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High-mobility two-dimensional electron systems in a perpendicular magnetic field exhibit zero-resistance
states �ZRSs� when driven with microwave radiation. We study the nonequilibrium phase transition into the
ZRS using phenomenological equations of motion to describe the electron current and density fluctuations in
the presence of a magnetic field. We focus on two models to describe the transition into a time-independent
steady state. In model I the equations of motion are invariant under a global uniform change in the density. This
model is argued to describe physics on small length scales where the density does not vary appreciably from
its mean. The ordered state that arises in this case spontaneously breaks rotational invariance in the plane and
consists of a uniform current and a transverse Hall field. We discuss some properties of this state, such as
stability to fluctuations and the appearance of a Goldstone mode associated with the continuous symmetry
breaking. Using dynamical renormalization group techniques, we find that with short-range interactions this
model can admit a continuous transition described by mean-field theory, whereas with long-range interactions
the transition is driven first order. In model II, we relax the invariance under global density shifts as appropriate
for describing the system on longer length scales, and in this case we predict a first-order transition with either
short- or long-range interactions. We discuss implications for experiments, including a possible way to detect
the Goldstone mode in the ZRS, scaling relations expected to hold in the case of an apparent continuous
transition into the ZRS, and a possible signature of a first-order transition in larger samples. Our framework for
describing the phase transition into the ZRS also highlights the connection of this problem to the well-studied
phenomenon of “bird flocking.”
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I. INTRODUCTION

High-mobility two-dimensional electron gases �2DEGs�
subject to a perpendicular magnetic field exhibit remarkable
physics when driven with microwave radiation. Zudov et al.1

first demonstrated that the longitudinal resistance develops
dramatic radiation-induced oscillations at low temperatures
�T�1 K� and low magnetic fields �B�1 kG�. These oscil-
lations are periodic in 1/B, with the period set by the ratio of
the microwave and cyclotron frequencies. The more spec-
tacular observation, made independently by Mani et al.2 and
Zudov et al.,3 is that in even higher-mobility samples
the oscillations become sufficiently large that the minima
of the resistance oscillations develop into zero-resistance
states—the measured resistance vanishes within experimen-
tal accuracy over a range of magnetic fields and radiation
intensities. Subsequent experiments have confirmed their
results4,6,7 and also observed a similar effect in Corbino
samples,8 where zero-conductance states have been mea-
sured. In contrast to the longitudinal resistance, the �trans-
verse� Hall resistance is nearly unaffected by the
microwaves,2,3 although small radiation-induced Hall oscil-
lations have recently been observed.4,5

On the theoretical front, several groups have carried out
microscopic calculations of the resistance taking into account
radiation-induced transitions between Landau levels in the

presence of impurities9–14 or radiation-induced changes in
the electron distribution function.15,16 Both sets of calcula-
tions capture the resistance oscillations with the correct pe-
riod and phase at low radiation intensity. At higher intensi-
ties, however, these calculations predict a negative resistance
in regions of magnetic field where the experiments find a
zero-resistance state.

The missing ingredient needed to connect the microscopic
theory with the experiments was pointed out by Andreev et
al.—namely, a state characterized by a negative longitudinal
resistance, quite independent of its microscopic origin, is un-
stable to current fluctuations.17 They argued that this insta-
bility leads to an inhomogeneous state where the system
spontaneously develops domains of current with magnitude
j0, where j0 corresponds to a vanishing longitudinal resistiv-
ity, i.e., �D�j0

2�=0. Applying an external current then merely
reorganizes the domains in order to accommodate the addi-
tional current, leading to zero measured resistance over a
range of bias current as observed experimentally. Since the
system has a large Hall resistance, this picture indicates that
in the absence of a current bias the spontaneous current do-
mains in the zero-resistance state should reveal themselves
through spontaneous Hall voltages transverse to the domains.
Willett et al.7 have indeed measured spontaneous voltages
between internal and external contacts with no applied cur-
rent, which lends support to this idea.
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The experiments together with the microscopic calcula-
tions and phenomenological arguments provide strong evi-
dence for the existence of a nonequilibrium phase transition
from a normal state with nonzero resistance to a zero-
resistance state whose detailed properties remain largely un-
explored. In this paper we attempt to gain an understanding
of the nature of this transition, and to learn about the prop-
erties of the zero-resistance state, going beyond the impor-
tant initial step taken by Andreev et al.17 Indeed, the work in
Ref. 17 provides only a description of the local physics,
while a theory capable of treating fluctuations, noise, and
inhomogeneities is needed for a more comprehensive under-
standing of the long-distance physics seen experimentally.
We introduce a symmetry-based hydrodynamic approach that
allows one to incorporate such effects in a systematic way.
As is well known, this technique exposes universal, instrinsic
physics, and has proven extremely successful for a broad
range of problems including liquid crystals,18 superfluids,
magnets,19 and nonequilibrium flocks of birds.20,21 We be-
lieve that the approach developed here can similarly be uti-
lized to obtain a detailed understanding of the nonequilib-
rium zero-resistance transition as well as the nature of the
ordered state.

As a first step, guided by symmetries and conservation
laws we construct and analyze equations of motion for the
current and density fluctuations, including the effects of
white noise. Even in this relatively simple setting �i.e., with-
out disorder�, the theory is rather rich, and can describe a
number of different ordered states. We focus on the transition
to the ordered state that appears to be relevant experimen-
tally, namely, a steady state with current domains. Under a
physically reasonable assumption, we demonstrate that the
transition to such a state can be described in terms of only the
density modes, without explicit reference to current fluctua-
tions. Applying renormalization group methods to several
pertinent models with increasing generality, we show that
generically these modes lead to a first-order transition. Inter-
estingly, as we show, the zero-resistance transition is closely
related to the nonequilibrium “flocking” transition,20,21 and
the theories describing these very different systems become
identical in the limit of zero magnetic field and short-range
electron-electron interactions. Recent simulations of the
“flocking” model also suggest a first-order transition.22

A. Strategy

We begin with the observation that while the microscopic
mechanism for how radiation induces the transition to a zero-
resistance state is a matter of some debate, this knowledge is
not crucial for studying universal properties close to the
phase transition. Indeed, in order to study the long-
wavelength, low-frequency dynamics near the transition it is
sufficient to identify the appropriate hydrodynamic variables
and construct the most general local equations of motion for
them consistent with symmetries and conservation laws. The
magnetic field, temperature, microwave radiation, and quan-
tum effects will determine the various parameters of this
theory; these may be calculated in principle from a micro-
scopic approach, but we do not attempt to do this here. Our

idea will be to view the equations of motion as a nonequi-
librium analog of Landau-Ginzburg-Wilson theory. We will
use them to study universal physics near the phase transition,
going beyond mean-field theory by including nonlinearities
and fluctuations within a renormalization group framework.

In the vicinity of the transition into the zero-resistance
state in the 2DEG, the relevant hydrodynamic degrees of
freedom are the current density j�r , t� and the charge density
n�r , t�, which are constrained by a continuity equation

�n

�t
+ � · j = 0 �1�

that enforces local charge conservation.
The dynamics of the current density j�r , t� is governed by

a nonequilibrium equation of motion �akin to the Navier-
Stokes equation� for a 2D charged fluid in a perpendicular
magnetic field. Because of the nonequilibrium nature of the
system �microwave-driven 2D electron liquid� the equation
for j includes nonconservative forces, i.e., those not deriv-
able from a free-energy functional. Hence, the generic
symmetry-allowed form of the equation for the current den-
sity is only restricted by the translational and rotational in-
variances in the plane. Keeping the leading order �at long
length and time scales� terms in powers of the charge and
current densities and their gradients leads to

�0
−1�t

2j + �tj = − rj − u�j�2j + �1�
2j + �2 � �� · j� − �3�

4j

− �4�
3�� · j� + �̃cẑ � j − � � � − 	1�j · � �j

− 	2 � j2 − 	3�� · j�j + 
1� � � + 
2�j

+ 
3�ẑ � j + � + ¯ . �2�

As we will discuss in more detail below, terms appearing on
the right-hand side of the above equation are forces that de-
termine the local acceleration ��tj�r , t�� of the electron fluid,
each having a simple physical interpretation. The r and u
terms are the linear and nonlinear longitudinal resistivities
�frictional drag forces on the electron fluid�. The �i terms
describe viscous forces associated with a nonuniform flow
and the �̃c term is the Lorentz force on the charged moving
electron fluid. The 	i terms are convectivelike nonlinearities,
where the absence of Galilean invariance permits more gen-
eral types of convective terms 	2 and 	3 in addition to the
conventional 	1 term, with generic �symmetry-unrestricted�
values of these couplings.

Here, the potential ����n� is determined by the density
via

� = 	
r�

V�r − r��n�r�� . �3�

For long-range interactions, V�r−r���1/ �r−r�� is the Cou-
lomb potential. For a screened interaction, we can set V�r
−r��
��r−r��, so that �
n. With this, the � and 
1 terms
incorporate Fick’s law �diffusion down a local chemical po-
tential gradient�, with the latter accounting for a density-
dependent diffusion coefficient. Similarly, 
2 and 
3 account
for the lowest-order density dependence of the linear resis-
tivity and the Lorentz force.
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In addition, we have included in Eq. �2� a zero-mean
white noise force � with a correlator

���r,t����r�,t��� = 2g����r − r����t − t�� . �4�

Apart from thermal noise, this incorporates the effect of mi-
croscopic fluctuations that arise from the coarse graining im-
plicit in our formulation. Since we are dealing with a system
far from equilibrium, the strength g of the noise is not fixed
by the fluctuation-dissipation relation, but is an independent
quantity.

Focusing on the terms �tj=−rj+� in Eq. �2�, it is clear
that �i� for large positive values of r, the zero-current state is
stable and current fluctuations decay exponentially, while �ii�
for large negative values of r, current fluctuations grow ex-
ponentially and the zero-current state is unstable. Thus, as r
changes from positive to negative �in the experiments tun-
able by a microwave power and/or frequency�, Eqs. �1�–�4�
describe the phase transition from a conventional resistive
state for r�0 to a nonequilibrium steady state with sponta-
neous currents for r�0.

As we will argue in Sec. II, this set of equations can
potentially describe various types of current and density or-
dering, including circulating current states and domain pat-
terns of current and density. In this paper our main focus will
be on the nature of the transition into a time-independent
steady state with possible density and current domains since,
given the observations of Willett et al., this appears to be
relevant to the 2DEG experiments. We defer to future work
questions regarding the detailed nature of the ordered state in
this case, as well as a study of the phase transition into the
circulating state.

A quite different theoretical motivation for studying this
problem arises from the observation that the current and den-
sity evolution equations studied here reduce, for B=0 and
short-range interactions, to the continuum equations used to
investigate the problem of “flocking.”20,21 In that case, the
system has been shown to develop an expectation value for
the particle current, thus spontaneously breaking the continu-
ous rotational symmetry even in two spatial dimensions. This
is particularly striking since the Mermin-Wagner theorem23

forbids such symmetry breaking in d=2 for classical equilib-
rium systems. This “violation” was identified as arising from
nonlinear convective terms which are only allowed in non-
equilibrium systems, and turn out to be relevant for this
problem in dimensions d�4. Much is known about the uni-
versal dynamics in the flocking state in d=2, but the nature
of the phase transition into this state has not been addressed
analytically. The question we study is equivalent to asking:
What is the fate of the flocking transition and the flocking
state in two dimensions in the presence of a magnetic field
that breaks time-reversal symmetry? As we show, one can
make more progress in this modified problem. This “flock-
ing” point of view is also useful for carrying out numerical
simulations, since many simple particle models for flocking
have been studied in the absence of a magnetic field and can
be adapted to our problem, although we do not pursue this
here.

B. Summary of the paper

We begin in Sec. II by showing how some terms in Eq.
�2� can be related to the full nonlinear resistivity. We do this
by formally expanding the relation

E�k,�� = �D�j,��j + �H�j,��j � ẑ �5�

at low frequency and wave vector, and for small current and
potential fluctuations. Here �D and �H represent the diagonal
and Hall resistivities, and the electric field E is determined
via the electrostatic potential, i.e., E=−��. Upon Fourier
transforming back to real space, one can arrive at an equation
with a form similar to Eq. �2�. This proves to be a useful
exercise since we can then relate different possible forms of
the frequency- and wave-vector-dependent resistivity in the
presence of microwaves to the model parameters appearing
in Eq. �2� and therefore to the kinds of ordered states that
might emerge from our description. More importantly, this
helps us to identify the correct set of critical modes near the
phase transition into these putative ordered states. Specifi-
cally, we show that if the resistivity is an increasing function
of frequency at low frequency, so that the zero-resistance
state is achieved when the dc resistance first goes negative,
then a time-independent steady state with inhomogeneous
density will result. The only critical mode near the transition
into this state involves density fluctuations accompanied by
current fluctuations that balance the Lorentz force. Since the
current and density are tied to one another in this mode, one
can reexpress current fluctuations in terms of the density.
Inserting the resulting expression into the continuity equation
results in an equation of motion involving only the density at
the critical point.

This equation of motion for the density at the critical
point depends on terms involving the absolute magnitude of
the density, as well as terms that depend only on density
gradients. We warm up in Sec. III by analyzing a model
which neglects terms that depend on the absolute magnitude
of the density, and is instead invariant under shifting the
density by a constant. This model is expected to describe
physics on short length scales where the density does not
vary appreciably from its mean so that such terms can be
safely ignored. In the “ordered phase” of this model the sys-
tem develops a uniform current with a transverse density
gradient that balances the Lorentz force. We show that this
state is stable to small fluctuations, and discuss the “Gold-
stone mode” associated with the spontaneously broken rota-
tional symmetry. The ordered state described by this model is
argued to be relevant for the experiments at short length
scales L�Lc1, where Lc1 is estimated to be roughly 1 mm,
comparable to sample sizes used in the experiments. We then
turn to the critical properties of this model, considering both
short- and long-range interactions. With short-range interac-
tions, we show that the upper critical dimension is dUC=2. In
this case, we use dynamical renormalization group calcula-
tions to demonstrate that the Gaussian fixed point has a
finite-volume basin of attraction; hence, a finite fraction of
initial nonlinear couplings all flow to zero upon renormaliza-
tion. In such cases, the transition is continuous and governed
to a good approximation by mean-field theory. Various scal-
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ing relations should hold near the transition in this regime.
For instance, at fixed magnetic field strength and in the ab-
sence of an applied voltage, below the transition, the spon-
taneous current j0 should scale with the microwave power P
as

j0�P� � �P − Pc��, �6�

where ��0 and Pc is the critical microwave power at which
the longitudinal resistance first vanishes. Approaching the
transition from the resistive side, with P� Pc, we expect a
universal scaling relation to hold between the imposed cur-
rent j and the induced longitudinal electric field,

j�P,E� � �Pc − P��f„E1/��Pc − P�−�
… , �7�

where f�x� is a scaling function with the properties that
f�x��x� as x→0, and f�x��x as x→�. The behavior as x
→0 recovers linear response behavior, j�E, in the resistive
phase, with the resistivity ��Pc− P���1−��. The behavior for
x→� leads to a universal longitudinal nonlinear IV charac-
teristic

j�Pc,E� � E1/� �8�

at the transition, P= Pc, with mean-field value of �=3 for a
current-biased experiment. We then show that long-range in-
teractions appear to drive the transition first order. The ex-
perimental signatures of the Goldstone mode in the “ordered
phase” and the mean-field transition with short-range inter-
actions are qualitatively discussed in Sec. V.

In Sec. IV we analyze the phase transition in the more
general model, where terms that depend on the absolute
magnitude of the density are taken into account. These terms,
which become important on length scales L�Lc2, are argued
to drive the transition first order with either short- or long-
range interactions based on renormalization group calcula-
tions. We derive an expression for Lc2 that depends on the
density- and wave-vector-dependent resistivity, and suggest
that microscopic calculations may be used to estimate this
length. Experimental consequences of the first-order phase
transition for sample sizes larger than Lc2 are briefly noted in
Sec. V.

II. DERIVING AND SIMPLIFYING THE EQUATIONS
OF MOTION

A. “Microscopic derivation” of equations of motion

Before we turn to the analysis of the phases and transi-
tions described by the set of Eqs. �1�–�4�, let us consider a
derivation of some terms in the equation of motion for j in
Eq. �2�.

We begin with the linear response relation

E�k,�� = �D
��k,��j��k,�� + �H�k,����j��k,�� �9�

where �D and �H represent the diagonal and Hall resistivities,
the electric field E is determined from the electrostatic po-
tential via E=−��, and �� is the antisymmetric tensor.

We know from experiments that �H�0,0�
B / �ne� even in
the presence of microwave radiation. We are interested in the
case where the dissipative part of the microscopic diagonal

resistivity becomes negative. With increasing microwave in-
tensity, this would first happen at some particular wave vec-
tor and frequency �K ,��. Two specific cases for the behavior
of �D�k ,�� are illustrated in Fig. 1.

If K ,� are small, we can access the resistivity minimum
shown in Fig. 1 by expanding �D�k ,��=�1�k ,��+ i�2�k ,��
in a Taylor series as

�D
� = ���1�0,0� + i�� ��2

��
� +

�2

2
� �2�1

��2 � + �̄1k2�
+ �̄2kk� + ¯ , �10�

where the frequency derivatives and coefficients �̄1,2 are
evaluated at �k=0,�=0�. Using this expansion inside Eq.
�9�, and assuming that the Hall resistivity is independent of
wave vector and frequency in the regime of interest, we find
the following relations between the coefficients in Eq. �2�
and the microscopic linear response resistivity:

r = �1�0,0�/G , �11�

�0
−1 =

1

2G

�2�1

��2 , �12�

� = 1/G , �13�

�1,2 = �̄1,2/G , �14�

�̃c = �H�0,0�/G , �15�

where G�−���2 /���.
We can similarly match some of the nonlinear terms in

Eq. �2� as follows. Let us take k=0 ,�=0 and consider the
nonlinear resistivity which depends in general on the local
potential and the current magnitude, namely,

�D
��j2,�� = ����1�0,0� + ūj2 − 
̄2� + ¯ � , �16�

�H�j2,�� = �H�0,0� + ūHj2 − 
̄3� + ¯ . �17�

Using this expansion and comparing with the nonlinear
terms in Eq. �2�, we find

u = ū/G , �18�


2,3 = 
̄2,3/G . �19�

As we shall see below, the type of ordering expected to
emerge from our description depends on the frequency and
wave-vector dependence of the resistivity—measuring these

FIG. 1. Schematic behavior of the real part of �D when �a� �0

�0 and �b� �0�0.
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in the disordered phase close to the transition would offer
clues to the nature of the zero-resistance state.

B. Identifying critical modes and simplifying the equations
of motion

On general grounds, one would expect that the type of
order that develops near the transition should depend on
where the minimum of �1 occurs in �k ,�� space. The resis-
tance will in general depend on both k and �, and close to
the transition will be negative in only a small region of fre-
quencies and wave vectors about the minimum. Modes away
from the minimum remain stable. Two possibilities for where
this minimum occurs as a function of frequency are sketched
in Fig. 1. If the minimum occurs at zero frequency as in Fig.
1�a�, then zero-frequency modes that become critical at the
transition should give rise to a time-independent ordered
state �e.g., static domains of current�. If on the other hand the
minimum occurs at a nonzero frequency as in Fig. 1�b�, then
finite-frequency modes should give rise to a state ordered at
finite frequency �e.g., circulating currents�. In either case, the
wave vector at which the minimum occurs would determine
the wave vector at which the system orders. Thus, the signs
of �1 and �0, which determine whether the minimum of �1
occurs at zero �or nonzero� wave vector and frequency,
should play an important role in the ordering.

To make this more concrete, let us consider the mode
structure in the disordered state, where j and n represent
fluctuations about a stable zero-current state. We start with
the case �1�0 and focus on wave vectors k→0 since the
resistivity is minimized when k=0. The modes obtained from
the linearized equations of motion are given by

�± = − i�r +
r2 − �c

2

�0
� ± �c�1 +

2r

�0
� + O„k2V�k�,�0

−2
… ,

�20�

�D =
− ir

r2 + �c
2�V�k�k2 + O„k4V2�k�… , �21�

where V�k� is the Fourier transform of the interaction poten-
tial V�r�. Equation �20� is written out only to order �0

−1 for
simplicity. We only want to consider here the effect of add-
ing a small frequency dependence to the resistivity, so the
exact expression is not important. The modes in Eq. �20�
correspond to current fluctuations that circulate due to the
magnetic field as they dissipate. The associated density fluc-
tuations for these modes vanish in the k→0 limit. Equation
�21� represents a diffusive mode involving both current and
density fluctuations that survive in the k→0 limit. These
current fluctuations are undeflected by the magnetic field be-
cause the Lorentz force is balanced by an electric field set up
by density fluctuations.

In order for the zero-current state to be stable, the imagi-
nary part of these frequencies must be negative so that fluc-
tuations are damped exponentially in time. For the diffusive
mode, stability requires r�0. The circulating current modes
are stable when r��c

2 /�0, assuming �0
2��c

2 for simplicity.
Violation of either inequality renders the zero-current state of

the system unstable to current fluctuations. Since r��1, this
instability occurs approximately where the longitudinal resis-
tivity changes sign, consistent with the findings of Andreev
et al.17

As the longitudinal resistance tends to zero and the or-
dered state is approached, the circulating current modes be-
come critical before the diffusive mode if �0�0. �Note that
since these modes propagate at a finite frequency, this is
consistent with the above discussion on the frequency depen-
dence of the longitudinal resistivity.� Once the circulating
current modes become unstable, the system should undergo a
transition into an ordered state where circulating currents
spontaneously develop but the density remains uniform. If
�0�0, however, the diffusive mode becomes critical while
the circulating current modes remain damped. In this case
one would expect the system to undergo a transition into a
phase with nonuniform density and spontaneous currents or-
dered at zero wave vector. A distinguishing characteristic of
the latter phase would be the development of voltages result-
ing from the nonuniform density. Since spontaneous voltages
in the absence of a net current have indeed been observed in
the ordered state, the case �0�0 seems to be the experimen-
tally relevant one. We consequently focus on the transition
into the density-ordered state and leave an analysis of the
circulating-current state to future studies.

These same ideas can be applied to the case �1�0, where
the resistivity is minimized at finite wave vector. Assuming
�3�0, one is then interested in wave vectors with magnitude
close to k0= ���1� /2�3�1/2, corresponding to the resistivity
minimum. Since we can no longer perturb in k, we cannot in
general write down simple expressions for the modes in the
disordered state. We will therefore focus on the point where
the resistance at zero frequency and k=k0 drops to zero since
this simplifies the mode structure. �This happens when r
=�1

2 /4�3.� A critical diffusive mode then emerges whose fre-
quency is given to lowest order by

�D =
− i�k0

2V�k0�
�k0

2V�k0� + �̃c
22��1��k2, �22�

where �k= �k�−k0. The circulating current modes to lowest
order are

�± = − ik0
2�̃/2 ± �− k0

4�̃2/4 + �0
2V�k0� + �̃c

2, �23�

where �̃=�2+�4k0
2. We have set �0

−1=0 here since the modes
already do not become critical simultaneously. In the limit
where the �̃c term is dominant in Eq. �23�, the square root is
positive. We will assume that �̃�0 so that these modes re-
main damped when the diffusive mode becomes critical
since this appears to be the experimentally relevant situation.
As the resistance decreases further, one expects the diffusive
mode to give rise to a time-independent state with nonuni-
form density ordered at wave vector k0.

It follows from the preceding discussion that only the dif-
fusive mode should be important for describing the transition
into a nonuniform density phase ordered at either zero or
finite wave vector. Since the circulating-current modes have
a finite damping rate when the diffusive mode becomes criti-
cal, they can be neglected provided we focus on frequencies
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smaller than their decay rate. This provides a large simplifi-
cation in that it allows us to eliminate the currents altogether
and obtain a theory in terms of the density alone. Physically,
this is possible because at long time scales the current and
density fluctuations are dominated by a diffusive mode char-
acterized by a gradient of the density fluctuations that just
balances the Lorentz force associated with the current fluc-
tuations. One would thus expect to be able to write the “fast”
current in terms of the “slow” density. This can be done by
dropping the time derivatives on the left-hand side of Eq. �2�
compared to �̃c and then solving order by order for the cur-
rent as a function of the density. Inserting the resulting ex-
pression into the continuity equation yields a decoupled
equation of motion for the density alone. The transition
within this simplified description of the system will be ana-
lyzed in Secs. III and IV for the case of zero-wave-vector
ordering; finite-wave-vector ordering is briefly mentioned in
Sec. V but will not be studied in detail here.

III. TRANSITION TO DENSITY-ORDERED STATE AT
ZERO WAVE VECTOR WITH �\�+CONST SYMMETRY

When �1�0 so that the resistivity is minimized at zero
wave vector, we saw in the previous section that the zero-
current state of the system becomes unstable when r�0.
Identifying the precise ordered state that develops in this
regime is complicated by the presence of nonlinear terms in
Eq. �2� involving the magnitude of the potential �. If one
ignores such terms by manually imposing the symmetry �
→�+const, then a simple ordered state emerges, namely, a
state with a uniform current and a transverse electric field
that balances the Lorentz force. We will begin this section by
discussing some mean-field properties of this ordered state
and then analyze the transition to this state using dynamical
renormalization group techniques. Our motivation for study-
ing this simplified model is as follows. First, it is the simplest
model that one can construct that captures the instability that
occurs when the resistance becomes negative. Second, we
expect this model to be appropriate for describing physics on
length scales where terms involving the magnitude of � play
a relatively unimportant role. This will be quantified below.
Third, understanding the properties of the transition in this
minimal model will allow us to better understand the effects
of adding in terms that violate the �→�+const symmetry,
which will be done in Sec. IV.

A. Ordered state and linearized theory of fluctuations

When r�0, the ordered state within a model with �
→�+const symmetry consists of a uniform current

j0 = ��r�/ux̂ , �24�

where the direction x̂ is spontaneously picked out. Balancing
the associated Lorentz force requires an electric field given
by

E0 = − � �0 = ��̃c/��j0 � ẑ . �25�

We have assumed here that j0 is small in some sense so that,
for instance, terms in the equation of motion proportional to

�j�4j can be neglected compared to the u�j�2j term. To further
simplify things, terms such as ����2j that would arise from
expanding the longitudinal resistivity to higher order in the
potential have also been neglected. Their presence alters only
quantitative properties of the ordered state. For instance, a
uniform current still develops, but with a modified magni-
tude.

To establish a connection with the experiments, note that
the longitudinal resistance at zero wave vector and frequency
is proportional to −�r�+u�j�2 �neglecting higher-order terms in
j and ���. The spontaneous current j0 therefore corresponds
to a vanishing longitudinal resistance as seen experimentally.
This is also consistent with the results of Andreev et al.17

which show that a stable state must have spontaneous cur-
rents corresponding to a vanishing longitudinal resistivity.

To analyze the stability of the ordered state, we consider
fluctuations about the uniform current state by writing j= j0
+�j and n=n0+�n, where j0 is given in Eq. �24� and n0
corresponds to the potential �0 given in Eq. �25�. In the
linearized equations of motion for �j and �n, there are two
damped modes in the k→0 limit with frequencies

�±� = − i�r� ± ��̃c
2 − �r�2. �26�

Since the ordered state breaks rotational symmetry, there is
also a Goldstone mode with frequency �G whose real and
imaginary parts are given by

Re�G =
�j0	1

�̃c
2 k�k2V�k� , �27�

Im�G = −
�

�̃c
2 �2uj0

2k�
2 + �1k�

4�V�k� , �28�

where k� and k� are the components of k perpendicular and
parallel to j0, respectively. Note that the damping within this
mode is anisotropic. In particular, fluctuations with wave
vector parallel to j0, which produce long-wavelength varia-
tions in the direction of j0, relax much more slowly than
fluctuations with wave vector perpendicular to j0.

To see if the ordered state is stable to fluctuations, one
needs to calculate the mean-squared fluctuations of �j�r , t�
and �n�r , t�, averaged over the noise. A divergence of either
of these quantities would signal the destruction of the or-
dered state. We compute these quantities within the linear-
ized theory, focusing only on fluctuations arising from the
Goldstone mode for simplicity. �Long-wavelength fluctua-
tions arising from the �±� modes will be finite since they have
a nonzero damping rate as k→0; consequently, these modes
can be neglected.� Denoting the current fluctuations parallel
and perpendicular to j0 by �j� and �j�, respectively, we find

��j�
2�r,t�� 


g

�̃c
4	

k

�V�k�k�
2 ��̃c

2k2 − 2k�
2 �

k�
2 + �1k4 , �29�
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��j�
2 �r,t�� 


g

�̃6	
k

�V�k���̃c
4k2k�

2 − 2��̃c
2 + 2�k�

4 �
k�

2 + �1k4 ,

�30�

where =2uj0
2 and g is the noise strength. Equation �29� is

obviously finite with either short- �V�k��const� or long-
range interactions �V�k��1/k� since the integrand itself is
not infrared divergent. With long-range interactions, the in-
tegrand in Eq. �30� is infrared divergent. However, this di-
vergence is integrable in 2D, leading to finite transverse cur-
rent fluctuations. The mean-squared density fluctuations are
given by

��n2�r,t�� 

g

�̃c
2	

k

�̃c
2k2 + 2k�

2 − 2�̃ck�k�

�V�k��k�
2 + �1k4�

. �31�

Again, since the infrared divergence in Eq. �31� is integrable
with either short- or long-range interactions, the density fluc-
tuations are also finite. Hence we conclude that, for suffi-
ciently low noise g, the spontaneous current-carrying state is
stable to current and density fluctuations with either short- or
long-range interactions.

The state characterized by Eqs. �24� and �25� can clearly
not exist in arbitrarily large samples since the density would
eventually become negative on one side of the sample. For a
given spontaneous current j0, one can estimate the maximum
sample length Lc1 below which this is a sensible ordered
state by finding how large the sample can be before the den-
sity change becomes comparable to the mean density. We do
this by assuming that the electron-electron interactions are
screened so that the electric field is given by the gradient in
the electrochemical potential �. If �� is the change in �
between the edges of a sample of length L, then the magni-
tude of the electric field is E=�� /eL, where e is the electron
charge. Regions of density variation comparable to the mean
density will appear if ���EF, where EF is the Fermi en-
ergy. Setting ��=EF and using Eq. �25�, we get

Lc1 �
EF

e�Hj0
, �32�

where we have identified �̃c /�=�H.
Note that as the mean-field critical point is approached,

j0→0 and so Lc1 diverges. One might therefore be tempted
to conclude that the model with �→�+const symmetry
correctly describes the physics at the transition at all length
scales. We stress that this is not necessarily the case. In com-
puting Lc1, we have only demanded that no unphysical fea-
tures such as negative density arise in this minimal model.
What we have not done is compute the characteristic length
�which can be smaller than Lc1 above� below which terms
that depend on the magnitude of � play a negligible role. We
will elaborate further on this in the following subsection.

We now estimate Lc1 using parameters measured by Wil-
lett et al.7 in order to get a feel for this length scale. In their
experiments, carried out on a GaAs/AlxGa1−xAs samples, the
density is n
2�1011 cm−2, from which we estimate EF
�5 meV. In a 20 GHz microwave field the primary zero-
resistance state occurs at B
0.4 kG, where �H=B /ne


125 �. From spontaneous voltages that develop in this
zero-resistance region, they estimate a spontaneous current
of roughly 5 �A flowing between the center and edge in
square samples of length 0.4 mm. Assuming a single domain
between these contacts, we find j0
25 �A mm−1. Putting
these parameters together, we estimate the critical length to
be Lc1�1 mm. In samples with dimension larger than Lc1,
terms in the equation of motion involving the magnitude of
� must be taken into account to produce a sensible ordered
state. Such terms would prevent the density from becoming
arbitrarily large and negative, and would lead to inhomoge-
neous currents and densities. Determining the corresponding
current-carrying ordered state on these longer length scales is
an interesting problem that we do not address here.

B. Transition with short-range interactions

Having discussed an example of a stable ordered state that
arises from a model with �→�+const symmetry when r
�0, we now turn to the critical properties of the system at
the phase transition. We begin with the simplest case of
short-range interactions.

As discussed in Sec. II, our analysis is greatly simplified
by assuming that near the critical point circulating-current
modes remain damped while the diffusive mode becomes
critical. Focusing only on the diffusive mode enables us to
write the current in terms of the density. To do this, we start
with Eq. �2� and construct the current for a static density
configuration, setting all time derivatives to zero. Next, as-
suming that gradients and nonlinear terms involving j, � are
“small,” we reexpress order by order the current in terms of
�. To leading order, this is achieved by keeping only the
lowest-order terms in Eq. �2� and obtaining j by inverting

0 = − rj + �̃cẑ � j − � � � + � . �33�

Finally, inserting the expression for the current into Eq. �1�
�the continuity equation� yields a density-only model.

Imposing the symmetry �→�+const in the initial Eq.
�2�, the resulting equation of motion takes the form

0 = �tn − r̃�2� + D�4� − � · �� + �1 � · ��2� � ��

+ �2ẑ · ��� � �3�� + �3 � · ��ẑ � � �� · �

��ẑ � � ��� + �1 � · �������2�

+ �2ẑ · ��� � � ����2� , �34�

where D�0 and �� is a Gaussian noise source with variance
2g�. The transition occurs at r̃=0 �within mean-field theory�,
so we will take r̃=0 from now on. Since we are considering
short-range interactions here, ��n�=n. Quartic and higher-
order terms in �� have been neglected since they contain at
least five gradient operators and are therefore irrelevant in
two dimensions.

The upper critical dimension for this model is dUC=2 for
the case of short-range interactions. We use dynamical renor-
malization group techniques19,24 to deduce whether the non-
linearities appearing in Eq. �34� are marginally relevant or
irrelevant in two dimensions. This procedure is facilitated by
the use of the Martin-Siggia-Rose �MSR� formalism.25 The
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essence of this formalism is that one introduces a “partition
function” Z that is useful for obtaining various correlation
functions, namely,

Z =	 Dn ���tn − r̃�2� + D�4� − � · � + ¯ � . �35�

This imposes the equation of motion as a constraint on all
possible spacetime “trajectories” of n�r , t�. The ellipsis indi-
cates all nonlinearities appearing in Eq. �34�. This functional
�-function constraint is implemented through an auxiliary
field ñ�r , t� so that Z can be written as

Z =	 Dn DñeiS�n,ñ�, �36�

S = 	
r,t

ñ��tn − r̃�2� + D�4� − � · �� + ¯ � , �37�

where constants have been absorbed into the integration
measure for ñ. A useful feature of this method is that the
noise averaging can now be easily performed, with the result
that

	
r,t

ñ�− � · ��� → ig�	
r,t

�� ñ�2 �38�

in the “action” S. This leads to a MSR action expressed in
terms of the fields n , ñ and no noise terms. One can then
implement the renormalization group transformation using
standard field-theory techniques as follows. First, the action
S is written in Fourier space with an ultraviolet cutoff �
reflecting the coarse graining of the fields. One then inte-
grates out fields with wave vectors q such that � /s�q��,
where s�1. This results in an effective action with a reduced
cutoff � /s. To restore the initial cutoff, the wave vectors,
frequencies, and fields are rescaled according to

k� = sk , �39�

�� = sz� , �40�

n��k�,��� = s−�n�k,�� , �41�

ñ��k�,��� = s−�̃ñ�k,�� . �42�

By setting s=1+d�, one arrives at differential recursion re-
lations that specify how the effective coupling constants for
the long-scale degrees of freedom “flow” as short-scale de-
grees of freedom are integrated out. In the present paper
these recursion relations will be calculated to one-loop order.

In anticipation of finding a stable Gaussian fixed point, we
choose the rescaling exponents to take on their mean-field
values: z=4, �=6, and �̃=4. �Since there is no small param-
eter at our disposal, the only possible controlled fixed point
must be Gaussian.� These exponents keep the noise strength
g� fixed under renormalization since diagrammatic correc-
tions to g� vanish at one-loop order. To simplify the flow
equations for the remaining coupling constants, we define the
following dimensionless parameters:

�1 = �/D��3�4�1 − 3�3� ,

�2 = − �/D��3�2,

�3 = �/D��3
2,

�4 = − �1,

�5 = �2, �43�

where =g /4�D2. The flow equations in terms of these pa-
rameters are

��D =
1

2
�1D , �44�

���1 = − �3

2
�1 + 13�4��1 − 3�3�4 + 4�2�5, �45�

���2 = − �3

2
�1 + 7�4��2 +

1

4
�3�3 − 7�1��5, �46�

���3 = − �3

2
�1 + 12�4��3, �47�

���4 = − ��1 + 9�4��4 + �5
2, �48�

���5 = − ��1 + 10�4��5. �49�

At this point we would like to identify the basin of attrac-
tion for the Gaussian fixed point under consideration. That is,
for a given set of initial conditions for �i, we would like to
know whether these parameters all flow to zero as �→�.
While it is straightforward to check this numerically, it is
difficult to draw general conclusions either analytically or
from the numerics due to the five-dimensional parameter
space and the fact that Eqs. �45�–�49� are all coupled. In the
subspace with �3=0, one can show analytically that the
Gaussian fixed point is stable to all perturbations within that
subspace. In the full parameter space with �3�0, we have
shown that a finite-volume region of initial conditions corre-
sponds to stable trajectories where each �i flows to zero. The
asymptotic solution for such trajectories is given by �1
��2/11��−1, �2��5c2 /242��−10/11, �3�c1�−15/11, �4

��1/11��−1, and �5��1/c2��−12/11, where c1,2 are arbitrary
constants. One can verify the stability of these flows by per-
turbing around this solution. According to Eq. �44�, the sub-
diffusion constant grows asymptotically as D�D0�1/11 along
these trajectories, where D0 is a constant. The asymptotic
behavior of the original coupling constants is given by �1
��−2/11, �2��−1/11, �3��−6/11, �1��−9/11, and �2��−10/11,
demonstrating marginal irrelevance of all nonlinearities, and
therefore the stability of the Gaussian fixed point.

Flows that terminate along the above asymptotic trajecto-
ries correspond to marginally irrelevant couplings that reside
in the basin of attraction for the Gaussian fixed point. In such
cases mean-field theory should be a reasonable starting point
for analyzing the transition to the density-ordered phase
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within this model. In particular, as we saw in the previous
subsection mean-field theory predicts a continuous transition
since the spontaneous current and the associated density gra-
dient develop smoothly from zero as r becomes negative �see
Eqs. �24� and �25��. Another important mean-field prediction
we can make is that at the transition there is a single subdif-
fusive mode for density fluctuations with frequency

� = − iDk4. �50�

This slow relaxation of long-wavelength fluctuations should
be accompanied by large voltage fluctuations near the tran-
sition. Equal-time density-density correlations, which should
mimic voltage correlations, are given within mean-field
theory by

�n�r,t�n�0,t�� =
g�

D
	

k

eik·r

k2 . �51�

The integral diverges logarithmically at small k. To regulate
the integral, we restrict the range of integration to 2� /L
�k��, where L is the system size. In the limit r��1 and
r /L�1, we obtain

�n�r,t�n�0,t�� 

g�

2�D
ln�L/r� . �52�

Equal-time current-current correlations in mean-field theory
are given by

�j�r,t�j�0,t�� =
g���2

2�D�̃c
2

J1�r��
r�

, �53�

where J1�x� is a Bessel function of the first kind. Note that
the current becomes �-function correlated in the limit that
�→�. Since the interactions are only marginally irrelevant,
they will give rise to logarithmic corrections to these corre-
lation functions, which will not be computed here.

So far we have focused on the case where the coupling
constants flow to zero upon renormalization. Even outside of
this marginally stable region, the couplings are still only
marginally relevant, and therefore grow only logarithmically
with length scale. In fact, we have seen numerically that
many trajectories that initially flow toward the Gaussian
fixed point eventually diverge from it, but do so only after
many renormalization group iterations. In these instances, it
may be very difficult to resolve deviations from mean-field
theory either numerically or experimentally, and the transi-
tion may appear continuous even in the presence of the mar-
ginally relevant couplings.

C. Is this model valid near the transition?

We will now discuss when the model with �→�
+const symmetry and short-range interactions is expected to
be appropriate for describing the physics at the transition.
Consider adding the term �� · ����� to Eq. �34�, which is
the most relevant nonlinearity that violates this symmetry.
This term can be traced back to the 
2�j term in Eq. �2�. We

define a dimensionless coupling constant �̃�� /D, where D
is the subdiffusion constant. If we interpret the equation of

motion as arising from a Taylor expansion of the resistivity,
then we can write

�̃ =
��D/�n

��D/�k2 . �54�

One expects �̃ to be small in a not-too-dirty electron gas,
since in a pure system �D is already nonvanishing at any
nonzero wave vector �contributing to the denominator�,
while the numerator vanishes by Galilean invariance in this
limit. However, this term is strongly relevant in two dimen-

sions. Hence, even if one starts with �̃�1, in an infinite
system this coupling constant will eventually become much
greater than unity under renormalization. Ignoring this term
will certainly not be valid in this case, so one would need to
appeal to the full equation of motion to describe the transi-
tion. In a finite system, however, one is interested in reducing
the cutoff to roughly 1/L, where L is the system size, so the
growth of the coupling constant will be bounded. The model
with �→�+const symmetry will provide a reasonable de-
scription of the transition as long as L is sufficiently small

that �̃ does not become of order 1. Under a tree-level renor-
malization group iteration, the renormalized coupling con-

stant �̃� grows according to �̃�= �̃s2, with s�1. In terms of
the reduced cutoff ��=� /s, where � is the initial cutoff, this
can be expressed as

�̃�

�̃
= � �

��
�2

. �55�

We take ��=1/Lc2 and �=1/ lin, where lin is the inelastic
mean free path. For the samples used in the experiments,
lin��vFEF / �kBT�2�100 �m,15 and is comparable to the
transport mean free path estimated from the mobility at a
temperature of 1 K. This is about an order of magnitude
smaller than the sample lengths.

To estimate the critical length scale Lc2 below which the

model is valid, we set �̃�=1, leading to

Lc2 =
lin

���̃
. �56�

We note that if ��̃��1, say around 0.01, then the critical
length Lc2 would already be comparable to the sample sizes
studied in the experiments. A serious estimate of this length
would require a microscopic calculation of the resistivity
�D�k ,�� in the presence of microwaves to compute the bare

value of �̃ via Eq. �54� and would be valuable.

D. Transition with long-range interactions

We have seen in the case of short-range interactions above
that a finite-volume region of initial couplings is marginally
irrelevant and flows to zero upon coarse graining. Next, we
discuss the fate of these flows when long-range interactions
are turned on. This case is relevant experimentally due to the
absence of metallic gates in the experiments conducted so
far, leading to unscreened Coulomb interactions.
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Consider again the equation of motion given in Eq. �34�,
with ��n�=�r�V�r−r��n�r��. With long-range Coulomb in-
teractions, the Fourier-transformed interaction potential �in
two dimensions� is V�k��1/k. The upper critical dimension
in this case is dUC=3. Since we are interested in the transi-
tion in d=2 dimensions, one option is to carry out an �
expansion in d=3−� dimensions. This approach is compli-
cated by the need to generalize the interactions in Eq. �34� to
higher dimensions. Alternatively, one can perform an � ex-
pansion by writing V�k�=1/k�, with ��1. The upper critical
dimension is then dUC=2+�. We will adopt the latter ap-
proach since we can then work directly in d=2 dimensions
and thereby avoid generalizing the equation of motion.

We use the dynamical renormalization group as outlined
above to calculate the flow equations at one-loop order and
to lowest order in �. As in the short-range case, there are no
diagrammatic corrections to the noise strength g� at one
loop. To keep g� fixed under renormalization, we take the
rescaling exponent �̃= �4+z� /2. Similarly, we choose the ex-
ponent �=3z /2 to fix the coefficient of �tn to be unity in Eq.
�34�. To simplify the flow equations for the remaining pa-
rameters, we again use the dimensionless coupling constants
defined in Eq. �43� �with =g /4�D2���. The subdiffusion
constant then flows according to

�lD = �z − 4 + � + �1/2�D . �57�

For convenience we choose z=4−�−�1 /2 to keep D fixed.
With this choice of rescaling exponents, the flow equa-

tions for the parameters �i are

���1 = ��1 − �3

2
�1 + 13�4��1 − 3�3�4 + 4�2�5,

�58�

���2 = ��2 − �3

2
�1 + 7�4��2 +

1

4
�3�3 − 7�1��5,

�59�

���3 = ��3 − �3

2
�1 + 12�4��3, �60�

���4 = ��4 − ��1 + 9�4��4 + �5
2, �61�

���5 = ��5 − ��1 + 10�4��5. �62�

In the case of short-range interactions we found that there are
stable trajectories where all the coupling constants go as-
ymptotically to zero. This clearly cannot happen in the case
of finite-range interactions due to the ��i terms above. In-
stead, we search for fixed points of the form �i=ai�, where
ai are constants. One can easily show that all such fixed
points are unstable. We interpret this lack of a stable fixed
point as signaling a first-order transition. Thus, we conclude
that the continuous transition that can occur with short-
range interactions is driven first order by the presence of
long-range interactions of the form V�k�=1/k�, with ��1.

This result may seem surprising initially since one might
expect long-range interactions to suppress density fluctua-

tions and thereby further stabilize the Gaussian fixed point.
For instance, in the linearized equation of motion the density
diffuses faster with long-range interactions. A competing ef-
fect, however, is that density fluctuations can interact nonlo-
cally through the nonlinear terms. Thus, density fluctuations
in one region of the sample can further induce fluctuations
over long distances. This can lead to positive feedback of
these density fluctuations via the nonlinearities, which evi-
dently drives the transition first order.

IV. TRANSITION TO DENSITY-ORDERED STATE
AT ZERO WAVE VECTOR IN THE FULL

ROTATIONALLY INVARIANT MODEL

The model considered above with �→�+const symme-
try is only appropriate for describing physics up to a certain
length scale. For instance, in the ordered state with a given
uniform current, regions of negative density appear if the
sample is too large. We estimated this length scale to be
roughly �1 mm using parameters from Willett’s
experiments.7 On larger scales, terms in the equation of mo-
tion depending on the magnitude of �, which prevent the
density from becoming negative, must be taken into account.
As discussed above, at the transition, the leading term in-
volving the magnitude of � �i.e., the 
2�j term in Eq. �2�� is
strongly relevant in two dimensions. The dimensionless cou-
pling constant for this term therefore grows under renormal-
ization. In a finite system, the growth of this coupling is
limited by the system size L since one only reduces the wave
vector cutoff to of order 1 /L. Neglecting terms depending on
the magnitude of � becomes an invalid approximation when
the system size is sufficiently large that this renormalized
dimensionless coupling becomes of order unity.

To describe physics in samples with linear dimensions
larger than these length scales, one must therefore relax the
�→�+const symmetry and appeal to the full equation of
motion in Eq. �2� with no additional symmetries. This is the
subject of the present section. Identifying the ordered state
that develops in this case is nontrivial, so we will focus only
on the transition to the ordered state, considering both short-
and long-range interactions.

A. Transition with short-range interactions

When we relax the �→�+const symmetry, Eq. �34�
generalizes to

0 = �tn − r̃�2� + D�4� − � · �� − � � · �� � �� ,

�63�

where D�0 and �� is a Gaussian noise source with variance
2g�. In this subsection we consider short-range interactions,
so �=n. The transition in the linearized theory occurs at r̃
=0 since the diffusive mode becomes unstable when r̃�0.
Other nonlinearities are in principle present in Eq. �63�, but
they are less relevant than the � term and can be neglected
provided we work near the upper critical dimension.

To derive Eq. �63�, we solved for the current in terms of
the density assuming two spatial dimensions. However, the �
interaction is strongly relevant in two dimensions, so to
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study its effects we need to to continue this model to higher
dimensions. We initially adopt the most naive way of doing
this continuation; namely, we simply assert that Eq. �63� is
valid in d dimensions. In the case of short-range interactions
the upper critical dimension for the � nonlinearity is then
dUC=6.

We have carried out an � expansion in d=6−� dimensions
to obtain the renormalization group flow equations to one-
loop order. Rather than go through the details of the calcu-
lation, we will merely state that these equations lack a stable
fixed point, which we interpret as signaling a first-order tran-
sition. A more direct route to this conclusion can be obtained
by observing that Eq. �63� is identical to the equation of
motion for an equilibrium model with a conserved order pa-
rameter. That is, it �Eq. �63�� can be rewritten as

�tn = �2�F

�n
+ � · ��, �64�

with the “free energy” given by

F =
1

2
	

r
r̃n2 + D��n�2 +

�

3
n3 +

ũ

2
n4� , �65�

The term proportional to ũ that results from Eq. �64� is irrel-
evant at the upper critical dimension and has therefore been
excluded from Eq. �63�. We will assume ũ�0 for simplicity,
although this is not essential. Figure 2 depicts the free-energy
density f as a function of uniform density n for three differ-
ent values of r̃. When r̃��2 /18ũ� r̃c, the free energy is
minimized when n=0 as illustrated by the solid curve. At r̃
= r̃c, the free energy has two degenerate minima as shown in
the dashed curve. Below r̃c, the free energy is minimized by
a nonzero value of n. This situation is represented by the
dotted line for r̃=0. When r̃ decreases below r̃c, the density
will therefore jump discontinuously from zero to minimize
the “free energy.” This signals the onset of a first-order tran-
sition, consistent with our renormalization group results.
Note that the transition occurs at a finite value of r̃, preempt-
ing the apparent transition �a “spinodal”� at r̃=0 expected
from the linear theory. As Fig. 2 demonstrates, the point r̃
=0 actually corresponds to a spinodal decomposition where
the system goes from being metastable to globally unstable
at n=0.

These results hold only near d=6. We can reduce the up-
per critical dimension of the model by considering a spatially
anisotropic continuation of Eq. �63� to higher dimensions. To
do this, we can start by continuing Eq. �2� to d dimensions
and taking the resistance at zero wave vector and frequency
to be anisotropic. That is, write

rj → r�j� + r�j� �66�

in Eq. �2�, where j� is the current in the x-y plane and j�

represents the current in the additional d−2 dimensions. We
will be interested in tuning the resistance r� in the x-y plane
to zero while leaving the resistance r� for the remaining di-
rections positive. We can then eliminate the current in favor
of the density as before to obtain

0 = �tn − r̃���
2� + D���

4 � − �� · ��� − ���� · ������ ,

�67�

where r̃�, D��0 and we have set r�=0. We have also only
retained the x-y �in-plane� components of the noise ���
�with strength g��, since noise components in the additional
�d−2� � dimensions are irrelevant. Similarly, we have omit-
ted nonlinear terms involving �� since, due to the high an-
isotropy of the harmonic terms, these are clearly less relevant
than the corresponding terms involving only �� derivatives.

The upper critical dimension for this model is dUC=4. We
have performed an � expansion in d=4−� dimensions to
one-loop order. Upon integrating out high-energy modes, the
momenta are anisotropically rescaled according to k��=sk�

and k�� =s�k�, and the exponents z , � , �̃ are defined as in
Eqs. �40�–�42�. Requiring that the �tn term remains invariant
under rescaling leads to the relation �+ �̃=2�1+�−�+z�.
Defining

�̄�
2 =

��
2 g�

48�2D�
2 r̃�

, �68�

and setting s=1+d�, the flow equations are given by

��r̃� = �z − 2��r̃� , �69�

��D� = �z − 4 + �̄�
2 �D�, �70�

���� = �2z − 2 − �̃ + 3�̄�
2 ���, �71�

��g� = �2�̃ − z − 4 − 2� + 2��g�. �72�

We let r̃� ,D� ,g� flow to fixed points, and follow the flow for
��. Once again, we find that the model lacks a stable fixed
point. Thus, even near d=4 dimensions, the transition still
appears to be first order.

It seems quite likely that the transition is first order in d
=2 dimensions as well. In the model with �→�+const
symmetry and short-range interactions, we showed in the
previous section that one could have a continuous transition
in d=2 dimensions. Terms that violate the �→�+const
symmetry appear then to always drive the transition first or-
der.

We propose the following physical interpretation for this.
We have been analyzing the transition at zero wave vector

FIG. 2. “Free-energy” density f as a function of constant density
n for �=1, ũ=1/5, with r̃=2r̃c, r̃c, 0 �see text for details�.
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and zero frequency, where one expects long-wavelength fluc-
tuations that become critical at the transition to give rise to
an ordered state with uniform, static current. Such an ordered
state must be accompanied by a density gradient transverse
to the current to balance the Lorentz force. We have already
argued that such a state cannot exist in the thermodynamic
limit because the density would become arbitrarily large and
negative at the edges of the sample. The only terms in the
equation of motion that sense these unphysical features are
precisely those terms that depend on the magnitude of the
density. In the thermodynamic limit, these terms must there-
fore induce a first-order transition into some other state, such
as a state ordered at finite wave vector or a phase-separated
state. A direct transition from a uniform isotropic liquid to a
modulated �finite wave vector� smectic state can also be ar-
gued to be first order on quite general grounds.26–28

B. Transition with long-range interactions

Finally, let us consider the effect of long-range interac-
tions. We saw in the model with �→�+const symmetry
that turning on long-range interactions drove the transition
first order. In the present case, the transition is already first
order with short-range interactions, so it seems rather likely
that the transition will remain so with long-range interac-
tions. This is indeed what we find based on a renormalization
group analysis. We will therefore only outline the calculation
and state the results.

Consider Eq. �63� with ��n�=�r�V�r−r��n�r�� and V�k�
=1/k. Once again, the � interaction is strongly relevant in
two dimensions, so we would like to continue Eq. �63� to d
dimensions. We will only consider the simplest isotropic
continuation and assert that Eq. �63� holds in d dimensions.
The upper critical dimension is then dUC=7. We have per-
formed a one-loop � expansion in d=7−� dimensions, and
find that the model lacks a stable fixed point. Thus, as ex-
pected, the transition remains first order when long-range
interactions are included.

V. DISCUSSION AND SUMMARY

The focus of this paper has been on the physics near the
transition to a zero-resistance state in 2DEGs driven with
microwave radiation. Our goal was to understand the long-
distance, long-time properties of the system taking into ac-
count noise and fluctuation effects within a nonequilibrium
hydrodynamic theory involving the electron current and den-
sity. We specifically focused on the transition to a time-
independent, density-ordered state that occurs when the mi-
croscopic resistance first becomes negative at �k=0 ,�=0�.
The long-wavelength subdiffusive density fluctuations are
the only critical modes at this transition. We analyzed two
models involving the density mode: �i� model I, character-
ized by an imposed symmetry under a global uniform shift of
the density, valid only on sufficiently small length scales, and
�ii� model II, which is most general rotationally invariant
model with no additional symmetries.

The ordered state in model I consists of a uniform current
and a transverse Hall electric field that balances the Lorentz

force. This state was shown to be stable within a linearized
theory of fluctuations about the ordered state.

We argued that the uniform-current steady state in model
I cannot exist in arbitrarily large samples since the uniform
Hall field would eventually lead to regions of negative den-
sity. Using parameters from Willett et al.’s experiments,7 we
estimated that samples with dimension smaller Lc1�1 mm
can support this state. To describe the ordered state in larger
samples, one must include terms that depend on the magni-
tude of the density, which would prevent the density from
becoming arbitrarily large and negative.

Since the ordered state in model I breaks continuous ro-
tational symmetry, there is an associated Goldstone mode
corresponding to long-wavelength fluctuations of the current
transverse to the uniform-current flow direction. Surface
acoustic waves in the zero-resistance regime29,30 at the right
wavelength and frequency should couple to the Goldstone
mode, opening up the possibility of detecting this mode as a
signature of symmetry breaking.

The transition to this ordered state in model I was ana-
lyzed in both the cases of short- and long-range interactions
using dynamical renormalization group methods. This model
is valid for describing the transition on length scales L
�Lc2, which we think could be comparable to sample sizes
in current experiments as discussed in Sec. III C, although it
would be valuable to have an estimate from microscopic
calculations. With long-range interactions, we showed that
model I undergoes a first-order transition. However, with
short-range interactions, we showed that in two dimensions
the Gaussian fixed point in model I has a finite-volume basin
of attraction. That is, a finite-volume region of initial nonlin-
ear couplings all flow to zero upon renormalization. The
transition in these cases is of the mean-field type. In particu-
lar, mean-field theory predicts a continuous transition to the
ordered state. Additionally, the density subdiffuses at the
critical point, with a frequency given by ��−ik4. This sub-
diffusion should lead to large density fluctuations and hence
large voltage fluctuations at the transition. It may be interest-
ing to observe this in samples with metallic gates, so that the
Coulomb interactions are screened. Although it may be dif-
ficult to quantitatively test the mean-field predictions, one
could perhaps measure voltage correlations at contacts
placed along the perimeter of the sample. These voltages
should behave similarly to the density-density correlations
given in Eq. �51�. Qualitatively, one should at least observe
large voltage fluctuations since the density is critical and
subdiffusive at the transition.

We next turned to an analysis of the transition in the more
generic model II, which includes terms that depend explicitly
on the magnitude of the density. We found that the transition
within this model is always first order independent of
whether interactions are short- or long-range, at least near the
upper critical dimension of the theory. The physical mecha-
nism for this first-order transition is as follows. If the resis-
tance minimum occurs at k=�=0, then one would expect
long-wavelength fluctuations to give rise to a time-
independent state with a uniform current and transverse Hall
field. As mentioned above, such a state cannot exist in arbi-
trarily large samples since regions of negative density will
eventually appear. The role of terms that depend on the mag-
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nitude of the density is to prevent such unphysical features
from arising. These terms consequently force a first-order
transition into a more complicated ordered state.

The experiments conducted so far were carried out using
samples without metallic gates, leading to unscreened Cou-
lomb interactions. The transition in these systems is therefore
predicted to be first order, which should have measurable
consequences. One possible controlled way of detecting a
first-order signature might be to measure the critical current
above which the zero-resistance state disappears.17 If one
approaches the transition from the ordered state �by, say,
changing the magnetic field� then the critical current should
drop discontinuously from some finite value to zero if the
transition is indeed first order.

There are several future directions one could pursue with
the theory presented here that we believe would be interest-
ing and provide further insight into the remarkable physics of
driven 2DEGs. Regarding the transition to zero resistance,
we have considered only the simplest case where the resis-
tance minimum occurs at k=�=0. It may be interesting to
generalize our results for this case to include static disorder
to see how it affects the transition. One could also analyze
the transition at finite frequency where a time-dependent
state such as circulating currents would arise. Additionally,
one could consider the transition at zero frequency but non-
zero wave vector k0. In this case one would be interested in
wave vectors k such that �k−k0��� for some cutoff �. If the
equation of motion was derivable from a free energy of the
form

F = 	
q

r�q�n�q�n�− q�

+ 	
q1,q2,q3

��q1,q2,q3�n�q1�n�q2�n�q3�

+ 	
q1¯q4

u�q1, . . . ,q4�n�q1�n�q2�n�q3�n�q4� �73�

then we know that the cubic term drives the transition first
order based on analogies with the solidification of an isotro-
pic liquid.26 Even in the case where the cubic term vanishes,
the transition is still driven first order by fluctuations.27 Due
to the presence of nonequilibrium terms, however, the equa-
tion of motion will not be derivable from a free energy. Non-
equilibrium effects could cause dramatic deviations from the
equilibrium theory, and at present it is unclear what effect
such terms will have on the transition.

Another avenue one could pursue with this theory is to
address the properties of the ordered state away from the
transition in model II. Numerical studies may be best suited
for this purpose especially since the ordered state is likely to
be inhomogeneous and not analytically tractable. One pos-
sible route is to generalize the numerics on the flocking tran-
sition done by Vicsek et al.31 to include a magnetic field and
interactions.

Finally, we note that while early numerical work on the
flocking transition in the absence of a magnetic field indi-
cated a continuous phase transition,31 some recent simula-
tions on larger system sizes hint at a weak first-order
transition.22 If true, this would be consistent with the transi-
tion continuing to be first order in the presence of a magnetic
field as argued in this paper.
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