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A simple method for the investigation of spin relaxation phenomena in systems with Rashba and Dressel-
haus spin-orbit interactions is developed. The method is applied to the investigation of the impact of external
fields on the relaxation process. The calculation shows that the spin relaxation is strongly affected by a lateral
electric field. The field enhances the lifetime of the magnetization and leads to an additional rotation of the
magnetization. This field-induced rotation can be affected further by means of magnetic fields. We study the
dependence of the field-induced rotation on the structure of the spin-orbit scattering and on the strength of the
applied magnetic field.
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I. INTRODUCTION

Investigations of spin transport and spin relaxation phe-
nomena are at present of much interest. This interest is
stimulated by the notion that the electron spin can also be
utilized in electrical devices. A couple of suggestions have
been published in the literature, which focus on possible ap-
plications of the spin degree of freedomssee, e.g., Refs.
1–5d. All of them are based on the observation that the elec-
tron spin can also be manipulated electrically. The coupling
between the electric field and the electron spin is provided by
the spin-orbit interaction, which is realized by the Rashba
interaction in the simplest situation.6

However, a disadvantage of the spin degree of freedom
compared to the charge is the fact that the magnetization is
not a conserved quantity. Therefore, every initial magnetiza-
tion decays with time. The decay is caused by the coupling
of the spin and momentum, which is provided by the spin-
orbit interactionssee, e.g., Ref. 7d. Due to this coupling, the
spin of every particle precesses around a different axis. Con-
sequently, an ensemble of spins dephases in a short amount
of time. In systems with strong spin-orbit interactions, in
which the spins precess many times before the axis of the
precession changes due to collisions, the dephasing proceeds
on a time scale governed by the width of the initial spin
packet.7 The spin transport proceeds ballistically in this case.
The magnetization is lost after the momentum relaxation
time. Really long relaxation times can only be expected in
systems with weak spin-orbit interaction8 or near-degenerate
points.5 In such systems the axis of the precession is changed
before the spin can appreciably rotate.8 Therefore, the spin
transport proceeds diffusely in this case.

The relaxation of the magnetization can be investigated
experimentally by means of time-resolved Faraday or Kerr
effect measurementsssee, e.g., Refs. 9–11d or by means of
time-resolved photoluminescence spectroscopyssee, e.g.,
Refs. 12 and 13d. In such experiments the limit of weak
Rashba interactions can easily be distinguished from the
limit of strong Rashba interactions. Whereas in the first situ-
ation the magnetization decays simply exponentially at large
times, in the second situation also oscillations of the magne-
tization can be observed. Both regimes have been investi-
gated experimentally in Ref. 13. Additional information on

the spin dynamics can be obtained by applying external
fields. In particular the situation in a strong magnetic field
has received much attention. Spin relaxation problems in
such fields have been investigated in a number of papers
both in the semiclassical limitssee, e.g., Refs. 14–21d and for
quantizing fieldsssee, e.g., Refs. 22–24d. These investiga-
tions show that a strong magnetic field has two effects. First,
it deceases the relaxation rate and second it opens the route
to new a mechanism for the spin relaxation, which takes
explicitly advantage of a momentum-dependentg factor.15–17

The reduction of the relaxation rate becomes in particular
striking in the quantum-Hall limit, in which the simple ex-
ponential decay of the magnetization is replaced by an alge-
braic decay.23,24

An electric field leads to an additional rotation of the
magnetization,25–30 which also affects the decay of the mag-
netization directly. The electric-field-induced rotation of the
magnetization can be observed if the electric field exceeds a
critical field.26,27 The critical field depends on material pa-
rameters like the Rashba interaction constant, the effective
mass, and the ratio between the diffusion coefficient and the
mobility. Studies of the impact of crossed electric and mag-
netic fields have not been published so far.

In investigations of the impact of an electric field on the
spin relaxation mainly numerical methods and quantum ki-
netics have been used. Doing so, the coupling between spin
and charge has been ignored. Despite this fact the application
of these methods to spin relaxation problems has turned out
to be difficult since the investigation of spin relaxation pro-
cesses requires finding solutions to coupled systems of inte-
gral equations. On the other hand, since the momentum re-
laxation is the source of spin relaxation, it should be possible
to find a representation of the spin transport coefficients and
the Bloch equations in terms of momentum correlation func-
tions, in particular in situations in which quantum interfer-
ences do not matter. From this point of view the application
of the above-mentioned methods to the spin relaxation prob-
lem seems to be unnecessary complicated.

It is the purpose of the present paper to derive a simple
representation of the Bloch equations for systems with
Rashba and Dresselhaus spin-orbit scattering in terms of mo-
mentum correlation functions. Doing so, we focus on the
decay of a nonequilibrium magnetization on the Fermi sur-
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face. This situation can also be realized and be investigated
experimentallyssee, e.g., Ref. 13d. Apart from being simple
our approach has the merit of elucidating the underlying
physical picture. We apply our approach to the investigation
of spin relaxation in crossed electric and magnetic fields.
Doing so, we produce new results on the impact of the elec-
tric field on the spin relaxation rate, on the field-induced
rotation and the critical field in systems with combined
Rashba and Dresselhaus interactions, on the impact of the
magnetic field on the electric-field-induced spin precession,
and on theg factor in such systems.

II. SPIN RELAXATION IN THE PRESENCE OF AN
ELECTRIC FIELD

A. Rashba semiconductor

Our derivation of the generalized Bloch equations in the
presence of an electric field uses the observation that the spin
relaxation in a Rashba semiconductor with weak spin-orbit
scattering is the result of the momentum relaxation. There-
fore, it should be possible to find a representation of the
transport coefficients governing the spin relaxation in terms
of momentum correlation functions. To find such a represen-
tation we focus on a noninteracting two-dimensional electron
gas subjected to Rashba interactions. The Hamilton operator
is given by

H =
p̂2

2m
− s · sN 3 p̂d + F · x̂ + Vsx̂,td, s1d

whereF =Fex is the lateral field,N=Nez is a vector trans-
verse to the two-dimensional plan, andVsx̂ ,td is a time-
dependent potential, which is responsible for momentum and
energy relaxation.s=sxex+syey+szez is a vector composed
of Pauli matrices.

The Heisenberg equations for the spin operatorŜ="s /2,
the momentump̂, and the position operatorx̂ take the form

dŜ

dt
=

2

"
Ŝ3 sN 3 p̂d, s2d

dp̂

dt
= − = Vsx̂,td − F , s3d

and

dx̂

dt
=

p̂

m
−

2

"
Ŝ3 N. s4d

In order to obtain a quasiclassical description we use the
Ehrenfest theorem. To this end, we write the operators in the

form p̂=p+dp̂, Ŝ=S+dŜ andx̂=x+dx̂, wherep, S, andx are
the expection values, and take the expection values of the
Heisenberg equations. Following Ehrenfest we ignore the
quantum corrections to the equations of motion. Doing so,
we find that the expection values satisfy again Eqs.s2d–s4d.

We notice that the momentump is coupled to the spin by
the equation of motion for the position vectorx. The latter
has the form

dx

dt
=

p

m
−

2

"
S3 N. s5d

The first term in this equation is of the order ofp/m, the
second of the order ofN. The splitting of the energy levels
due to the Rashba interaction isDp= uNup. Therefore, the sec-
ond term on the right-hand sidesRHSd of Eq. s5d is small
compared to the first term if the Rashba level splitting is
small compared to the Fermi energy. This is the case in most
systems. Accordingly, the second term can be ignored in a
first approximation. In this case the equations of motion forx
andp are closed. Therefore, the spin dynamic depends on the
random fieldVsx ,td only via p. Thus, we can consider the
momentum as a random variable, which is characterized by
the correlation functions

kpl = − mmxxF s6d

and

kkpis0dpjstdll =
m2D

t
di je

−t/t s7d

for t.t, whereD is thesspectrald diffusion coefficient andt
is the momentum relaxation time.

The magnetization satisfies the equation

Skstd = Gklst,0dSls0d, s8d

where

S d

dt
dik +

2

"
sN 3 pd jei jkDGklst,t8d = dildst − t8d, s9d

and a summation with respect to double indices is per-
formed. To calculate the configuration average we split the
momentum into two parts according to the equationp=
−mmxxF +dp, where v=N3dp. Doing so, we obtain the
Dyson equation

Gklst,t8d = Gkl
0 st,t8d −

2

"
E

0

`

dt1Gki
0 st,t1deimnvmst1dGnlst1,t8d.

s10d

HereG0 is the retarded solution to the equation

S d

dt
dik −

2mmxxF

"
ei2kDGkl

0 = dildst − t8d. s11d

To calculate the configuration average we use the Born ap-
proximation. In this approximation the equation for the cal-
culation of the configuration averaged Green function takes
the form

S d

dt
dik −

2mmxxF

"
ei2kDḠklst,t8d

= dildst − t8d +
4

"2E
0

`

dt2ekmnGnp
0 st,t2d

3eprskkvmstdvrst2dllḠslst2,t8d. s12d

To simplify this equation further we use the observation that
the decay of the correlation functionkkvmstdvrst2dll is gov-
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erned by the time scalet. If we restrict the consideration to
the limit of weak spin-orbit scattering, we expect that the

variation of the functionḠ is negligible on this time scale.
Accordingly,

S d

dt
dik −

2mmxxF

"
ei2kDḠklst,t8d

= dildst − t8d +
4

"2ekmnGnp
0 s1/td

3eprskkvms0dvrs0dllḠslst,t8d, s13d

where G0s1/td is the Laplace transform of the function
G0st ,0d at the Laplace frequencys=1/t.

The correlation function in the second term of the RHS of
Eq. s13d can easily be calculated. The calculation yields

kkvms0dvrs0dll = Nz
2dmrs1 − dm3d

m2D

t
. s14d

Thus, we finally obtain the equation

S d

dt
dik + dikVsgF + dk3d −

2mmxx

"
sN 3 Fd jei jkDSkstd = 0

s15d

in the limit Vt!1. Here

gF =
1

1 + vF
2t2 , s16d

V =
4m2DN2

"2 , s17d

and

vF =
2mmxxFN

"
. s18d

According to Eqs.s15d–s18d the electric field affects the re-
laxation in two ways. First, it leads to an additional rotation
of the magnetization in the plane transverse toN3F. Sec-
ond, it decreases the spin relaxation rate. The field-induced
rotation has recently been discussed in Refs. 26–28. In Refs.
26 and 27 it has been shown that the rotation is observable if
the electric field exceeds a critical fieldFc. To investigate the
impact of the new factorgF on the relaxation process we
solve Eq.s13d. Doing so, we take advantage of the fact that
the matrix is block diagonal. For the component parallel to
N3F we obtain the result

Systd = exps− gFVtdSys0d. s19d

It shows that a large field increases considerably the lifetime
of the magnetization in the direction ofN3F. For the com-
ponents transverse toN3F we obtain the equations

Sxstd = expS−
Vt

2
− gFVtDFS V

2kF
sinskFtd + cosskFtdDSxs0d

+
vF

kF
sinskFtdSzs0dG , s20d

Szstd = expS−
Vt

2
− gFVtDFS−

V

2kF
sinskFtd

+ cosskFtdDSzs0d −
vF

kF
sinskFtdSxs0dG , s21d

for uFu.Fc, where

kF =ÎvF
2 −

V2

4
s22d

and

Fc =
m

"
uNu

D

mxx
. s23d

These equations reduce to those discussed in the Refs. 26
and 27 in the limitvFt!1. In the limit vFt@1 they contain
rapid oscillating functions, which invalidate our assumption
that the change of the magnetization during the timet is
negligible. Therefore, the range of applicability of Eqs.s20d
and s19d is restricted to the limitvFt!1. Accordingly, we
can conclude that a large electric field enhances strongly the
lifetime of the magnetization in the direction ofN3F, but
do not obtain new results for the transverse components in
the same limit.

B. Systems with Dresselhaus interactions

The method presented above can easily be extended to
systems with Dresselhaus interactions. In this case the spin-
orbit contribution to the Hamilton operator is given by

HD = bsp̂xsx − p̂ysyd. s24d

The equation of motion for the spin can again be written in
the form

dŜ

dt
=

2

"
Ŝ3 v̂, s25d

where

v̂ = bs− p̂x,p̂y,0d. s26d

Following the same steps as before we obtain the result

F d

dt
dik + dikVS 1

1 + vF
2t2 + dk3D −

2mmxxb

"
FxeixkGSkstd = 0

s27d

for Vt!1, where

V =
4m2Db2

"2 . s28d

vF is given here by the same formula as Eq.s18d, except that
N has to be replaced byb.

Equations27d shows that the spin relaxation in a Dressel-
haus semiconductor proceeds nearly in the same way as in a
Rashba semiconductor. The main difference between both
systems is that the electric-field-induced rotation in the
Rashba semiconductor proceeds in the plane transverse to
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N3F—in a Dresselhaus semiconductor, however, in the
plane transverse toF.

Of particular interest are systems in which both the
Rashba interaction and the Dresselhaus interaction are
present.5 The spectrum of such systems has the property that
the spin does not couple to the momentum at degenerate
points.5 Therefore, particular long spin relaxation times can
be achieved in such systems by tuning the Rashba interaction
properly. For such systems our method yields the result

S d

dt
dik + Vik −

2mmxxb

"
Fxeixk −

2mmxx

"
sN 3 Fd jei jkDSkstd = 0

s29d

in the limit vFt!1, where

Vik =
4m2D

"2 1N2 + b2 2Nb 0

2Nb N2 + b2 0

0 0 2sN2 + b2d
2 . s30d

To diagonalize the tensorVik we turn the coordinate system
by the anglep /4 around thez axis. In the new frame the
tensorV takes the form

V8 =
4m2D

"
21NsN − bd 0 0

0 NsN + bd 0

0 0 2sN2 + b2d
2 . s31d

Here the prime indicates that the system is turned byp /4.
The components of the magnetization in the new frame are
referred to asSx8, Sy8, andSz8.

Equations31d shows clearly that the tensorV has zero
modes at the points of degeneracyN= ±b. To investigate the
impact of the electric field on the spin relaxation at such a
point we focus on the situation atN=b. Doing so, we find
thatSx8 is conserved even in the presence of the electric field.
If we switch on the electric field, the rotation of the magne-
tization proceeds in the plane transverse toex8 exclusively.
For the components of the magnetization in this plane we
obtain the equation

SSy8std
Sz8std

D = e−VzztS cossvtd sinsvtd
− sinsvtd cossvtd

DSSx8s0d
Sy8s0d

D , s32d

where

v = Î2
2mmxxNF

"
. s33d

These equations show that the critical fieldFc in such sys-
tems is equal to zero. Thus such systems are also particularly
convenient for the investigation of electric field effects, since
they permit the investigation of field effects already in the
presence of very weak electric fields.

III. SPIN RELAXATION IN THE PRESENCE OF
CROSSED ELECTRIC AND MAGNETIC FIELDS

A. Rashba semiconductor

To take into account an external magnetic field we replace

p̂ by p̂−Â, whereÂ=Bz/2ez3 x̂. In this case the Ehrenfest
theorem yields the equations

dS

dt
=

2m

"
S3 sN 3 vd, s34d

dx

dt
= v −

2

"
S3 N, s35d

and

m
dv
dt

= v 3 B −
2

"
sS3 Nd 3 Bz − = Vsx,td − F , s36d

wherev is the velocity. The second term on the RHS of Eqs.
s35d and s36d can be ignored under the same conditions as
before. Doing so, we find again that the equations for the
calculation of the particle velocity and the particle position
are closed. Accordingly, investigation of Eq.s34d requires
only specification of the velocity correlation functions. In the
presence of a magnetic field they take the form

kvxstdl = − mxxF, s37d

kvystdl = mHFB, s38d

kkvxstdvxst8dll = kkvystdvyst8dll

=
D

t
cosfvcst − t8dgexps− ut − t8u/td, s39d

and

kkvxstdvyst8dll = − kkvystdvxst8dll

=
D

t
sinfvcst − t8dgexps− ut − t8u/td s40d

for t@t, wheremH=t2/m2 and vc=Bz/m. If we use these
correlation functions, we obtain the result

F d

dt
dik + Ṽdiks1 + dk3d − mBgef fBzei3k

−
2m

"
ei jksN 3 md jGSkstd = 0 s41d

for vFt!1, where

Ṽ =
V

1 + svctd2 , s42d

gef f = Ṽvct/sBzmBd, s43d

m = mxxF + F 3 BmH, s44d

andmB is the Bohr magneton. These equations show that the
orbital part of the magnetic field affects the spin relaxation in
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three ways. First, it turns the plane of the electric-field-
induced rotation by the Hall anglevct. Therefore, the field-
induced rotation proceeds actually in the plane transverse to
N3 j in a Rashba semiconductor, wherej is the current den-
sity. Second, it reflects itself in an effective Zeeman field,
which results from the interplay between the cyclotron mo-
tion and the spin-orbit scattering. Third, it reduces the relax-
ation rate. Equations42d, which describes the reduction of
the relaxation rate, has recently been derived in Ref. 21 using
quantum kinetics. Our derivation shows that the underlying
physics is very simple and produces new information on the
impact of the magnetic field on the field-induced rotation and
on the effectiveg factor. The latter is quite large, in particular
for small magnetic fields.

So far we have restricted the consideration to the investi-
gation of the impact of the orbital part of the magnetic field.
The consideration of an explicit Zeeman term in the Hamil-
tonian does not present any difficulty. If such a term is taken
into account, it yields an additional contribution of the struc-
ture

UdS

dt
U

Zeeman
= − mBgS3 B s45d

to Eq. s41d, provided umBgBtu!1. Thusgef f is replaced by
gef f→gef f+g.

B. Systems with Dresselhaus interactions

For a system with Dresselhaus interactions we obtain the
simple equation

F d

dt
dik + Ṽdiks1 + dizd + mBgef fBei3k +

2mb

"
ei jkm̃ jGSkstd = 0

s46d

for vFt!1, where

m̃ = mxxF − F 3 BmH s47d

andṼ is given by Eq.s42d with N replaced byb in V. This
equation shows that the impact of the magnetic field on the
spin relaxation in a system with Dresselhaus interactions is
different from that on a Rashba semiconductor. The interplay
between the spin-orbit interaction and the cyclotron motion
leads in both systems to an effective Zeeman field. In a
Dresselhaus semiconductor, however, the effectiveg factor
takes the opposite sign. Therefore, the effectiveg factor can
be varied in a wide range simply by tuning the the Rashba
and Dresselhaus interaction constantsN andb properly. This
fact manifests itself also in a system in which both interac-
tions are present. For such a system we obtain the equation

F d

dt
dik +

1

1 + svctd2Vik −
4m2Dvct

"2f1 + svctd2g
sN2 − b2dei3s

−
2m

"
ei jksN 3 m − bm̃d jGSkstd = 0, s48d

whereVik is given by Eq.s30d. This equation shows that the
g factor of the system can be tuned by means of the quanti-

ties N andb. It can be made positive as well as negative.
To investigate Eq.s48d further we focus on the situation

N=b. In this case the effectiveg factor vanishes but the
magnetization still performs a rotation due to the electric
field. In this case the equation of motion for the magnetiza-
tion takes the form

1 s 0 − v−

0 s+ Vxx + Vxy − v+

v− v+ s+ Vzz
2S8ssd = S08, s49d

where

v− = 2Î2mFBNmH/" s50d

and

v+ = 2Î2mFNmxx/" s51d

in the primed frame discussed in Sec. II B. This equation
shows that the precession of the magnetization in the pres-
ence of crossed electric and magnetic fields proceeds in both
the y8-z8 andx8-z8 planes. This result has immediate conse-
quences for the applications discussed in Ref. 5. According
to Eq.s49d every initial magnetization in a system with com-
bined Rashba and Dresselhaus interactions decays in the
presence of crossed electric and magnetic fields even at the
point of degeneracy. Therefore, the spin transistor of Ref. 5
becomes unstable in the presence of crossed fields.

IV. RESULTS

In this paper we have developed a simple method for the
investigation of spin relaxation processes in systems with
Rashba and Dresselhaus interactions in the presence of ex-
ternal fields. Our calculation reproduces the existing results
on the impact of an electric field on systems with Rashba
interactions26,27,29and extends them to systems in which both
Rashba and Dresselhaus interactions are present to systems
with large electric fields and to systems with crossed electric
and magnetic fields. In line with the results of Refs. 26, 27,
and 29 we find that a lateral electric field affects strongly the
spin relaxation. However, the impact of the field on the re-
laxation process depends on the structure of the spin-orbit
interaction. Although the field leads to an additional rotation
of the magnetization in both the presence of the Rashba in-
teraction and the Dresselhaus interaction, the plane of the
field-induced precession is different in both cases. In the
presence of the Rashba interaction the precession proceeds in
the plane perpendicular toN3F, in the presence of the
Dresselhaus interaction in the plane perpendicular toF. The
plane can be turned continuously by tuning the Rashba inter-
action constantN and the Dresselhaus interaction constantb
properly.

The field-induced rotation can be observed if the electric
field exceeds a critical field. The critical field depends on the
mobility, on the diffusion coefficient, on the effective mass,
on the Rashba interaction constant, and on the Dresselhaus
interaction constant. It vanishes at the points of degeneracy
uNu= ubu. Therefore, the investigation of systems near degen-
erate points offers the opportunity to study nonlinear field
effects already at vanishing small fields.
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The rotation of the magnetization manifests also in the
spin lifetime. Our calculation shows that the lifetime of the
spin component transverse to the precession plane increases
with increasing electric field. The equation, which describes
the decrease of the relaxation rate in the presence of an elec-
tric field, has the same structure as that in the presence of a
very strong magnetic field derived recently in Ref. 21. Thus
our results show that a lateral electric field affects the spin
relaxation qualitatively in the same way as a magnetic field.
At present mainly magnetic fields are used in the investiga-
tion of spin relaxation phenomena. Our results show that
every experiment which can be performed by means of mag-
netic fields can be performed completely electrically as well.

The field-induced rotation of the magnetization can be
affected further by magnetic fields. A magnetic field turns the
plane of the field-induced precession. In both a Rashba semi-
conductor and a Dresselhaus semiconductor the precession
plane is turned by a Hall angle, however, in different ways.
In a Rashba semiconductor the plane is turned in such a way
that the field-induced precession proceeds always in the
plane perpendicular toN3 j, wherej is the current density.
In a Dresselhaus semiconductor, however, the normal of pre-

cession plane, which is parallel to the current density vector
in the absence of the magnetic field, acquires also a compo-
nent transverse toj. The differences between the impact of
the magnetic field on the spin relaxation in both systems
manifests itself in particular at a point of degeneracy. In the
presence of crossed fields the magnetization decays even at a
point of degeneracy, although the tensorVik is degenerate,
since the field always turns the magnetization into a noncon-
served direction. Therefore the spin transistor discussed in
Ref. 5 becomes unstable at sufficiently large crossed fields.

The impact of a transverse magnetic field on the spin
relaxation is not restricted to the electric-field-induced pre-
cession. The cyclic motion of the charge carriers in a mag-
netic field leads also to an additional rotation, which changes
the effectiveg factor and reduces the relaxation rate. The
sign and magnitude of the effectiveg factor depend on the
magnitude of the spin-orbit interaction. The spin-orbit con-
tribution to the effectiveg factor vanishes at a point of de-
generacy and decreases with increasing magnetic field. The
equations describing the reduction of the relaxation rate with
increasing magnetic field obtained here agree with those of
Ref. 21.
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