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Spin relaxation in the presence of crossed electric and magnetic fields: A quasiclassical approach
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A simple method for the investigation of spin relaxation phenomena in systems with Rashba and Dressel-
haus spin-orbit interactions is developed. The method is applied to the investigation of the impact of external
fields on the relaxation process. The calculation shows that the spin relaxation is strongly affected by a lateral
electric field. The field enhances the lifetime of the magnetization and leads to an additional rotation of the
magnetization. This field-induced rotation can be affected further by means of magnetic fields. We study the
dependence of the field-induced rotation on the structure of the spin-orbit scattering and on the strength of the
applied magnetic field.
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I. INTRODUCTION the spin dynamics can be obtained by applying external
Investigations of spin transport and spin relaxation phe_fields. In particular the situation in a strong magnetic field
nomena are at present of much interest. This interest i8S received much attention. Spin relaxation problems in
stimulated by the notion that the electron spin can also bgUch fields have been investigated in a number of papers
utilized in electrical devices. A couple of suggestions have?0th in the semiclassical limisee, e.g., Refs. 14-pand for

been published in the literature, which focus on possible apduantizing fields(see, e.g., Refs. 22-p4These investiga-
plications of the spin degree of freedofsee, e.g., Refs. tions show that a strong magnetic field has two effects. First,

1-5). All of them are based on the observation that the elecit deceases the relaxation rate and second it opens the route

tron spin can also be manipulated electrically. The couplin c:(nli\i’;’l aag\]/zcnrggngg ;Or[ngr]ﬁeﬁtpd?n_r(?éa)gﬁ%nﬁgg'ﬁg_f?kes
between the electric field and the electron spin is provided b plicitly 9 P .

: N ) S . he reduction of the relaxation rate becomes in particular
Fhe Sp”f"‘”b" Interaction, W.h'Ch. is realized by the R""Shba'striking in the quantum-Hall limit, in which the simple ex-
interaction in the simplest situatién. '

. . onential decay of the magnetization is replaced by an alge-
However, a disadvantage of the spin degree of freedorny ic deca)?.3'24y g P y g
compared to the charge is the fact that the magnetization is pp, electric field leads to an additional rotation of the

not a conserved quantity. Therefore, every initial magnetizamagnetizatior??—%which also affects the decay of the mag-
tion decays with time. The decay is caused by the couplingetization directly. The electric-field-induced rotation of the
of the spin and momentum, which is provided by the spin-magnetization can be observed if the electric field exceeds a
orbit interaction(see, e.g., Ref.)7 Due to this coupling, the critical field262” The critical field depends on material pa-
spin of every particle precesses around a different axis. Conrameters like the Rashba interaction constant, the effective
sequently, an ensemble of spins dephases in a short amountiss, and the ratio between the diffusion coefficient and the
of time. In systems with strong spin-orbit interactions, in mobility. Studies of the impact of crossed electric and mag-
which the spins precess many times before the axis of thaetic fields have not been published so far.
precession changes due to collisions, the dephasing proceedslin investigations of the impact of an electric field on the
on a time scale governed by the width of the initial spinspin relaxation mainly numerical methods and quantum ki-
packet! The spin transport proceeds ballistically in this casenetics have been used. Doing so, the coupling between spin
The magnetization is lost after the momentum relaxatiorand charge has been ignored. Despite this fact the application
time. Really long relaxation times can only be expected inof these methods to spin relaxation problems has turned out
systems with weak spin-orbit interactfoar near-degenerate to be difficult since the investigation of spin relaxation pro-
points?® In such systems the axis of the precession is changecesses requires finding solutions to coupled systems of inte-
before the spin can appreciably rot&t€herefore, the spin gral equations. On the other hand, since the momentum re-
transport proceeds diffusely in this case. laxation is the source of spin relaxation, it should be possible
The relaxation of the magnetization can be investigatedo find a representation of the spin transport coefficients and
experimentally by means of time-resolved Faraday or Kerthe Bloch equations in terms of momentum correlation func-
effect measurementsee, e.g., Refs. 9—1br by means of tions, in particular in situations in which quantum interfer-
time-resolved photoluminescence spectroscapge, e.g., ences do not matter. From this point of view the application
Refs. 12 and 18 In such experiments the limit of weak of the above-mentioned methods to the spin relaxation prob-
Rashba interactions can easily be distinguished from théem seems to be unnecessary complicated.
limit of strong Rashba interactions. Whereas in the first situ- It is the purpose of the present paper to derive a simple
ation the magnetization decays simply exponentially at largeepresentation of the Bloch equations for systems with
times, in the second situation also oscillations of the magneRashba and Dresselhaus spin-orbit scattering in terms of mo-
tization can be observed. Both regimes have been investmentum correlation functions. Doing so, we focus on the
gated experimentally in Ref. 13. Additional information on decay of a nonequilibrium magnetization on the Fermi sur-

1098-0121/2005/423)/2353186)/$23.00 235318-1 ©2005 The American Physical Society



O. BLEIBAUM PHYSICAL REVIEW B 71, 235318(2005

face. This situation can also be realized and be investigated ax p 2

experimentally(see, e.g., Ref. 23Apart from being simple am %S X N. (5)

our approach has the merit of elucidating the underlying

physical picture. We apply our approach to the investigationrhe first term in this equation is of the order pfm, the

of spin relaxation in crossed electric and magnetic fieldssecond of the order dl. The splitting of the energy levels
Doing so, we produce new results on the impact of the elecdue to the Rashba interactionAg=|N|p. Therefore, the sec-
tric field on the spin relaxation rate, on the field-inducedond term on the right-hand sid®HS) of Eq. (5) is small
rotation and the critical field in systems with combined compared to the first term if the Rashba level splitting is
Rashba and Dresselhaus interactions, on the impact of tremall compared to the Fermi energy. This is the case in most
magnetic field on the electric-field-induced spin precessionsystems. Accordingly, the second term can be ignored in a
and on theg factor in such systems. first approximation. In this case the equations of motiorxfor
andp are closed. Therefore, the spin dynamic depends on the
random fieldV(x,t) only via p. Thus, we can consider the
momentum as a random variable, which is characterized by
the correlation functions

II. SPIN RELAXATION IN THE PRESENCE OF AN
ELECTRIC FIELD

A. Rashba semiconductor

(P = = MuxF (6)
Our derivation of the generalized Bloch equations in the
presence of an electric field uses the observation that the spﬁpd
relaxation in a Rashba semiconductor with weak spin-orbit m2D
scattering is the result of the momentum relaxation. There- (piO)p;(1)) = T@ie_th (7)

fore, it should be possible to find a representation of the

transport coefficients governing the spin relaxation in termgor t> 7, whereD is the(spectral diffusion coefficient and-

of momentum correlation functions. To find such a represenis the momentum relaxation time.

tation we focus on a noninteracting two-dimensional electron The magnetization satisfies the equation

?Sa;i\?lejr?JE;ted to Rashba interactions. The Hamilton operator S() = Gy(1,0)S(0), 8

ao where
He 2 g (NXP) +F %+ V%D, L) 4 2
am (d_t5ik + E(N X p)jeijk)le(tyt/) =got-t), (9

whereF=Fe, is the lateral fieldN=Ne, is a vector trans-

verse to the two-dimensional plan, aMiX,t) is a time- and a summation with respect to double indices is per-

dependent potential, which is responsible for momentum anéPrmed. To calculate the configuration average we split the

energy relaxationo=oye,+0,6,+ a4, is a vector composed momentum into two parts according to the equatjpn
of Pauli matrices. —MuyF +p, where w=N X dp. Doing so, we obtain the

The Heisenberg equations for the spin oper&wefio/2, ~ DYSON equation

the momentunp, and the position operatdrtake the form 0 2 (* 0
G(t,t') =Gy(t,t') - %f dt;Gi(t, ty) €imn@m(ty) Gty t').
0

d—é—géx(Nx“) )
at % P (10)
Here GO is the retarded solution to the equation
dp -
—==VV(KXt)-F, 3 d 2mpu,F ,
t d_5ik - e |G = Giot-t). (1)
t f
and ) .
To calculate the configuration average we use the Born ap-
&k p 2. proximation. In this approximation the equation for the cal-
dt m %Sx N. (4) culation of the configuration averaged Green function takes
the form
In order to obtain a quasiclassical description we use the
Ehrenfest theorem. To this end, we write the operators in the (Edk - Mﬁzk)gm(t,t')
form p=p+ &, S=S+ S andX=x+ X, wherep, S, andx are dt h
the expection values, and take the expection values of the 4 (~ o
Heisenberg equations. Following Ehrenfest we ignore the = 5iI5(t_t,)+ﬁf dtemGnp(t,t2)
guantum corrections to the equations of motion. Doing so, 0
we find that the expection values satisfy again Egs(4). X €prel (B r(t)) Gatat'). (12)

We notice that the momentupis coupled to the spin by
the equation of motion for the position vector The latter  To simplify this equation further we use the observation that
has the form the decay of the correlation functigkw.(t) w,(t,))) is gov-
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erned by the time scale If we restrict the consideration to Ot o
the limit of weak spin-orbit scattering, we expect that the SO =exp — = — G| | - 2 sin(kgt)
variation of the functionG is negligible on this time scale.
Accordingly, + COS(KFt)>Sz(0) - Sin(KFt)%(O)] (21
d_ 2muuF A
(d_tfsik hxx 6|2k>Gk|(t t') for |[F|>F, where
4 0?
= 33t~ + 3 €mlCny(1/7) ke =\ 0= (22)
X epref(0m(0) 0 (0))) G ), (13 ~and

where G%(1/7) is the Laplace transform of the function Fo=—|N—. (23)

GY(t,0) at the Laplace frequencs=1/7.
The correlation function in the second term of the RHS of

. : . These equations reduce to those discussed in the Refs. 26
Eq. (13) can easily be calculated. The calculation yields 9

and 27 in the limitwg7<<1. In the limit g7 1 they contain
2 rapid oscillating functions, which invalidate our assumption
(om(0)w(0))) = NZSn (1 = Srg)—. (14)  that the change of the magnetization during the timis
T negligible. Therefore, the range of applicability of E¢20)
Thus, we finally obtain the equation and (19) is restricted to the limitwg7<<1. Accordingly, we
can conclude that a large electric field enhances strongly the
(dﬂ -+ 8,0(ge + ) - ,U«xx(N % F),ﬂ,k)&(t) -0 ::iifetime of the magnetization in the direction dFXF, but
0 not obtain new results for the transverse components in
(15) the same limit.

in the limit Q7<1. Here ) ) )
B. Systems with Dresselhaus interactions

OF = 1 (16) The method presented above can easily be extended to
1+ wF72 systems with Dresselhaus interactions. In this case the spin-
orbit contribution to the Hamilton operator is given by
4m?’DN? . .
Q PP (17) Hp = B(Pyox— pyo'y)- (24)
The equation of motion for the spin can again be written in
and the form
2mu, FN
©F= % (18) dS_ 25 % (25)
T

According to Eqs(15)—(18) the electric field affects the re-
laxation in two ways. First, it leads to an additional rotation
of the magnetization in the plane transverseNts F. Sec- &=B(-p,.p.,0) (26)
ond, it decreases the spin relaxation rate. The field-induced y

rotation has recently been discussed in Refs. 26-28. In RefEollowing the same steps as before we obtain the result
26 and 27_ it _has been shown _t_hat the rotatipn is c_)bservable if 1 oMy

the electric field exceeds a critical fiehd. To investigate the [d_t S+ 5ikQ<+—27_2 + %> 0o €|xk] S()=0

where

impact of the new factoge on the relaxation process we h
solve Eq.(13). Doing so, we take advantage of the fact that (27)
the matrix is block diagonal. For the component parallel to
N X F we obtain the result for Qr<1, where
21 22
Sy(t) = exp— gFQt)Q/(O) (19 0= 4mh[2)'8 ) (28)

It shows that a large field increases considerably the lifetime
of the magnetization in the direction dfX F. For the com-  w is given here by the same formula as EtB), except that
ponents transverse té X F we obtain the equations N has to be replaced bg.
Ot ) Equation(27) shows that the spin relaxation in a Dressel-
S(t) = exp(— —_ - gFQt) [(— Sin(kgt) + Cos(KFt)>Sx(0) haus semiconductor proceeds nearly in the same way as in a
2 2KE Rashba semiconductor. The main difference between both
o systems is that the electric-field-induced rotation in the
+ K_F sin(ket)S,(0) |, (20 Rashba semiconductor proceeds in the plane transverse to
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N X F—in a Dresselhaus semiconductor, however, in the . SPIN RELAXATION IN THE PRESENCE OF
plane transverse tB. CROSSED ELECTRIC AND MAGNETIC FIELDS
Of particular interest are systems in which both the
Rashba interaction and the Dresselhaus interaction are
presenf The spectrum of such systems has the property that T0 take into account an external magnetic field we replace
the spin does not couple to the momentum at degenerafe by p- A, whereA=B .12e,XX. In this case the Ehrenfest

points® Therefore, particular long spin relaxation times cantheorem yields the equations
be achieved in such systems by tuning the Rashba interaction ds  2m

A. Rashba semiconductor

properly. For such systems our method yields the result = =Z"SX (N Xv), (34)
dat 7
d 2muy. 8 2mu
(a@k + Oy - TXFinxk_ (N X F)jeij |Sdt) = 0 dx _ . ES N (35)
(29) dt h
and
in the limit wg7<<1, where do
ma:v X B——(S>< N) X B,— VV(x,t)-F, (36)
N2+ B2  2NB 0

Q. = 4D NG N2+ P 0 (30) whereuv is the velocity. The second term on the RHS of Eqgs.
k™ 42 5 (35) and (36) can be ignored under the same conditions as
0 0 2(N°+ %) before. Doing so, we find again that the equations for the

calculation of the particle velocity and the particle position
To diagonalize the tensdl; we turn the coordinate system are closed. Accordingly, investigation of E(34) requires
by the anglew/4 around thez axis. In the new frame the only specification of the velocity correlation functions. In the

tensor() takes the form presence of a magnetic field they take the form
t)) = 37
o (NN o o (WD) = = poF (37)
m
=" 0 NN+ 0 . (3D (vy(1)) = uyFB, (38)
0 0 2(N? + 82

(uuDv(t)) = vy (Doy(t'))
Here the prime indicates that the system is turnedmiby. D
The components of the magnetization in the new frame are = codac(t-t')]exp-[t=t'|/7), (39)
referred to as§, §, andS,.
Equation(31) shows clearly that the tensél has zero and
modes at the points of degenerddy + 3. To investigate the o ,
impact of the electric field on the spin relaxation at such a (ux(oy(t)) = = oy Don(t'))
point we focus on the situation &=. Doing so, we find D . , ,
thatS, is conserved even in the presence of the electric field. - sinfwc(t=t") Jexp(=[t=t'|/7) (40)
If we switch on the electric field, the rotation of the magne-
tization proceeds in the plane transverseefoexclusively. ~ for t> 7, where w,=7/m? and w.=B,/m. If we use these
For the components of the magnetization in this plane weorrelation functions, we obtain the result
obtain the equation

(s;(ﬂ)ze_ﬂu_[( cogwt) sin(wt)>($<(0)>, 32

d -
_tfik + Q6 (1 + 8a) — 1pYerBeiak

f . , 2m
where for wog7<<1, where
~ Q
—2mpu, NF Q=—""-, (42
w= v’z%. (33) 1+ (wen)?
= Q.1 (Bug), 43
These equations show that the critical fi€lglin such sys- Geft = Lot/ (Byie) 43
tems is equal to zero. Thus such systems are also particularl
q y p y M:MXXF+FXBMH’ (44)

convenient for the investigation of electric field effects, since
they permit the investigation of field effects already in theand ug is the Bohr magneton. These equations show that the
presence of very weak electric fields. orbital part of the magnetic field affects the spin relaxation in
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three ways. First, it turns the plane of the electric-field-ties N andB. It can be made positive as well as negative.
induced rotation by the Hall angle.7. Therefore, the field- To investigate Eq(48) further we focus on the situation
induced rotation proceeds actually in the plane transverse td=p4. In this case the effectivg factor vanishes but the

N X j in a Rashba semiconductor, whéers the current den- magnetization still performs a rotation due to the electric
sity. Second, it reflects itself in an effective Zeeman field,field. In this case the equation of motion for the magnetiza-
which results from the interplay between the cyclotron mo-tion takes the form

tion and the spin-orbit scattering. Third, it reduces the relax-

ation rate. Equatiori42), which describes the reduction of S 0 -
the relaxation rate, has recently been derived in Ref. 21 using 0 s+Qu+Qy -ow. |S(9=S, (49)
quantum kinetics. Our derivation shows that the underlying w. w, s+0Q,,

physics is very simple and produces new information on the

impact of the magnetic field on the field-induced rotation andvhere

on the effectivey factor. The latter is quite large, in particular o = 2\r’5mFBNu It (50)

for small magnetic fields. - H
So far we have restricted the consideration to the investiand

gation of the impact of the orbital part of the magnetic field. =

The consideration of an explicit Zeeman term in the Hamil- . = 2V2MFNuoff (5)

tonian does not present any difficulty. If such a term is takenn the primed frame discussed in Sec. Il B. This equation

into account, it yields an additional contribution of the struc-shows that the precession of the magnetization in the pres-

ture ence of crossed electric and magnetic fields proceeds in both
ds they’-z" andx’-z' planes. This result has immediate conse-
= =- uggS X B (45) quences for the applications discussed in Ref. 5. According
dt | zeeman to Eq.(49) every initial magnetization in a system with com-

to Eq. (41), provided|usgBr <1. Thusge is replaced by —Pinéd Rashba and Dresselhaus interactions decays in the

Gori— Gofr+0. presence of crossed electric and magnetic fields even at the

point of degeneracy. Therefore, the spin transistor of Ref. 5
becomes unstable in the presence of crossed fields.

B. Systems with Dresselhaus interactions V. RESULTS

For a system with Dresselhaus interactions we obtain the

simple equation In this paper we have developed a simple method for the

investigation of spin relaxation processes in systems with
d ~ 2mB . Rashba and Dresselhaus interactions in the presence of ex-
d_t5ik+ Q61+ 8p) + pplerBeiz+ T kM (=0 ternal fields. Our calculation reproduces the existing results
on the impact of an electric field on systems with Rashba
(46)  interactiond®2"2%nd extends them to systems in which both
for wer<1, where Rashba and Dresselhaus interactions are present to systems
with large electric fields and to systems with crossed electric
1= pF —F X Buy (47)  and magnetic fields. In line with the results of Refs. 26, 27,
- ] ] ) and 29 we find that a lateral electric field affects strongly the
and(} is given by Eq.(42) with N replaced by in (. This spin relaxation. However, the impact of the field on the re-
equation shows that the impact of the magnetic field on thgyyation process depends on the structure of the spin-orbit
spin relaxation in a system with Dresselhaus interactions igyteraction. Although the field leads to an additional rotation
different from that on a Rashba semiconductor. The interplays ihe magnetization in both the presence of the Rashba in-
between the spin-orbit interaction and the cyclotron motiongraction and the Dresselhaus interaction, the plane of the
leads in both systems to an effective Zeeman field. In gig|q-induced precession is different in both cases. In the
Dresselhaus semiconductor, however, the effeagiactor  presence of the Rashba interaction the precession proceeds in
takes the opposite sign. Therefore, the effecgactor can  he plane perpendicular thi X F, in the presence of the
be varied in a wide range simply by tuning the the Rashbgyesselhaus interaction in the plane perpendiculdf.t@he
and Dresselhaus interaction consteMiand 8 properly. This  pjane can be turned continuously by tuning the Rashba inter-
fact manifests itself also in a system in which both interac-3¢tion constanN and the Dresselhaus interaction consfant
tions are present. For such a system we obtain the equatiorgropeﬂy_
d 1 AmPDw.r The field-induced rotation can be observed if the electric
— S+ 5= = (N? = B?) €36 field exceeds a critical field. The critical field depends on the
dt 1+(we7) AL+ (wen)’] mobility, on the diffusion coefficient, on the effective mass,
2m _ on the Rashba interaction constant, and on the Dresselhaus
- 7€ijk(N X p=Bw; | S =0, (48)  interaction constant. It vanishes at the points of degeneracy
IN|=|8|. Therefore, the investigation of systems near degen-
where(); is given by Eq.(30). This equation shows that the erate points offers the opportunity to study nonlinear field
g factor of the system can be tuned by means of the quanteffects already at vanishing small fields.
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The rotation of the magnetization manifests also in thecession plane, which is parallel to the current density vector
spin lifetime. Our calculation shows that the lifetime of the in the absence of the magnetic field, acquires also a compo-
spin component transverse to the precession plane increasasnt transverse tp The differences between the impact of
with increasing electric field. The equation, which describegshe magnetic field on the spin relaxation in both systems
the decrease of the relaxation rate in the presence of an eleatanifests itself in particular at a point of degeneracy. In the
tric field, has the same structure as that in the presence off@esence of crossed fields the magnetization decays even at a
very strong magnetic field derived recently in Ref. 21. Thuspoint of degeneracy, although the tend®y is degenerate,
our results show that a lateral electric field affects the spirsince the field always turns the magnetization into a noncon-
relaxation qualitatively in the same way as a magnetic fieldserved direction. Therefore the spin transistor discussed in
At present mainly magnetic fields are used in the investigaRef. 5 becomes unstable at sufficiently large crossed fields.
tion of spin relaxation phenomena. Our results show that The impact of a transverse magnetic field on the spin
every experiment which can be performed by means of magrelaxation is not restricted to the electric-field-induced pre-
netic fields can be performed completely electrically as wellcession. The cyclic motion of the charge carriers in a mag-

The field-induced rotation of the magnetization can benetic field leads also to an additional rotation, which changes
affected further by magnetic fields. A magnetic field turns thethe effectiveg factor and reduces the relaxation rate. The
plane of the field-induced precession. In both a Rashba semsign and magnitude of the effectigefactor depend on the
conductor and a Dresselhaus semiconductor the precessiomagnitude of the spin-orbit interaction. The spin-orbit con-
plane is turned by a Hall angle, however, in different ways.tribution to the effectiveg factor vanishes at a point of de-

In a Rashba semiconductor the plane is turned in such a wageneracy and decreases with increasing magnetic field. The
that the field-induced precession proceeds always in thequations describing the reduction of the relaxation rate with

plane perpendicular tbl X j, wherej is the current density. increasing magnetic field obtained here agree with those of
In a Dresselhaus semiconductor, however, the normal of preRef. 21.
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