can be qualitatively de-
scribed by Eq. (31) where N is understood as the number of
such blocks. This expression shows that increasing N can be
interpreted as increasing an effective radiative decay rate.
This qualitatively explains the results of numerical calcula-
tions in Ref. 26 where it was found that the maximal value of
the reflection increases with N, while the value of the ratio of
the maximal and minimal values remains about the same.

V. CONCLUSION

In the present paper, the general problem of light propa-
gation in a MQW-based photonic crystal characterized by
both spatial modulation of the dielectric constant and dipole
active exciton states in quantum wells is considered. It is
shown that the mismatch of indices of refraction between
barriers and wells can be taken into account by introduction
of an effective excitonic susceptibility and an effective opti-
cal width of the quantum wells. The effective susceptibility
has two terms, one of which is almost independent of fre-
quency, whereas the second is resonant in nature. For suffi-
cently short MQW structures (or in the vicinity of the exciton
frequency), the regular term can be neglected and the effect
of the mismatch of the indices of refraction reduces to a
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modification of the excitonic oscillator strength. In a general
case, the reflection spectrum becomes essentially asymmetric
and nontrivially dependent on the number of quantum wells
in the structure. It is shown that in order to obtain the stron-
gest exciton-induced reflection band the structure must sat-
isfy a certain resonance condition. This is a Bragg resonance
condition between the period of the MQW structures and the
wavelength of the electromagnetic wave. The latter has to be
calculated from a dispersion law for a structure with the spa-
tially modulated refraction index.

The developed approach is applied to analysis of the re-
flection spectrum of a structure with an intentionally intro-
duced defect element, which breaks the translational symme-
try of a system. A more detailed analysis is carried out for a
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special kind of defect, characterized by the presence of a
layer in the middle of the structure with a different frequency
of the exciton resonance. It is shown that the main charac-
teristics of the reflection spectrum of such structures ob-
tained in the absence of the refraction-index contrast survive
in the presence of the additional interface reflections. In par-
ticular, a significant decrease of the reflection takes place
even in the presence of the contrast, which is important for
possible applications of such structures.
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