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The magnitude of the extraordinary resistance change in metal semiconductor hybrid structures at 300 K
under either magnetic field or tensile strain is known to depend strongly on geometry. In particular, there exists
a range of optimal geometries for which the change in resistance under the external perturbation is maximized.
Here we numerically solve Laplace’s equation for circular hybrids in which the local resistivity is perturbed,
and we show that within the range of optimal geometries �i� the metal-semiconductor interface is maximally
sampled by the injected current and �ii� there is an observed crossover from semiconductor-like to metal-like
conduction. Extraordinary resistance changes in metal semiconductor hybrids are thus considered to be inter-
facial effects.
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I. INTRODUCTION

Metal semiconductor hybrid structures have the potential
to exhibit a large resistance change under a number of dif-
ferent external perturbations at 300 K. To date two such ef-
fects have been reported, the extraordinary magnetoresis-
tance �EMR� �Ref. 1� and the extraordinary
piezoconductance �EPC�.2 In the former, a perpendicular
magnetic field induces a Hall angle between the current and
electric field distribution in the hybrid, redirecting current
away from the metal and leading to a large resistance in-
crease. In the latter, a uniaxial tensile stress applied parallel
to the metal semiconductor interface is thought to reduce the
interface resistance, thereby redirecting current into the metal
and reducing the measured resistance. Since the change in
resistance can be more than an order of magnitude larger
than that measured in the semiconductor alone, EXX
�XX=MR or PC� has been proposed for a number of appli-
cations in which a sensitive measure of magnetic field3,4 or
strain2 is required.

EXX is first and foremost a geometrical effect, although
its magnitude also depends �or is predicted to depend� on the
material parameters �mobility, etc.� and the metal-
semiconductor interface resistance.5 With respect to the ge-
ometry, efforts have already been made to maximize the
EMR in rectangular hybrid structures for a specific applica-
tion by changing the length-to-width ratio.6 In the most gen-
eral terms “too little” metal, and the EXX tends toward that
of the bulk semiconductor, “too much” metal and the EXX
tends toward that of the bulk metal. At intermediate geom-
etries when the amount of metal is “just right,” the hybrid
exhibits behavior not characteristic of either the bulk semi-
conducting or metal phases, and the EXX is maximized.
Since these geometries appear to be at least approximately
independent of whether the external perturbation is a mag-
netic field or a stress,2 we ask what makes them special, i.e.,
what constitutes “too little” or “too much” metal, and what
determines the optimal geometries? Here we show, via a nu-

merical solution of Laplace’s equation for circular geometry
hybrids, that the optimal geometries include that in which the
interface is maximally sampled by the injected current, and
that at this geometry a transition from semiconductor-like to
metal-like conduction occurs. These results confirm that
EXX effects in metal semiconductor hybrids are essentially
interfacial phenomena.

II. DETAILS OF THE CALCULATION

Since it is of interest here to determine the special quali-
ties of optimal hybrid geometries independent of the external
perturbation, and since EXX effects are based on four-
terminal resistance measurements, we calculate the so-called
resistivity weighting function7 f�r ,�� for a range of circular
planar hybrid geometries of uniform thickness. In a four-
terminal resistance measurement a current is injected into the
device via a pair of leads, and a voltage is measured else-
where using a second pair of leads. The function f�r ,��
yields information on how the injected current samples each
part of the device given the four lead locations. It is defined
such that the effective overall resistivity of the device is
given by

�0
eff =� � ��r,��f�r,��rd� dr , �1�

where ��r ,�� is the local resistivity and the integral is per-
formed over the entire structure. In homogeneous devices
��r ,��=�0 is a constant �material resistivity�, whereas in hy-
brid structures component resistivities must also be ac-
counted for. In particular, in circular hybrid geometries

��r,�� = �0�r,�� = ��m if r � rm

�s if rm � r � rs

� if r � rs,
� �2�

where �m is the metal resistivity and �s the semiconductor
resistivity.12 Here rm and rs are the metal and semiconductor
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radii respectively, as shown in Fig. 1. In homogeneous struc-
tures it is possible to normalize f�r ,�� �i.e., ��f�r ,��rd� dr
=1� so that for a structure uniformly sampled by the injected
current �0

eff=�0, the material resistivity.7 In contrast, a nor-
malization of f�r ,�� for hybrid structures is of limited utility
since, even in the case of uniform current sampling, Eq. �1�
results in a �0

eff which corresponds neither to that of the metal
or the semiconducting components of the hybrid. However,
the inability to properly normalize f�r ,�� poses no problem
since it is ratios of integrals of f�r ,�� that are of interest here
�see below�. In the following we utilize the expression hy-
brid resistivity weighting function �HRWF� for the non-
normalized integrand of Eq. �1�, ��r ,��f�r ,�� calculated for
the circular hybrids.

The technique for calculating the HRWF is essentially the
same as that previously applied to homogeneous Hall bar and
van der Pauw structures.7 Ideally, a pointlike perturbation at
�r0 ,�0� in the local resistivity is introduced in the following
form:

��r,�� = �0�r,�� + ��0
eff1

r
��r − r0���� − �0� . �3�

Here the factor 1 /r is introduced to properly normalize the �
functions in cylindrical polar coordinates. When this expres-
sion is substituted into Eq. �1� in order to calculate a per-
turbed effective resistivity �pert

eff , we find that

f�r0,�0� =
1

�

��pert
eff − �0

eff�
�0

eff . �4�

In practice it is a voltage difference proportional to the resis-
tivity that is calculated, so we write

f�r0,�0� =
1

�

�V

V0
, �5�

where �V=Vpert−V0 and V0 �Vpert� is the voltage calculated
between the voltage leads in the absence �presence� of the
perturbation, Eq. �3�.

A. Calculation of V0

In order to calculate V0 the current and electric field dis-
tribution in the hybrid must be found. In steady state at
300 K, the problem reduces to a solution of Laplace’s equa-
tion, �2V=0 for the scalar electric potential across the hy-
brid. In circular geometry hybrids with symmetrically placed
leads an analytic solution exists,8,9 but for nonsymmetric or
rectangular geometry hybrids numerical methods such as a
finite element analyses �FEA� must be employed.10 In this
article both symmetric and nonsymmetric geometries will be
considered, so we utilize FEA techniques. The following ex-
ternal boundary conditions are imposed for all calculations:
�1� Constant normal current at the two current leads Jr=J0
and �2� Zero normal current flow for the remaining external
boundaries Jr=0. Furthermore, the discontinuity in � at
r=rm is accounted for by an internal boundary condition: �3�
Continuity of the normal component of the current at the
metal semiconductor interface.

In all results presented here the current leads have a finite
width and subtend an angle of 1° at the center of the hybrid,
whereas the voltage leads have zero width. The absence of
finite width voltage leads does not significantly affect the
results and facilitates parallel calculations of the HRWF for
different voltage lead positions ��= ±	 /8, ±	 /4 �the sym-
metric case� and ±	 /2�. This is useful to separate the role of
voltage lead position and 
=rm /rs in the determination of
the optimal geometry. The current lead positions are fixed at
�= ±3	 /4. These details are shown in Fig. 1. It should also
be noted that a fixed value rs=1 is chosen �units are arbi-
trary� and rm is varied.

B. Calculation of �V

FEA techniques are also useful when considering the ef-
fect of a local inhomogeneity, for example in the magnetic
field11 or �as in this case� in the resistivity.7 In a FEA calcu-
lation, it is not possible to introduce local inhomogeneities of
the form given in Eq. �3�. Rather a differentiable but arbi-
trary function which approximates Eq. �3� should be utilized.
For the purposes of the calculation performed here, the re-
sistivity perturbation has the arbitrary super Gaussian form

h0 exp	− �r2 + r0
2 − 2rr0 cos�� − �0��/�w0/2�2
200, �6�

where h0=1�10−5 � m and w0=0.03. The amplitude h0 is
chosen to be small enough that the voltage response is in the
linear regime. This function yields a flat-topped resistivity
perturbation with a size indicated by the black dot in Fig. 1,
and fixes the spatial resolution of the calculations at

= ±0.015. Both r0 and �0 are varied stepwise over the en-
tire hybrid in order to build up a grayscale image of the
HRWF for a given 
 as shown in Figs. 2, 5, and 7. The
equation of motion must now also include a forcing term in
order to properly account for the local resistivity
perturbation7

�2V = � � � V/� . �7�

FIG. 1. Schematic of circular metal semiconductor hybrid struc-
tures considered here. The metallic �semiconducting� region is
shown in light �dark� gray. The hybrid resistivity weighting function
�HRWF� is calculated for pointlike voltage leads placed at
�= ±	 /8, ±	 /4 and ±	 /2. Current leads of fixed width are located
at �= ±3	 /4. The small black dot indicated by the arrow represents
the spatial extent of the resistivity perturbation Eq. �6�, used to
calculate the HRWF.
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III. RESULTS AND DISCUSSION

A. Voltage leads at �= ±� /4

Figure 2 shows the HRWF for a variety of geometries in a
symmetric circular hybrid. In each of these images white
�black� areas are strongly �weakly� sampled by the injected
current. Thus we see that at small values of 
 ��0.78� the
metallic part of the hybrid plays a very little role in deter-
mining the electrical properties. Rather it is mainly a region
localized near the metal-semiconductor interface which
dominates the electrical properties �plus a small, relatively
negligible surface area adjacent to the current and voltage
leads�. It is also visually apparent that with increasing 
 the
relative importance of the interface region becomes stronger
up to and including 
=0.77. As 
 is further increased, the
metal begins to play a role in the overall resistivity, and the
relative importance of the interface region diminishes. At the
largest value of 
 shown in Fig. 2, it is clear the the metallic
region is a very important, if not the dominant part of the
hybrid for the purposes of a four-terminal resistance mea-
surement.

These qualitative observations can be better quantified by
a calculation of ����r ,��f�r ,��r d� dr over the appropriate
part of the hybrid. In the following, M is this integral per-
formed over the metallic region, S over the semiconducting
region, and I over the interface region �defined as
rm�r�rm+w0�. A measure of the relative importance of the
interface region is then given by I / �M+S�. Similarly, M /S

is a measure of the character of the hybrid resistivity
M /S�1 corresponding to a semiconductor-like hybrid, and
M /S�1 corresponding to a metallic-like hybrid�. For the
symmetric hybrid, these two quantities are shown in Fig. 3.

A peak in I / �M+S� for 
=0.78 indicates that at this ge-
ometry, the metal-semiconductor interface has its greatest in-
fluence on a four-terminal resistance measurement of the hy-
brid. It is also at this geometry that the hybrid switches from
metallike to semiconductinglike behavior. In this �symmet-
ric� case, the latter result is experimentally verified by mea-
suring the resistance versus temperature curves for a range of
symmetric circular hybrids13 as shown in Fig. 4. Each hybrid
was measured using standard lock-in techniques at tempera-
tures ranging from 300 to 1.5 K. A clear demarcation be-
tween semiconducting and metallic behavior is seen around

=12/16 �0.75� where the resistance is approximately inde-
pendent of temperature. For 
� ���12/16 the resistance in-
creases �decreases� with decreasing temperature, typical of
semiconducting �metallic� behavior. Within the limits of the
experimentally available values of 
 �the next greatest value
being 13/16=0.825� this is in agreement with the calcula-
tion.

FIG. 2. Grayscale images of the HRWF for a symmetric hybrid.
From top left to bottom right, 
=0, 0.4, 0.65, 0.77, 0.78, 0.79, 0.82,
and 0.85. Lighter shaded regions are more strongly sampled by the
injected current. It is noted that for 
�0.78 the metal is only
weakly sampled and the metal-semiconductor interface region is
most strongly sampled �in white�. For 
�0.78 the metal begins to
be sampled more strongly, and the importance of the interface re-
gion dies off.

FIG. 3. �a� Variation in the optimal geometry �
max,EMR� with
field due to variation in the Hall angle for a symmetric hybrid.

max,EMR varies from 0.74 at low fields to 0.84 at high fields. This
range is shown as the gray region in �b�. �b� I / �M+S� �squares� and
M /S �circles� calculated as a function of 
 from the HRWF. The
peak in the former at 
=0.78, corresponding to a maximum sam-
pling of the interface region by the injected current lies in the op-
timal range of EMR geometries �gray region�. The change from
semiconducting behavior �M /S�1� to metallic behavior
�M /S�1� also occurs at 
=0.78.
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The optimal EMR geometry depends weakly upon the
Hall angle and thus varies with magnetic field as shown in
Fig. 3�a�, and this range of geometries is represented as a
gray region in Fig. 3�b�. The optimal geometry for interface
sampling falls in this range for the symmetric hybrid. Based
on the proposed mechanism for the EPC effect �i.e., a reduc-
tion in the metal semiconductor interface resistance with
stress�2 it is self-evident that the maximum EPC will occur at
the optimal geometry for interface sampling.

A change in current and/or voltage lead position will also
modify the optimal value of 
 for interface sampling. It is
therefore of interest to investigate whether the optimal EMR
geometries always include that in which the metal-
semiconductor interface is maximally sampled regardless of
lead position. To this end we consider two further hybrid
geometries in which the voltage lead position is varied. It is
expected that a change in current lead position will yield
qualitatively similar results.

B. Voltage leads at �= ±� /8

Grayscale images of the HRWF near the optimal EMR
geometries for a hybrid with voltage leads placed at
�= ±	 /8 are shown in Fig. 5. As in the case of the symmet-
ric hybrid already considered, the interface region is most
strongly sampled �i.e., in white� by the injected current.
Similarly, in the image presented for 
=0.78 there are two
notable characteristics, namely, �i� the metal region clearly
starts to be sampled by the injected current and �ii� the sam-
pling of the interface region, especially near the voltage
leads, is clearly reduced. This behavior is qualitatively simi-
lar to the case of the symmetric hybrid.

In fact a calculation of the ratios I / �M+S� and M /S
shows, respectively, that maximal interface sampling occurs
at 
=0.75 and that this corresponds to a switch between
semiconducting and metallic behavior �see Fig. 6�b��. This
geometry lies in the range of optimal geometries for EMR
�see Fig. 6�a�� represented in gray in Fig. 6�b�. It will be
noted that S, and hence the ratio M /S, is negative for

FIG. 4. Measured four-terminal resistance of circular symmetric
hybrids as a function of temperature and 
, normalized to the mea-
sured resistance at 300 K. The switch between semiconducting
�Semi.� and metallic �Met.� behavior occurs for 12/16�

�13/16, in agreement with the ratio M /S calculated from the
HRWF.

FIG. 5. Grayscale images of the HRWF for voltage leads placed
at �= ±	 /8. Four images are shown near the optimal geometry for
interface sampling �
=0.75�, which also corresponds to a switch
from semiconducting to metalliclike behavior. Sampling of the
metal is evident at 
=0.78.

FIG. 6. �a� Variation in the optimal geometry �
max,EMR� with
field due to variation in the Hall angle for a hybrid with voltage
leads placed at �= ±	 /8. 
max,EMR varies from 0.71 at low fields to
0.87 at high fields. This range is shown as the gray region in �b�. �b�
I / �M+S� �squares� and M /S �circles� calculated as a function of 

from the HRWF. The peak in the former at 
=0.75, corresponding
to a maximum sampling of the interface region by the injected
current falls in the optimal range of EMR geometries �gray region�.
The change from semiconducting behavior �M /S�1� to metallic
behavior �M /S�1� also occurs at 
=0.75. Note that for 
�0.77
the contribution from the semiconductor is negative �i.e., it reduces
the overall resistance�, and thus M /S is also negative.
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�0.77. The main negative contribution to S arises near the
edge of the hybrid close to the voltage leads as can be seen
from the black areas in Fig. 5, 
=0.78. This is a somewhat
counterintuitive result since it implies that the presence of
the semiconductor actually reduces the overall resistance.
However, the absolute contribution of the metal is greater
than that of the semiconductor, and so the overall resistance
is positive as required.

C. Voltage leads at �= ±� /2

A qualitatively similar result is obtained for voltage leads
placed at �= ±	 /2, although the onset of current sampling of
the metal is less visually evident than the previous two cases

�see Fig. 7�. It remains evident that the interface region is of
greatest importance for a resistance measurement. Within the
spatial resolution of the calculation �w0 /2�, the HRWF
shows that the optimal geometry for interface sampling cor-
responds to that for the switch from semiconducting to me-
tallic behavior �
=0.87 and 
=0.86, respectively�. This ge-
ometry again falls within the range of geometries optimal for
EMR �0.84�
�0.92�.

IV. CONCLUSION

Based on calculations of the HRWF for a range of circular
metal-semiconductor hybrid geometries it has been shown
that maximal EXX is obtained in geometries where the sam-
pling of the metal-semiconductor interface by the injected
current is maximized. The latter geometry also corresponds
to a measured change from semiconducting-like to a
metallic-like behavior in the four-terminal hybrid resistance.
Although the absolute optimal value of 
 depends on the
location of the current and voltage leads, the calculations
indicate that the above conclusions hold regardless of lead
location. Thus although the magnitude of the EXX depends
on a number of parameters, it is essentially an interface phe-
nomenon. As a general “rule-of-thumb” therefore, maximiz-
ing EXX for applications should be achievable by designing
hybrids in which the metal-semiconductor interface is maxi-
mally sampled by the injected current.
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